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ABSTRACT

Ultrasound tomography generates several different imaging stacks. This includes reflection, sound speed, and
attenuation images. The images visualize different acoustic parameters which are useful for assessing different
types of breast diseases or tissues. Typically, a radiologist views the images to determine a diagnosis for a patient.
However, a learning algorithm can be trained to predict diagnoses based on the features contained within the
image. Thus, we present a method to extract features from an ultrasound tomography image and label them. The
extracted features with the associated label of benign or malignant are fed to a machine learning algorithm which
trains a classifier model (the agent). Extracted features from an unlabeled image are then labeled according to
the agent. In particular, the differences in tissue acoustic parameters and lesion heterogeneity within the tumor
and its surrounding peritumoral region have great diagnostic potential. Ultimately, a radiologist has to work
quickly, thus we will also demonstrate that machine learning tools can be used quickly on clinically relevant time
scales.
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1. INTRODUCTION

Breast cancer is one of the leading causes of cancer mortality among women.1,2 Early detection of breast disease
can lead to a reduction in the mortality rate.3 However, problems exist with the sensitivity and specificity of
mammography which is the current gold standard for breast cancer screening.4 These problems are substantial
within the subset of young women with dense breasts who are at an increased risk for cancer development.5

Conventional hand-held ultrasound (HHUS) has proven to be a valuable adjunct to mammography.6–8 HHUS
aids in the detection of cancers in dense breasts and helps differentiate between malignant and benign masses
by qualitatively assessing lesion morphology and thus increasing the specificity of diagnostic breast imaging.
This leads to reduced anxiety, stress, and physical trauma associated with the biopsy procedure. Problems also
exist for HHUS. It is highly operator dependent and difficulties exist for the reproducibility of examinations. It
typically only utilizes the basic principles of pulse-echo reflection sonography which cannot use the information
contained within the transmitted ultrasound (US) signal. The added cost to the healthcare system as a result
of false-positives is also a problem.9,10

Ultrasound tomography (UST) might provide a remedy to the deficiencies of HHUS and mammography. Many
research groups have investigated the use of reflection and transmission UST.11–18 In contrast to mammography,
UST does not use ionizing radiation or compression. When compared to HHUS, UST is considerably less
operator dependent, has more reproducibility of the data acquisition process, and can utilize both reflection
and transmission information. UST can utilize reflection signals to create tomographic B-mode images of the
breast.19 The transmitted portion of an US signal contains information about the sound speed and attenuation
properties of the insonified medium.20–25 These properties can aid in the differentiation of fat, fibroglandular
tissues, benign masses, and malignant cancer.20–29 The UST device used for this study and its ring array has
been described in our previous work.30,31
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Figure 1: Ultrasound tomography images of an invasive ductal carcinoma in the 10:00 position of a breast with
scattered parenchymal density. Note tumor location on the interface between fibroglanduar and adipose tissue
(IFGA). In contradistinction to benign masses, magnifications views show heterogeneity extending beyond the
cancer and into the surrounding peritumoral regions. (a) Sound speed; (b) Reflection; (c) Attenuation; (d)
Magnification of Sound Speed; (e) Magnification of Reflection; Magnification of Attenuation.

The goal of developing a UST device is for its eventual application in a clinical setting. There, a radiologist will
review the images of a scanned patient and make a diagnosis based on what is seen. In particular, radiologists use
their experience and training to make a decision on the presence of any focal imaging abnormality. However, their
decision are not always correct, and a possible method to boost their classification ability could utilize radiomic
features and classification using supervised machine learning techniques.32–40 We will focus on assessing breast
tissue acoustic parameters and heterogeneity of a breast mass while comparing its tumoral and peritumoral (i.e.
surrounding a tumor) regions. For example, in Figure 1, we see an example of the visualization of an invasive
ductal carcinoma breast cancer using UST sound speed, reflection, and attenuation images. A magnification
of the region surrounding the tumor at 11 o’clock helps define its irregular margins and spiculation. Note the
differences in the acoustic parameters and tissue heterogeneity between the tumoral and peritumoral areas. The
goal of this paper is to use machine learning techniques to properly classify lesions as benign or malignant
based on the differences between these areas. Doing so could improve the classification ability of experienced
radiologists as well as boosting novice radiologists so that they perform with increased ability.

In the following sections, we will outline the machine learning method which includes dataset generation for
the tumor/peritumoral regions, feature extraction, feature selection, supervised learning, and evaluation metrics.
We will show how using different features subsets which correspond to methods which can or can not be done
on clinically relevant time scales affect the classification accuracy. We will conclude with our conclusions on the
efficacy of the method and future work.
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Figure 2: Region-of-Interest (ROI) creation. (a) Sound speed image with a well-circumscribed bilobed fibroade-
noma in the peripheral 8:00 position; (b) ROI; (c) Magnification of ROI; (d) ROI with small a peritumoral
region. (e) ROI with a larger peritumoral region.

2. METHOD

Tissue characterization of UST images using machine learning techniques requires a series of steps. First, a
data set of images must be created which contain examples of different types of tissues and masses. A trained
radiologist must then locate and segment the tissue of interest by generating a binary region-of-interest (ROI)
mask. Features are then extracted from the ROI. Using feature selection techniques, the most relevant features
are then fed to a machine learning classifier model. The trained algorithm can then be fed features from an
unknown tissue sample to predict a label for the sample.

2.1 Region of Interest Generation

ROIs are identified within each image which encapsulate a particular tissue or mass. ROI creation is demonstrated
in Figure 2. An example of a sound speed image with a well-circumscribed bilobed fibroadenoma in the peripheral
8:00 position is seen in Figure 2a. A mask is drawn around the mass (Figure 2a) to a generate a binary mask
as seen in Figures 2b and 2c. The ROI can be expanded to assess features within the surroundings peritumoral
region as shown in Figures 2d and 2e. Note, that instead of using a detailed ROI as shown in Figure 2, an
elliptical ROI encompassing the lesion could also be created or morphed from the original ROI. For the purposes
of this study, we used a data set containing 161 (93 benign and 68 malignant) samples of lesions which includes
38 cysts, 55 fibroadenomas, and 68 cancers.
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Figure 3: Examples of higher order textural features of the Law’s maps. (a) Sound speed image; (b) EE map;
(c) ESSE map; (d) ESSE map 4-bit color.

2.2 Feature Extraction

Once an ROI is generated, it can be applied to the various imaging modalities to extract features.41 Some
examples of features include various order statistic assessments of the acoustic parameters or assessments of the
texture of the tissue. This includes order statistics such as mean, standard deviation, skewness, etc. Quantitative
morphological information can also be obtained from the tumor ROI. Texture metrics include 1st order histogram
statistics, 2nd order Gray Level Co-Occurrence Matrix (GLCM) features, as well higher order methods such as
texture maps. An example of some of Law’s texture maps are seen in Figure 3. Additional features can be
extracted from permutations of how the images were contrasted, the differences between the features within the
tumor and peritumoral regions, and the imaging type.



Figure 4: Examples of using the mass boundary score. A lower score reflects more well-defined lesions with
circumscribed margins while a higher score reflects more spiculated lesions.

In addition to the features that are extracted from the images, a radiologist could also provide a score that
assesses the degree of malignancy. This is crucial as all a priori information that can be provided boosts the
classification accuracy of a machine learning algorithm.42 Thus, we have created our own single BI-RADs-like
criterion which assesses the degree of heterogeneity in tumor morphology. This score, called the Mass Boundary
(MB) score rates a tumor on a scale of 1 to 5. A low value reflects a well circumscribed lesion with well-defined
margins while a higher score reflects an irregular or spiculated lesion with ill-defined margins extending into the
peritumoral region. An example of this is seen in Figure 4. If greater than 2/3 of the lesion is circumscribed,
then a score of 1 is given. If this perimeter is between 1/3 and 2/3, a score of 2 is given. If less than 1/3
of the lesion is circumscribed, then a score of 3 is given. If the lesion is quite irregular, a score of 4 is given.
Likewise, if distinct speculations are seen, a score of 5 is given. Therefore, the MB score differs somewhat from
an overall BI-RADs score in that the MB score classifies only the tumor/peritumoral morphology and is not
meant to convey clinical decision of 12-month follow-up (BI-RADs 1 and 2), 6-month follow-up (BI-RADs 3), or
recommendation for biopsy (BI-RADs 4 and 5). Indeed, the MB score likely represents a smoother transition of
cancer probability rather than the sharp inflection in probability from <2% with BI-RADs 3 to approximately
10-50% with BI-RADs 4.

2.3 Feature Selection

Given that multiple imaging modalities are used, that we use both the tumor and peritumoral regions, the various
contrast choices that can be made, and other permutations, the number of features we obtain quickly explodes
to be much greater than the number of patient samples we have. In order to mitigate this dimensionality curse,
we must prune the number of features.43 Some methods to accomplish this include simulated annealing, genetic
algorithms, forward selection, backward elimination, and decision tree pruning. We used decision tree pruning to
reduce the dimensionality of the hypothesis space. Subsets of features were fed to a decision tree classifier. The
top nodes of the trees were aggregated. This allowed reduction in the number of features while keeping features
with the greatest information gain.

To demonstrate that machine learning techniques can be used on clinically relevant time scales, we partitioned
our features into subcategories. These categories include all acoustic parameter and textural features obtained
using a detailed hand-drawn ROI (R), the same features but with a coarse elliptical ROI (RE), quantitative
morphological features obtained from the detailed hand-drawn ROI (M), and the mass boundary (MB) score.

2.4 Supervised Learning

Given a vector of features ~x and a label y, the goal of supervised machine learning is to train a classifier model
f such that f(~x) = y. In particular, the function f is taught to predict labels by being fed a training set S of
features and labels: S = {(~x1, y1) , (~x2, y2) , . . . , (~xN , yN )}. In this manner, the classifier model f does the best
job it can on obtaining the proper label. However, the classifier model can be overfitted such that it gives the



proper label for each sample. Thus, a true test of the ability of a classifier model to generalize a data set would
lie on its performance on a testing data set.

We tested several classifier models including decision trees, nearest neighbor classifiers, neural networks,
support vector machines, and boosted decision stumps.44–50 Hyperparameter training was done across reasonable
parameters until the greatest classification accuracy was obtained. We evaluated both the Weka and scikit-learn
machine learning libraries.51,52

2.5 Evaluation Metrics

The efficacy of our feature extraction and machine learning method was evaluated by using the sensitivity
(SEN), specificity (SPF), and positive predictive value (PPV) of our classifiers. Note that these definitions of
SEN, SPF, and PPV are not what they might typically mean for detecting lesions in medical images. Instead,
the radiologist has already found the lesion and contoured it. It is the job of the classifier to label the region as
benign or malignant. The classifier’s SEN, SPF, and PPV thus reflects the ability to properly label the region
as benign or malignant. To reduce over-fitting and have a classifier model which generalizes well, it is important
to test the classifier on a separate testing set. However, for our testing, the data was not explicitly partitioned
into a training and testing set. Instead, a stratified shuffle split cross-validation approach was used. Also, we
do not cite the raw SEN, SPF, and PPV values. Instead, we cite the improvement over randomly guessing the
classification to better estimate eventual clinical utility.

3. RESULTS

In this section, we will show improvements in SEN, SPF, and PPV over random guessing when using certain
subsets of features. The results are seen in Table 1.

Feature Category SEN SPF PPV
R 27.9% 25.1% 34.8%
RE 23.6% 20.8% 29.4%
R + M 31.0% 28.3% 38.9%
R + MB 35.4% 38.0% 51.5%
RE + MB 32.5% 39.1% 52.9%

Table 1: The improvements in sensitivity (SEN), specificity (SPF), and positive predicative value (PPV) over
random guessing when using certain categories of features. See Section 2.3 for the definitions of R, RE, M, and
MB.

4. CONCLUSIONS

From Table 1, it is seen that using only acoustic parameters and textural information from the UST images
generates better classification accuracy over random guessing. This is true when using either the detailed ROI
(R) or the elliptical ROI (RE). However, the detailed ROI provides better improvements compared to the el-
liptical ROI. In addition, if we use a detailed ROI in conjunction with quantitative morphological information
obtained from the ROI (R + M), then the classification accuracy improves with respect to not using the mor-
phological information (R). If instead of the quantitative information, we insert additional information from the
radiologists in the form of the MB score, the classification accuracy improves further (R + MB). However, since
the radiologists assessment of the MB score is such a highly filtering feature, we obtain similar classification
accuracy if using an elliptical ROI (RE + MB). Thus, the performance of the detailed ROI and elliptical ROI
is comparable (R + MB vs. RE + MB). Since we see vast improvements in classification accuracy over random
guessing, we would surmise that machine learning tools will allow a radiologist to boost their ability to assess
lesion malignancy. Since the elliptical ROI in conjunction with the MB score performs just as well as the detailed
ROI, a radiologist should be able to use machine learning tools on clinically relevant time scales where every
click or movement of a mouse is aggregated in terms of clinical cost.

For our future work, we will incorporate a much larger patient data pool. This should improve the classifica-
tion accuracy which can be seen by developing learning curves from toy datasets such as those available on the



UCI repository.53 When developing learning curves, one uses increasing fractions of the total data to develop
their classifier models. It is typically seen for many problems that the classification accuracy improves as we
incorporate more training samples. However, it does eventually saturate. Based on the sample size used in this
paper, we should be far away from this saturation point.
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