
Figure 12. Steps of modified watershed segmentation technique.

Figure 13. Step-wise results of modified watershed segmentation method. (a) original image, (b) preprocessed image, (c)
gradient with sobel operator, (d) watershed transformation, (e) opening, (f) closing, (g) reconstructed from opening and
closing, and (h) watershed transformation with mass identified.
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2.3.4. Contour-based segmentation technique

The contour-based segmentation algorithm works in five steps as follows:

Step 1: Read the preprocessed image as input image.

Step 2: By performing the morphological operations, the abnormality is super imposed on
original image.

Step 3: Apply active contour technique to identify the suspicious lesions; the suspicious lesions
are peaks of the contour.

Step 4: Extract peak of the contour by calculating the energy of each contour.

Step 5: Mark extracted contour as ROI.

The stepwise results are shown in Figure 14. Energy of the contour is calculated by adding the
intensity of pixels from each contour and finding average. Average of each contour is com-
pared to select the mass region.

The contour-based technique works well on all kinds of tissues like fatty, glandular, and dense
as shown in Figure 15. Also it works with high-intensity and low-intensity images.

2.4. Feature extraction of mass ROI

Radiologists depict masses by their shape, gray levels, and texture properties. The properties
of mass surroundings are important discriminators from the background tissue. The shape of
the mass changing from early benign to malignant as round, oval, lobular, or irregular
circumscribed, micro-lobulated, obscured, indistinct, or peculated [36–39]. Figure 16 shows a
schematic diagram of mass shapes and boundary characteristics differ from benign to malig-
nant. We also note that masses with speculated and indistinct boundaries have a greater
probability of malignancy than circumscribed masses.

It also notes that masses with speculated and indistinct boundaries have a greater probability
of malignancy than circumscribed masses. Along with the mass margin and shape, intensity of
gray level is one of major feature to classify the mass. Hence, in this CAD system, different

Figure 14. Experimental results of contour-based segmentation technique (a) original image, (b) preprocessed image, (c)
opening, (d) closing, (e) reconstructed from opening and closing, (f) active contour.
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features have extracted by wavelet features, Gray Level Co-Occurrence Matrix (GLCM) fea-
tures, and Segmentation-based Fractal Texture Analysis (SFTA) features calculated.

2.4.1. Discrete wavelet transform (DWT)

The DWT is wavelet transform using discrete set of scales and translations followed by some
rules. To use a wavelet, it is necessary to discretize with respective to scale parameters, i.e.,
sampling. The scale and translation parameters are given by, S = 2 � m and T = n2 � m, where
m and n are the subset of all integers. Thus, the family of wavelet is defined in Eq. (6).

ψm,n ¼ 2
m
2ψð2mt� nÞ (6)

Figure 16. Morphological changes of mass in image from benign to malignant.

Figure 15. Mass segmented on different tissues using contour-based segmentation. (a) Ground truth (b) results of proposed
work.
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The wavelet transform decomposes a signal χ(t) into a family of wavelets as given in Eq. (7).

χðtÞ ¼
X

m

X
n
cm,nψm,nðtÞ (7)

where

Cm,n ¼ {xðtÞ,ψm,nðtÞ

For a discrete time signal x[n], the decomposition is given by Eq. (8):

x½n� ¼
X

i¼1 to l

X
kEZ

Ci, kg½n� 2ik� þ
X

kEZ
d1, kh1½n� 2ik� (8)

In case of images, the DWT is applied to each dimensionality, separately. The resulting image X is
decomposed in first level is xA, xH,xV, and xD as approximation, horizontal, vertical, and
diagonal, respectively. The xA component contains low frequency components and remaining
contains high frequency component. Hence, X= xA + {xH + xV + xD}. Then, DWTapplied to xA for
second level decomposition. Hence, the wavelet provides hierarchical framework to interpret the
image information [40, 41]. The basis of wavelet transform is localized on mother wavelet. Hence,
in the proposed work, Haar, Daubechies (db2,db4 and db8), coiflet and bi-orthogonal wavelets at
decomposition of level 4 used for the dataset and passed feature vector for the classification.

2.4.2. GLCM features

In texture analysis, widely used features are GLCM features. The GLCM is representation of
frequently occurred gray levels combinations [42]. It is second order statistics that can be used
to analyzing the texture features based on number of pixels in different combinations as shown
in Figure 17. The matrices are constructed at different gray levels, such as 1, 2, 3, 4, and so on,
for the different directions, such as 0, 45, 90, 180� and so on. Depends on the number of
combinations the statistics are measured as features in first order, second order, and in higher

Figure 17. Example of GLCM (a) four-level gray image, (b) direction of combination with single pixel distance, (c)
covariance matrix of four levels with direction 00 with single pixel distance, and (d) co-variance matrix of four levels with
direction 450 with single pixel distance.
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orders. Initially Haralick et al. [43] has defined 13 GLCM features then Soh and Tsatsoulis [44],
and Clausi [45] have increased them to 21 features. In most of the CAD systems, these gray
level features are used to interpret the symptoms. In the proposed work, we have extracted 21
GLCM features which are contributing to the discrimination of mass type.

2.4.3. SFTA features

Texture feature extraction is time-consuming process with basic filters because of scale and time
invariant. This time consuming problem overcome by applying SFTA algorithm proposed by
Costa [46]. SFTAworks on multilevel thresholding on gray image. In purpose of using SFTA is to
get the clear structure for mass boundaries. The 21 texture feature vector corresponds to texture
information like dimension, different gray levels, and area of ROI. The region-based 21 shape
features extracted from the ROI such as area, orientation, bounding box, extent, perimeter, centroid,
extrema, pixel_idx_list, convex area, filled area, pixel list, convex hull, filled image, solidity, convex
image, sub_array_idx, eccentricity, major_axis_length, equi_diameter, minor_axis_length, and Euler
number. All together there are 73 features extracted from mass to train the CAD system to discrim-
inate the mass type as benign and malignant [48].

2.5. Classification

Support vector machine (SVM) is a supervised learning technique that seeks an optimal
hyperplane to separate two classes of samples. Mapping the input data into a higher dimen-
sional space is done by using Kernel functions with the aim of obtaining a better distribution of
the data. Then, an optimal separating hyperplane in the high-dimensional feature space can be
easily found as shown in Ref. [47]. An example of an optimal hyperplane is shown in Figure 18.

Figure 18. Optimum hyperplane for support vector machine.
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3. Experimental results

The proposed algorithm implemented in MATLAB13a, classification accuracy measured with
confusion matrix shown in Table 1 and tested on MIAS dataset. MIAS contains a total of 322
mammograms of both breasts (left and right) of 161 patients.

According to above definitions of true positive, true negative, false positive and false negative.
The equations related to specificity (the accuracy of negative class), sensitivity (accuracy of
positive class and accuracy), and accuracy of recognize both negative and positive classes are
defined as in Eqs. (9)–(11), respectively.

Specificity ¼ TN
TNþ FP

� �
� 100 (9)

Sensitivity ¼ TP
TPþ FN

� �
� 100 (10)

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

� �
� 100 (11)

Classification measured based on different feature extraction techniques with contour-based
segmentation and SVM classifier as shown in Table 2, the number of images used to test the
system is 50, and among them, 37 are malignant cases and 13 are benign cases. The accuracy is
high using wavelet db4 features [50].

Though wavelet db4 gives high accuracy, it is important to consider texture based and gray
level features to discriminate the mass type as benign and malignant. Hence, for the proposed
CAD model all features together passed to measure the performance of algorithm with differ-
ent segmentation techniques such as adaptive threshold-based technique, modified segmenta-
tion technique, and energy-based contour segmentation shown in Table 3.

Actual/predicted classes Benign Malignant

Benign TP FP

Malignant FN TN

Table 1. Confusion matrix.

Parameters GLCM Wavelet dB4 SFTA Stats from region props

Total number of images 50 50 50 50

Number of benign images 13 13 13 13

Number of malignant Images 37 37 37 37

Number of misclassification 04 02 03 05

Accuracy (%) 92 96 94 90

Table 2. Samples used for performance evaluation.
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Comparing with all the three techniques, energy-based technique gives more accurate results
as shown in Figure 19.

The performance of the classifier compared with previous work shown in Table 4, the combi-
nation of different features achieved more accuracy comparing with existing work.

Segmentation techniques Accuracy Specificity Sensitivity

Adaptive threshold based 97.32143 98.03922 96.72131

Modified watershed segmentation 96.46018 100 93.75

Energy-based contour segmentation 98.26087 100 96.8254

Table 3. The performance measures of the SVM classifier with different similarity matrices.

Figure 19. Comparative analysis of accuracy rate for adaptive threshold, modified watershed, and energy-based contour
segmentation techniques.

Features Classifier Accuracy (%) Reference

Fractal features SVM 85.7 S. D. Tzikopoulos et al. (2011) [48]

SIFT, LBP, texton histogram SVM 93.54 G. Liasis et al. (2011) [49]

GLCM, statistical, histogram (ROI) K-NN 82.5 M. Mario et al. (2012) [50]

Statistical moments (ROI) Combined K-NN 91.72 K. Vaidehi and T. S. Subashini (2015)[51]

Db4 wavelet, GLCM, SFTA features SVM 98.26 Proposed method

Table 4. Comparison of preset algorithm with previous works reported.
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4. Discussion

Early detection of breast cancer may reduce the death rate. The advancement in technology is
needed in the detection of all types of masses in terms of increasing sensitivity and reducing
false positive rate. Masses can be varying in size and shape and thus, the proposed segmenta-
tion and feature extraction techniques are more suitable to measure in terms. As the experi-
mental results reported based on individual feature sets such as GLCM, wavelet, SFTA, and
region-based statistical features, the accuracy was 92, 96, 94, and 90%, respectively as observed
in Table 2. With same segmentation technique accuracy is increased by passing combined set
of features to SVM classifier as shown in Table 3. The CAD system is compared with different
set of features with different classifiers as shown in Table 4. It proved that with less number of
features and simple classifier, it improved the accuracy of detection and classification with less
complexity.

5. Conclusion

The CAD system is used to help the radiologists to interpret the medical images like mam-
mography, X-ray, ultrasound, MRI, etc. It used as a second opinion by the radiologists.
Improving CAD accuracy increases the treatment option and a cure is more likely. There are
some commercial CAD systems that have been reported, which are R2 technology Inc, intelli-
gent system software Inc. (ISSI), CADx medical systems, and iCAD. All of these commercial
CAD systems perform better at detecting calcifications than the masses. Architectural distor-
tions become the challenging task to all the commercial CAD system. One cannot make a
direct comparison between these systems and their work because there is no same clinical
dataset to study and compare the performances. The proposed CADmodel is more suitable for
mass detection and classification. The obtained result show that selection of suitable
approaches to design an algorithm for CAD is subject to the accuracy, sensitivity, and false
positive identifications. To remove background noise and pectoral muscle, region growing and
thresholding methods are proved to be good. The quality of the mammography was enhanced
by using CLAHE and Wiener. Mass in mammography is extracted with proper marking use of
contour-based segmentation. The set relevant features are provided to SVM classifier to dis-
criminate mass type as benign or malignant. Finally, the outcomes from this study predict that
the selection of appropriate technique at each stage of medical image analysis is subjective to
relevant and significant to design a CAD model.
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Abstract

Both mammography and standard ultrasound (US) rely upon subjective criteria within 
the breast imaging reporting and data system (BI-RADS) to provide more uniform inter-
pretation outcomes, as well as differentiation and risk stratification of associated abnor-
malities. In addition, the technical performance and professional interpretation of both 
tests suffer from machine and operator dependence. We have been developing a new 
technique for breast imaging that is based on ultrasound tomography which quantifies 
tissue characteristics while also producing 3-D images of breast anatomy. Results are pre-
sented from clinical studies that utilize this method. In the first phase of the study, ultra-
sound tomography (UST) images were compared to multi-modal imaging to determine 
the appearance of lesions and breast parenchyma. In the second phase, correlative com-
parisons with MR breast imaging were used to establish basic operational capabilities of 
the UST system. The third phase of the study focused on lesion characterization. Region 
of interest (ROI) analysis was used to characterize masses. Our study demonstrated a 
high degree of correlation of breast tissue structures relative to fat subtracted contrast-
enhanced MRI and the ability to scan ~90% of the volume of the breast at a resolution of 
0.7 mm in the coronal plane.

Keywords: breast, ultrasound, 3-D imaging, tomography, cancer

1. Introduction

Breast cancer is the most common cancer among women, accounting for one-third of cancers 
diagnosed. Statistically, ~230,000 new cases of invasive breast cancer and ~63,000 in situ breast 
carcinomas are diagnosed in the US annually; breast cancer is the third leading cause of cancer 
death among women, causing ~40,000 deaths in the US every year [1]. According to SEER sta-
tistics, approximately 61% of women are found to have localized breast cancers at the time of 
diagnosis; about 31% are found to be regional disease; another 5% are diagnosed with distant 
metastases while about 3% are unstaged [2]. The 5-year survival rate for women with localized 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



cancer is 98%; for those with regional disease, it drops to 84%; for those diagnosed with distant 
stage, the survival rate drops dramatically to 23%; while for unstaged cancers the 5-year sur-
vival rate is about 58%. Figure 1 illustrates the dependence of survival on cancer stage.

There are many reasons why cancers are not detected early but some of the major fac-
tors relate to limited participation in breast screening and the performance of screening 
mammography.

1.1. Limited participation in screening

National cancer screening statistics indicate that only 51% of eligible women undergo annual 
mammograms [4]. That rate is even lower for African American women and/or those of 
lower socioeconomic groups. Access, fear of radiation and discomfort are some of the factors 
that contribute to the low participation rate. Greater participation would lead to detection 
of breast cancer at an earlier stage leading to longer survival. Increased participation and 
improved breast cancer detection would have the greatest effect on the statistic of nearly 1 in 3 
women who are diagnosed each year with later stage (regional or greater) breast cancer, total-
ing approximately 60,000 women per year in the USA. The net effect would be an increase 
in survival time and a corresponding decrease in mortality rates. This is also suggested in a 
recent meta-analysis, whereby increased participation and sensitivity lead to additional inva-
sive cancer detection and greater mortality reduction [4].

1.2. Limited performance of mammography

For women with dense breast tissue, who are at the highest risk for developing breast cancer 
[5–8], the performance of mammography is at its worst [9]. Consequently, many cancers are 

Figure 1. The dependence of mortality rates on cancer type and stage. From Kerlikowske et al. [3].
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missed at their earliest stages when they are the most treatable. Improved cancer detection 
for women with denser breasts would decrease the proportion of breast cancers diagnosed at 
later stages, which would significantly lower the mortality rate.

1.3. The breast screening challenge

X-ray mammography detects about 5 cancers per 1000 screens [10]. However, its positive 
predictive value (PPV) is low and its sensitivity is greatly reduced in women with dense 
breast tissue [10]. Although digital breast tomosynthesis (DBT) may improve upon some 
of the limitations of standard mammography, it is unlikely to create a paradigm shift in 
performance [11] while generating even higher levels of ionizing radiation [12]. MRI can 
significantly improve on these limitations by virtue of its volumetric, radiation-free imag-
ing capability. Studies have shown that MRI can have a positive impact in the breast man-
agement continuum ranging from risk assessment to diagnosis and treatment monitoring 
[12, 13]. However, MRI can have a high false positive rate, requires contrast injection and 
the exams can be both long and costly [14]. Furthermore, MR has long been prohibitively 
expensive for routine use and there is a need for a low-cost equivalent alternative. Yet, 
for high-risk women, MRI is now viewed as the gold standard for breast cancer detection 
and screening [15–23]. Positron emission tomography is also limited by cost and radiation 
concerns.

Recent studies have demonstrated the effectiveness of hand held ultrasound imaging in 
detecting breast cancer, particularly for women with dense breasts (Table 1). These studies 
have shown that up to 4.5 extra cancers were detected per 1000 screens [24–34]. A strik-
ing aspect of the added detections is that they are predominantly node negative invasive 
cancers which would have potentially progressed to a later stage before possible mam-
mographic detection. Moreover, there is little risk of over detection of ductal carcinoma 
in situ (DCIS). The sensitivity of mammography is greater for DCIS than it is for invasive 
cancer, with DCIS making up approximately 25% of mammographic screen-detected breast 
cancers [35].

We have examined the data from these studies to extract the statistics of cancer detection 
by imaging mode (Table 1). The results are summarized in Figure 2. It is striking to note 
that ultrasound (US) almost doubles the cancer detection rate in dense breasts. However, 
despite these successful study outcomes, handheld ultrasound is unlikely to be adopted 
for screening because it is operator dependent, and its imaging aperture is small, which 
hinders whole breast imaging. Furthermore, ultrasound’s increased sensitivity to invasive 
cancer is offset by lowered sensitivity to DCIS by virtue of mammography’s greater abil-
ity to detect microcalcifications. Although such a trade-off may be justified by the fact that 
mortality from invasive cancers is much higher than that from DCIS, a combined screening 
[mammography plus automated breast ultrasound (ABUS)] would provide a comprehen-
sive screen. It has therefore been proposed that ABUS be used for screening, supplemental 
to mammography.
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To that end, automated breast ultrasound (ABUS) has been introduced as a way of overcom-
ing these issues, mainly by reducing operator dependence and increasing the field of view. 
For example, the GE Invenia ABUS ultrasound system for breast cancer screening, originally 
developed by U-Systems., recently received screening approval, adjunctive to mammogra-
phy, from the FDA, because it demonstrated an ability to detect cancers missed by mam-
mography in dense breasts. The SomoInsight screening study [24], indeed showed that ABUS 
plus mammography outperformed mammography alone, leading to the first FDA approval 
for ultrasound screening for breast cancer.

The fundamental quandary of breast screening today is the knowledge that (i) mammography misses 
cancers in dense breasts, (ii) that Automated Breast ultrasound (ABUS) detects cancers that mam-
mography misses and yet (iii) screening continues largely with mammography only. This paradox 

Figure 2. Venn diagram summarizing comparative cancer detection rates for screening mammography and ultrasound.

Author (Year) Center Type Exams US only cancers Yield per 1000

Brem et al. (2014) Multi ABUS 15,318 30 1.96

Berg et al. (2012) Multi HHUS 7473 32 4.28

Hooley et al. (2012) Single HHUS 935 3 3.21

Kelly et al. (2010) Multi AWBU 6425 23 3.58

Corsetti et al. (2008) Multi HHUS 9157 37 4.04

Crystal et al. (2003) Single HHUS 1517 7 4.61

Leconte et al. (2003) Single HHUS 4236 16 3.78

Kolb et al. (2002) Single HHUS 13,547 37 2.73

Kaplan (2001) Single HHUS 1862 6 3.22

Buchberger et al. (2000) Single HHUS 8103 32 3.95

Gordon et al. (1995) Single HHUS 12,706 44 3.46

Table 1. Summary of studies used in the analysis.
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is amplified even further by the proliferation of state breast density notification laws in the 
USA which mandate that this information be available to women undergoing breast cancer 
screening. The primary reason this paradox exists today is that ABUS screening increases 
call back rates (up to a factor of two in case of the SomoInsight study [23]). The improvement 
in classification performance, measured by the area under the ROC curve, is modest because 
the increase in sensitivity is partially offset by an increase in false positives thus slowing 
its adoption. Technically, with its basic B-mode capability, ABUS has the same issue with 
false positives as hand held ultrasound. It is therefore unlikely that ABUS will be widely 
adopted for screening in the foreseeable future without more tissue-specific imaging capa-
bility. Improved lesion characterization would help lower the barriers to adoption of screen-
ing ultrasound.

1.4. Potential role of UST

Ultrasound tomography (UST) is an emerging technique that has the potential for tissue-spe-
cific imaging and characterization, by virtue of its transmission imaging capability [36–61]. 
Improved specificity would lower call back rates and lower the barriers to adoption. An adjunc-
tive use of UST would have the potential to improve specificity relative to current ABUS and 
provide a comprehensive screen that would uncover invasive cancers otherwise missed by 
mammography. Detection of such early stage invasive cancers would provide women with 
curative treatment, the opportunity for which might be otherwise lost.

Conventional reflection ultrasound exploits differences in acoustic impedance between tis-
sue types to provide anatomical images of breast tumors [62, 63]. However, reflection is just 
one aspect of a multi-faceted set of acoustic signatures associated with the biomechanical 
properties of tissue. UST is a technique that moves beyond B-mode imaging by virtue of its 
transmission capabilities. The latter provides additional characterization by measuring tissue 
parameters such as sound speed and attenuation (ATT) [64–68]. These parameters can be used 
to characterize lesions in a quantitative manner, a capability not available in current whole 
breast ultrasound systems. By merging reflection images with images of the bio-acoustic 
parameters of sound speed and attenuation, UST offers the possibility of exploiting differ-
ences in anatomical and physical properties of tissue to accurately differentiate cancer from 
normal tissue or benign disease. UST parameters are also quantitative, which allows new con-
sideration of second and third-order statistical image analyses, or radiomics. Ultrasound has 
previously not been suitable for the burgeoning applications of radiomics due to its lack of 
true quantitative parameters such as sound speed (m/s) and attenuation (dB/cm/MHz). Initial 
assessments of UST performance was carried out, as described below.

In an initial attempt to assess the potential of UST in breast imaging, studies were carried 
out at the Karmanos Cancer Institute, Detroit, MI, USA. Informed consent was obtained 
from all patients, prospectively recruited in an IRB-approved protocol following HIPAA 
guidelines. Patients were scanned at the Alexander J Walt Comprehensive Breast Center. 
Standard multi-modality imaging was available for all patients. The Walt Breast Center 
houses SoftVue, a UST system manufactured by Delphinus Medical Technologies, Inc 
(Novi, MI). SoftVue embodies a number of attributes that differentiate it from conventional  
imaging modalities:
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• Water-based pulse coupling: SoftVue utilizes a water filled imaging chamber that is kept at 
body temperature. Its primary purpose is to couple the sound energy between the trans-
ducer and the breast tissue.

• Closed geometry probe: A circular ring transducer surrounds the breast while both are im-
mersed in water. There is no compression of the breast since the transducer is offset from 
the breast with water acting as the pulse coupling agent. The closed transducer geometry 
allows collection of signals that pass through the entire width of the breast, a requirement 
for transmission imaging and the reconstruction of sound speed and attenuation images. 
These parameters provide quantitative information in absolute units that are tied to exter-
nals standards (km/s and dB/cm, respectively).

• Operator independence: Unlike mammography and other ABUS systems, multiple position-
ings are not required for larger breasts. Once the patient is positioned on the table, the op-
erator simply presses the button and the exam is performed automatically without further 
intervention from the operator.

• Scan time: SoftVue scan time is 1–2 min per breast (depending on breast size). This scan 
duration minimizes intra-slice and inter-slice motion artifacts.

• Image reconstruction time. In this study, reconstruction time for a bilateral breast exam was 
~30 min for the average patient and current hardware/software processing ability.

SoftVue was used to scan the recruited patients for this study. Coronal image series were 
produced by tomographic algorithms for reflection, sound speed and attenuation. All images 
were reviewed by a board-certified radiologist who has more than 20 years of experience 
in breast imaging and US-technology development. Symptomatic study participants were 
scanned with a SoftVue UST system. Pathological correlation was based on biopsy results and 
standard imaging (e.g. US definitive cyst).

Tomographic algorithms were used to generate images stacks of reflectivity, sound speed and 
attenuation for each patient. Lesions were identified based on correlation with standard imag-
ing so that the tumor sound speed (SS) and attenuation (ATT) could be assessed. An example 
each type of image is shown in Figure 3.

In the first phase of the study, correlative comparisons with multi-modal imaging were car-
ried out to assess lesion properties relative to mammography, US and MR. In the second 

Figure 3. From left to right, reflection, sound speed and attenuation image slices depicting breast parenchyma and a 
fibroadenoma at 7 o’clock.
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Figure 3. From left to right, reflection, sound speed and attenuation image slices depicting breast parenchyma and a 
fibroadenoma at 7 o’clock.
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phase, MR breast imaging was used to establish basic operational capabilities of the UST sys-
tem including the identification and characterization of parenchymal patterns, determination 
of the spatial resolution of UST and an estimate the breast volume that can imaged with UST. 
The third phase of the study focused on lesion characterization. Region of interest (ROI) anal-
yses were performed on all identified lesions using all three UST image types. Combinations 
of the ROI generated quantitative values were used to characterize all masses, particularly in 
relation to relative differences with surrounding peritumoral regions.

2. Multi-modal comparisons

Since the patients were recruited at KCI on the basis of having a suspicious finding, stan-
dard imaging such as mammography, US and sometimes MRI were available, as well as 
the radiology and pathology reports. These images and the associated reports were used to 
retroactively locate the lesions in the UST image stacks for visual comparison. Figures 4–7 
show examples of UST images in relation to the other modalities. When MRI was available, 
the images were projected into the coronal plane for easier comparison with the UST whose 
native format is coronal.

Figure 4 shows a 9mm IDC at 3 o’clock. CC and MLO mammographic views of the affected 
breast are shown on the left with the lesion identified by arrows. The UST views corresponding 

Figure 4. A 9 mm IDC at 3 o’clock. CC and MLO mammographic views of the affected breast are shown on the left with 
the lesion identified by arrows. The coronal UST views are shown in the form of reflection, sound speed and attenuation 
images. The corresponding ultrasound and MR images are also shown.
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Figure 5. Multimodality images compared to UST reflection, sound speed and attenuation. An IDC is shown at 12 
o’clock.

Figure 6. Multimodality images vs UST reflection, sound speed and attenuation showing an IDC and intramammary 
lymph node.
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to the coronal planes that contain the lesions are across the top with reflection, sound speed and 
attenuation images laid out from left to right. The corresponding ultrasound and MR images 
are shown along the bottom. Inspection of the images shows good correspondence in shape 
and location of the lesion. The greatest similarity is between the UST images and MRI. The IDC 
is seen to be hypoechoic in reflection and has high sound speed and attenuation contrast. An 
IDC in a heterogeneously dense breast is shown in Figure 5 This IDC was initially missed by 
mammography. A large IDC and an intramammary lymph node are shown in Figure 6. Note 
the concordance between the UST images and mammography. Figure 7 illustrates the chest 
wall access achievable by UST relative to mammography. Although UST does not access the 
entire axilla it does visualize the cancer that has invaded the chest wall.

3. MR concordance

UST and MR imaging was performed within weeks of each other. UST imaging was carried out 
with the SoftVue system (Delphinus Medical Technologies) and the MR exams with a Philips 
Achieva 3T system. The resulting image sequences were qualitatively and quantitatively to 
assess imaging performance of UST. As discussed above, UST images correlate best with MR 
images. Further inspection shows that of the three UST image types, the sound speed image 
correlates best with MR. Figure 8 shows a coronal view comparison between UST speed of 
sound and MR contrast-enhanced fat subtracted images of representative breast parenchyma.

Figure 7. Illustrating the chest wall access achievable by UST relative to mammography.

Breast Ultrasound Tomography
http://dx.doi.org/10.5772/intechopen.69794

119


