ME 433 (cross-listed as MSC 433 and CHE 433): Nanoscale Energy Transport and Conversion

Understanding energy transport and conversion at the nanoscale requires a detailed picture of interactions among molecules, electrons, phonons, and photons. This course draws on relevant concepts from statistical thermodynamics and solid state physics to describe the physical mechanisms of energy transport and conversion in nanoscale systems. Topics covered include kinetic theory of gases, thermodynamic distribution functions, energy carrier dispersion relations, Boltzmann transport equation modeling of thermal and electrical properties, size effects (classical and quantum) on material properties, and thermoelectric and photovoltaic energy conversion.

Offered: Fall 2019, Fall 2020, Fall 2021, Fall 2022

ME 223: Heat Transfer

Review of thermodynamic concepts; energy balances; heat transfer mechanisms. Steady-state heat conduction; concept of thermal resistance; conduction in walls, cylinders, and spheres; cooling fins. Transient heat conduction; lumped parameter systems; transient conduction in plane walls; transient conduction in semi-infinite solids. Numerical analysis of conduction; finite difference analysis; one-dimensional steady conduction; two-dimensional steady conduction; transient conduction. Fundamentals of convection; fluid flow and heat transfer; energy equation; convective heat transfer from flat plate; use of dimensional analysis. External forced convection; flow over flat plates; flow past cylinders and spheres; flow across tube banks. Internal forced convection; thermal analysis of flow in tubes; laminar flow in tubes; turbulent flow in tubes. Heat exchangers; overall heat transfer coefficient; log mean temperature analysis; effectiveness-NTU method.

Offered: Spring 2021, Spring 2022, Spring 2023