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ABSTRACT
We propose a new method for reconstruction of breast images from
measurements obtained by ultrasound tomography (UT) scanners.
Our solution for this inverse problem is based on sparse image rep-
resentation in an overcomplete dictionary that is adapted to the prop-
erties of UT images. This dictionary is learned from high resolution
MRI breast scans using an unsupervised dictionary learning method
described in Ref. [1]. The proposed dictionary-based regularization
method significantly improves the quality of reconstructed breast
UT images. It outperforms the wavelet-based reconstruction and the
l2+lowpassminimization algorithm, on both numerical and in vivo
data. Our results demonstrate that the use of the learned dictionary
improves the image accuracy for up to 4 dB with the exact measure-
ment matrix and for 3.5 dB with the estimated measurement matrix
over the wavelet-based reconstruction under the same setup.

Index Terms— ultrasound tomography, ray-based reconstruc-
tion, sparse representation, dictionary learning

1. INTRODUCTION

A variety of applications exploit the fact that transmission of sound
is affected by the medium through which it passes. It provides in-
formation concerning the properties of the medium, including inho-
mogeneities in ultrasound speed and attenuation. Different methods
have been developed over the past decades in order to recover and
image these properties. An emerging application of ultrasound to-
mography (UT) is breast screening for cancer detection, which pro-
vides a much cheaper imaging solution than MRI. This study is mo-
tivated by the fact that MR and sound-speed images depict similar
structures in the breast [2]. Although these two imaging modali-
ties rely on totally different physical principles (magnetism versus
acoustics) they trace similar structures because both water content
(measured by MRI) and sound speed (measured by UT) increase
with tissue density [3]. The high degree of spatial correlation of MR
and sound speed images is therefore largely driven by similar sensi-
tivity to changes in tissue density. However, UT imaging is a highly
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ill-conditioned problem, which requires a proper regularization ap-
proach to assure a reliable and accurate reconstruction.

Assumption that an image has a sparse representation in an over-
complete dictionary can be used as an efficient regularization con-
straint for image reconstruction from ill-conditioned systems. More-
over, according to the compressed sensing theory it is possible to
reconstruct a sparse signal from a reduced set of measurements [4].
These principles have been applied to MRI image reconstruction, as-
suming that the image is sparse in the wavelet domain [5]. However,
MRI images are characterized by specific properties that substan-
tially differ from natural images, so the wavelet-based representation
might not be optimal. Indeed, the efficiency of sparse representations
depends largely on the choice of the basis or the overcomplete dictio-
nary. For UT or MRI images, an interesting approach to dictionary
optimization is to learn it from a large database of signals from the
same class. To the best of our knowledge, such learned dictionaries
have never been applied to the reconstruction of UT images.

The contribution of this paper is a new sparsity-based method
for reconstruction of UT breast images, using a learned dictionary of
atoms adapted to the properties of UT images. We learn the dictio-
nary from an MRI breast image database using the maximum like-
lihood dictionary learning method introduced in Ref. [1]. The UT
image reconstruction problem is then formulated as a compressive
sensing problem where the measurements represent the time of flight
of the sound wave and the pixels correspond to the sound speed. The
image is assumed to be sparse in the learned dictionary. We show
that our approach outperforms the wavelet-based reconstruction for
up to 4 dB with the exact measurement matrix, and for 3.5 dB with
the estimated one. Our solution also permits the reconstruction from
a smaller number of measurements, which can potentially increase
the resolution of the UT images. Finally, we show that our recon-
struction from in vivo measurements leads to better visual quality
compared to state of the art approaches.

2. UT IMAGE RECONSTRUCTION BASED ON SPARSITY

The UT scanner that we consider consists of an array of 256 ultra-
sound emitters and 256 ultrasound receivers, uniformly spaced on a
circle of radius 10 cm [6]. This circular setup surrounds a medium
whose properties need to be imaged. In our case, we estimate the



speed of sound propagation inside this medium. The estimation of
other parameters, such as the attenuation, can be performed simi-
larly. The scanner works as follows. Each transmitter sends an ultra-
sound signal that is received by all receivers. The medium is divided
intoN tiles, each one representing a constant unknown sound speed
ci, i = 1, ..., N . The time that each signal takes to travel from an
emitter to a receiver, hereafter referred to as time of flight tof , is a
function of the sound speed values c along the corresponding travel
ray Γ(c):

tof =

∫

Γ(c)

d l
c
. (1)

Moreover, due to the inhomogeneities in the sound speed the rays
of sound propagation are refracted, i.e., bent. Hence, the ray it-
self depends on the sound field via the Snell’s law, which results in
a non-linear relationship between the time of flights and the sound
field values. An iterative scheme that alternates between finding the
rays and setting up a linear system of equations to update the sound
field for the next iteration needs to be applied. The stability, con-
vergence and robustness of this iterative scheme are essential to the
final reconstruction. Recently, a method to obtain bent rays for the
UT setup has been proposed [7]. The stabilization is achieved by
imposing the lowpass constraint on the intermediate sound speed so-
lution, with the lowpass bandwidth determined from the number of
available measurements and an oversampling factor. The output of
the algorithm gives an estimate of the bent rays, which can be used
to linearize the system of equations in Eq. (1) w.r.t. the ’slowness’
s = [1/c1 ...1/cN ]T. The resulting linear system is:

tof = A · s, (2)

where tof is the vector of measured tof for each ray andA is an es-
timated bent ray measurement matrix. Additionally, we can linearize
the equation above w.r.t. the sound speed using the first degree Tay-
lor expansion in c0, which results in:

2c0A·1− c20tof = A·c, (3)

where c = [c1 ...cN ]T and 1 is the vector of all ones. Since the
sound speed reflects the tissue properties, the value of a pixel in a
UT image corresponds to the sound speed value in the correspond-
ing tile. Therefore, the solution of the system (3) is a ultrasound
speed map of the scanned medium. However, this system turns to
be very ill-conditioned. Different regularization methods have been
developed over the past decades as a means to get stable and accu-
rate image reconstruction from tomographic data. A common idea
behind most of the methods is to use some a priori knowledge about
the image model. For example, it may be known that in a certain
basis or dictionary Φ the images have a sparse representation. For
a UT image c, represented as c = Φa, this means that the l0-norm
of the coefficient vector a is small. However, finding the smallest
l0-norm solution to the signal representation problem is NP hard.
Nevertheless, one can use convex relaxation and find the minimal
l1-norm solution by using convex optimization. Moreover, due to
its sparsity, a given signal can be reconstructed from a number of
measurements or samples that is below the Nyquist sampling rate.
This concept is known as Compressed Sensing [4] and it is shown
to be very useful for tomographic sampling in general [8]. Formally,
the minimal l1-norm signal reconstruction from measurements y is
found as the solution of the following convex optimization problem:

min
a

‖y −AΦa‖22 + λ‖a‖1, where y = Ac = AΦa+ η, (4)

andΦ is a matrix whose columns represent the dictionary atoms and
η is the noise term. The vector y represents the vector of measure-
ments, which in our UT problem formulation is y = 2c0A·1−c20tof .

Note that there is a trade-off parameter λ that can be chosen w.r.t. the
amount of the desired sparsity in the final solution. The implicit as-
sumption here is that our image c is sparse in a dictionary given by
Φ. However, the choice of this dictionary is not obvious, especially
for the UT images with statistics that significantly differ from natural
images. In this paper, we choose to learn a dictionary in which our
images have sparse representation.

3. DICTIONARY LEARNING

One of the first solutions to an unsupervised dictionary learning
problem for natural images has been introduced by Olshausen and
Field [1]. Their method is based on maximum likelihood estimation
of the dictionary elements, given the sparse linear image model1
c = Φa + η. The goal of the maximum likelihood learning is to
find the overcomplete dictionary Φ∗ such that:

Φ∗ = argmax
Φ

〈max
a
logP (c|Φ)〉, where c = Φa+ η. (5)

When the coefficient vector a has a sparse structure, the prior
distribution on the coefficients P (a) is highly peaked at zero and
heavy tailed. It can thus be modeled with a zero-mean Laplace dis-
tribution. In this case, we can formulate the optimization problem in
Eq. (5) with the following energy minimization problem:

Φ∗ = argmin
Φ

〈min
a

E(c,a|Φ)〉. (6)

The energy function is:

E(c,a|Φ) = −logP (c|a,Φ)P (a) = ‖c−Φa‖22 + λ‖a‖1, (7)

where λ = 2σ2
N/δ, δ controls the steepness of the Laplace distribu-

tion and σ2
N is the variance of the noise η. A local minimum of the

casted optimization problem can be found by iterating between two
steps. In the first step, Φ is kept constant and the energy function is
minimized with respect to the coefficient vector a. The second step
keeps the obtained coefficients a constant, while performing the gra-
dient descent on Φ to minimize the energy E(c,a|Φ). Therefore,
the algorithm iterates between the sparse decomposition and the dic-
tionary learning steps until convergence, where the learned dictio-
nary is determined. The dictionary is then applied to reconstruct any
UT image using the CS based method described in Sec. 2.

4. EXPERIMENTAL RESULTS

In this section, we present the experimental results of dictionary
learning and UT image reconstruction with the learned dictionary,
and compare the reconstructions with standard wavelet bases.

To obtain the dictionary adapted to the statistical properties of
medical breast images (MRI and UT), we have applied the maximum
likelihood dictionary learning method on the CURE [6] database of
MRI breast scans. The motivation behind using MRI instead of UT
images for learning is that while they capture similar tissue structure,
MRI provides images with higher resolution and less artifacts. Our
learning included 41 3D-scans from 14 subjects, where each scan
had different number of slices (from 36 to 160). Since we target the
reconstruction of 2D images, each slice has been treated indepen-
dently. We have learned a dictionary of 20 atom shapes shown in
Fig. 1, where each shape can be shifted anywhere in the image.

We first show the denoising performance of sparse reconstruc-
tions using the obtained dictionary and compare to the wavelet basis

1We use here the notation corresponding to UT imaging.



(Daubechies wavelets of order 5), on a test MRI image in Fig. 2(a).
The test image was not included in the dictionary training set. Sparse
reconstruction has been evaluated with the conjugate gradient min-
imization of the objective function in Eq. (7). Let us denote the
sparse reconstruction with the learned dictionary as LDS, and with
the wavelets as WS. Fig. 2(b) shows a noisy image of SNR=23 dB,
while Fig. 2(c) and (d) show the reconstructions using respectively
LDS and WS. We can see that LDS gives a PSNR improvement of 2
dB compared to WS. Moreover, LDS leads to a better visual quality,
without the ringing artifacts inherent to orthogonal wavelets. This
shows the effectiveness of the sparse representation using the dictio-
nary learned on MRI images.

Fig. 1. Atoms in the learned dictionary. The whole dictionary Φ is
formed by shifts of these atoms at all pixel positions.

(a) original (c) noisy, 23dB (c) LDS, 28.1dB(d) WS, 26.2dB

Fig. 2. 128x128 pixel MRI image reconstruction with AWGN noise
(CURE 191 patient), SNR = 23dB, λ = 0.1.

We further demonstrate the application of the compressive sens-
ing framework for UT image reconstruction. In this case LDS and
WS refer to the optimization problem in Eq. (4). For evaluation pur-
pose, we have formed a phantom UT image that mimics breast struc-
ture seen in the MRI breast scan of the CURE 191 patient. Fig. 3(a)
shows the phantom that is constructed by adapting the MRI scan to
UT image properties (i.e., contrast and range adjustment and low
pass filtering). We have simulated the screening of the phantom with
the ultrasound wave propagation model for two cases: with the cor-
rect bent rays in the measurement matrixA, and with the estimated
bent rays inA. In the case of correct rays, we have collected the total
of 13448 measurements. However, due to the sparsity of the images
in the learned dictionary and wavelet domains, not all measurements
are necessary to reconstruct the MRI image with a certain quality.
This is shown in Fig. 3(d), where we have plotted the PSNR of the
reconstructed UT phantom with LDS and WS, for different number
of measurements. The reconstructions with 50% of the measure-
ments are given in Fig. 3(b) and (c) for LDS and WT, respectively.
We can see that LDS outperforms WS, both quantitatively and vi-
sually, especially in the area of the salient image information (i.e.,
tumor). When the bent rays are estimated with a certain error, the re-
constructed image quality decreases for both approaches. LDS and
WS reconstructions of the phantom are shown in Fig. 4(b) and (c),

respectively. We have also shown in Fig. 4(a) the reconstruction re-
sult using the algorithm that evaluates image pixels directly from the
measurements y and matrix A. It performs l2 minimization using
the conjugate gradient (CG) and low pass filtering (LP) [8]. Again,
we can see that LDS outperforms other methods in PSNR. More im-
portantly, LDS leads to a cleaner and smoother reconstruction, while
still preserving the tissue structure of the phantom.

Finally, we have applied the proposed UT image reconstruction
method on in vivo dataset. CURE 191 patient was screened with
the UT scanner prototype [6], collecting the total of 30314 measure-
ments. Since we do not have the ground truth for the in vivo mea-
surements, we show only the visual results of CG+LP, LDS and WS
reconstructions in Fig. 5(a), (b) and (c), respectively. Since the al-
gorithms based on sparsity do not necessitate all measurements, we
use only 50% measurements for LDS and WS. Even with one half of
the measurements, LDS gives more visually pleasant reconstruction
than CG+LP, while keeping the important image features. WS also
preserves the image structure, but it introduces high frequency noise
that is usually not present in UT tissue images.

5. CONCLUSION

We have proposed a new UT image reconstruction method based
on the image sparsity prior. In order to correctly represent the tis-
sue images, we have learned an overcomplete dictionary from a
large set of MRI breast tissue scans. We have found that the use
of the learned dictionary in the image reconstruction outperforms
the wavelet-based method, for both numerical and in vivo studies.
This highlights the benefits of using learned dictionaries for rep-
resentation and reconstruction of MRI and UT images, which are
characterized by significantly different statistical properties than
natural images. It also opens many perspectives for future work,
particularly in 3D ultrasound tomography image reconstruction.
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Fig. 3. Reconstruction of a numerical phantom that mimics breast structure seen from an MRI image of CURE 191 patient, using the correct
bent rays in the measurement matrix: a) Original phantom b) LDS, 50% of the measurements; c) WS, 50% of the measurements, d) PSNR
versus the percentage of measurements.

(a) PSNR=27.52 dB (b) PSNR=27.93 dB (c) PSNR=24.45 dB

Fig. 4. Reconstruction of a numerical phantom that mimics breast structure seen from an MRI image of CURE 191 patient, using an estimated
bent ray as the measurement matrix: a) CG+LP; c) LDS; d) WS.

(a) (b) (c)

Fig. 5. Reconstruction from in vivo ultrasound tomography measurements for the CURE 191 patient: a) CG+LP; b) LDS, 50% of the
measurements; c) WS, 50% of the measurements.


