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Regularized Dual Averaging Image Reconstruction
for Full-Wave Ultrasound Computed Tomography

Thomas P. Matthews, Kun Wang, Cuiping Li, Neb Duric, and Mark A. Anastasio

Abstract— Ultrasound computed tomography (USCT) holds
great promise for breast cancer screening. Waveform inversion-
based image reconstruction methods account for higher order
diffraction effects and can produce high-resolution USCT images,
but are computationally demanding. Recently, a source encod-
ing technique has been combined with stochastic gradient
descent (SGD) to greatly reduce image reconstruction times.
However, this method bundles the stochastic data fidelity term
with the deterministic regularization term. This limitation can
be overcome by replacing SGD with a structured optimization
method, such as the regularized dual averaging method, that
exploits knowledge of the composition of the cost function.
In this paper, the dual averaging method is combined with source
encoding techniques to improve the effectiveness of regularization
while maintaining the reduced reconstruction times afforded by
source encoding. It is demonstrated that each iteration can be
decomposed into a gradient descent step based on the data
fidelity term and a proximal update step corresponding to the
regularization term. Furthermore, the regularization term is
never explicitly differentiated, allowing nonsmooth regularization
penalties to be naturally incorporated. The wave equation is
solved by the use of a time-domain method. The effectiveness of
this approach is demonstrated through computer simulation and
experimental studies. The results suggest that the dual averaging
method can produce images with less noise and comparable
resolution to those obtained by the use of SGD.

Index Terms— Image reconstruction, sound speed imaging,
ultrasound computed tomography (USCT), waveform inversion.

I. INTRODUCTION

ULTRASOUND computed tomography (USCT) shows
promise for a number of applications including breast

cancer screening [1]–[5]. USCT is ideally suited to breast
imaging as it offers novel tissue contrasts that can help
differentiate benign masses from tumors [5]. It has several
potential advantages over conventional imaging methods, as
it is radiation free, breast compression free, and relatively
inexpensive. In addition, ultrasound imaging may offer some

Manuscript received September 19, 2016; accepted March 8, 2017. Date
of publication March 14, 2017; date of current version May 1, 2017. Com-
putations were performed using the facilities of the Washington University
Center for High Performance Computing, which were supported in part by
NIH Grant 1S10RR022984-01A1 and Grant 1S10OD018091-01. This work
was supported in part by NIH awards CA1744601 and EB01696301 and in
part by NSF award DMS1614305.

T. P. Matthews, K. Wang, and M. A. Anastasio are with the Department
of Biomedical Engineering, School of Engineering and Applied Science,
Washington University in St. Louis, St. Louis, MO 63130 USA (e-mail:
anastasio.@.wustl.edu).

C. Li is with Delphinus Medical Technologies, Plymouth, MI 48170 USA.
N. Duric is with Delphinus Medical Technologies, Plymouth, MI 48170

USA, and also with Karmanos Cancer Institute, Wayne State University,
Detroit, MI 48201 USA.

Digital Object Identifier 10.1109/TUFFC.2017.2682061

advantages over mammography for the detection of breast can-
cer in women with dense breasts [6], [7]. A variety of studies
have been reported demonstrating the application of USCT
to breast imaging [6], [8]–[16], with clinical measurements
of breast cancer patients having already been performed [3],
[17]. While USCT has several potential contrast mechanisms,
in this study we focus on the estimation of the sound speed
distribution.

Most USCT image reconstruction methods are based
on linearized solutions to the acoustic wave equation [3],
[6], [11], [18]–[21]. While such methods can possess com-
putational efficient implementations, the spatial resolution of
the resulting images can be severely limited by neglecting
acoustic diffraction effects in the imaging model. This can
hinder breast cancer screening where the ability to identify
small tumors and fine features to distinguish cancerous and
benign lesions is of great importance. To circumvent the
limitations of linearized methods, waveform inversion methods
seek to directly invert the acoustic wave equation without
relying on linearizations [4], [18], [22]–[27]. Because they can
accurately account for the acoustic wave physics, waveform
inversion methods can produce high-resolution images; how-
ever, these nonlinear methods are computationally burdensome
and generally correspond to nonconvex optimization problems.
Waveform inversion methods can be classified by whether
they solve the wave equation by the use of a time-domain
method or a frequency-domain method. While frequency-
domain methods have been successfully applied to USCT
image reconstruction [14], here we focus on time-domain
methods [28], [29].

Recently, an approach that combines waveform inversion
with source encoding (WISE), which alleviates much of the
computational burden, has been proposed [23], [30], [31].
In [30], the sound speed distribution was estimated by solving
an optimization problem, where the cost function consisted
of two terms. The first term is a data fidelity term. For this
term, the pressure at the transducer locations is calculated
based on the current estimate of the sound speed and an
acoustic model described by the acoustic wave equation. This
term quantifies how closely this estimated pressure matches
the measured pressure. As described below, when the source
encoding technique is employed, the data fidelity term corre-
sponds to the expectation of a random quantity. The second
term is a deterministic regularization term, which is used
to incorporate a priori information about the image. This
optimization problem was solved by the use of stochastic
gradient descent (SGD). Under this approach, the stochastic
data fidelity term and the deterministic regularization term
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are treated jointly as part of a single cost function. This
approach ignores information about the structure of the cost
function and requires the use of a differentiable regularization
function [32].

Here, we propose the use of a structured optimization
method, known as the regularized dual averaging (RDA)
method, that considers the two terms in the cost function
separately [32], [33]. This approach can mitigate the impact of
the stochastic data fidelity on the deterministic regularization
term and result in more effective regularization that offers
superior tradeoffs between image resolution and noise variance
by exploiting the structure of the cost function. It also provides
the opportunity, for the first time, to employ nonsmooth
penalties in the waveform inversion cost function, which can
be designed to exploit certain sparseness properties of the
object [34]–[36].

The remainder of this paper is organized as follows.
In Section II, a discrete-to-discrete (D-D) USCT imaging
model and the WISE method are reviewed. SGD is discussed
briefly. In Section III, the RDA method and its application
to USCT image reconstruction are described. The computer
simulation studies and experimental results are presented in
Sections IV and V, respectively. Finally, this paper concludes
with a summary in Section VI.

II. BACKGROUND

A. Discrete-to-Discrete USCT Imaging Model

While digital imaging systems are naturally described by
a continuous-to-discrete imaging model [37], it is typically
necessarily to approximate this model as a D-D mapping
in order to facilitate the use of iterative image reconstruc-
tion algorithms. For simplicity, the D-D model is presented
directly.

A canonical 2-D USCT imaging system that employs a
circular transducer array [38] that surrounds the object is con-
sidered. Ultrasound pulses are transmitted through the object
and measured by the transducers. Often, only one transducer
will emit a pulse at a given time, with the pressure being
recorded by all other transducers. A subset of the transducers
will each serve as the emitter in turn, leading to a collection of
measurements corresponding to different views of the object.
The propagation of the ultrasound waves is governed by the
acoustic wave equation, which can be solved by a numerical
wave equation solver. This solver can be formulated as a
D-D mapping as described below. In this study, the
wave equation was solved by the k-space pseudospectral
method [39]–[41].

Let c ∈ R
N denote the finite-dimensional representation,

in a pixel basis, of the sought-after sound speed distribution.
Here, N is the number of pixels in the simulation grid
employed by the numerical wave solver. The propagation of
the pressure wave through the object when the mth transducer
is the emitter can be denoted by

gm =MH(c)sm (1)

where sm ∈ R
N L is the emitted pulse, gm ∈ R

N rec L

is the pressure at each transducer, H(c) ∈ R
N L×N L is

the operator that denotes the action of the wave equation,
M ∈ R

N rec L×N L is a sampling matrix that computes the
pressure at the transducer locations from the pressure over
the entire simulation grid, L is the number of time points
employed by the wave solver, and N rec is the number of
transducers acting as receivers. The notation H(c) is used to
emphasize the dependence of H on the sound speed c.

An estimate of the sound speed can be obtained by solving
the penalized least-squares optimization problem

ĉ = arg min
c

1

2

M−1∑

m=0

‖gm −MH(c)sm‖22 + λR(c) (2)

where M is the total number of views, gm is the measured
pressure at each transducer, R(c) is a regularization function,
and λ is a regularization parameter, which controls the relative
weight of the regularization term. The first term in (2), known
as the data fidelity term, is a nonconvex function of c,
while the regularization function is assumed to be a convex
function.

This approach can produce high-resolution images, but it is
computationally very expensive. Each evaluation of the cost
function requires the wave equation to be solved M times.
This high computational cost has limited the wide spread use
of time-domain-based waveform inversion methods.

B. Waveform Inversion With Source Encoding

Recently, a source encoding technique has been employed
to efficiently find the solution of (2) [23], [30]. In the
WISE method [30], (2) is reformulated as the stochastic
optimization problem

ĉ = arg min
c

Ew

{
1

2
‖gw −MH(c)sw‖22

}
+ λR(c) (3)

where w is a random encoding vector, Ew denotes the expec-
tation with respect to w, and

gw =
M−1∑

m=0

[w]mgm (4)

sw =
M−1∑

m=0

[w]msm (5)

are the encoded measured pressure data and the encoded
source term, respectively. Here, w is chosen according to
a Rademacher distribution as suggested in [42]. Under this
formulation, evaluating the cost function for a particular choice
of w requires the wave equation to be solved only once. When
the number of views is large, this can substantially reduce
the computational time needed to reconstruct an image. The
gradient of the data fidelity term is calculated using an adjoint
state method as described in [30]. This approach allows the
gradient to be estimated by solving the acoustic wave equation
only one additional time (on top of what is already needed to
evaluate the cost function). Knowledge of the gradient allows
the use of a variety of optimization algorithms.

In [30], (3) was solved by the use of the SGD method, as
described in Algorithm 1. In that approach, at each iteration,
the gradient of the cost function is evaluated for a single
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Algorithm 1 Stochastic Gradient Descent
Input: c0, λ
Output: ĉ
1: k ← 0 {k is the algorithm iteration number.}
2: while stopping criterion is not satisfied do
3: Draw wk according to chosen distribution.
4: Calculate Gk ← ∇c f (ck, wk)+ λ∇cR (ck)
5: Choose step size αk

6: ck+1 ← ck − αkGk

7: k← k + 1
8: end while
9: ĉ← ck

realization of the encoding vector. The update step for the
(k + 1)th iteration for SGD is given by [43]

ck+1=arg min
c

{
〈∇c f (ck, wk), c〉 + 1

2αk
‖c− ck‖22+λR(c)

}

(6)

or equivalently

ck+1 = ck − αk(∇c f (ck, wk)+ λ∇cR(ck)) (7)

where 〈·, ·〉 denotes the standard Euclidean inner product, αk is
the step size, ∇c is the gradient with respect to c, and

f (c, w) ≡ 1

2
‖gw −MH(c)sw‖22. (8)

This approach has several limitations. First, it fails to
exploit the structure of the objective function. In other words,
SGD treats the cost function as a black box, ignoring poten-
tially useful information about the nature of the cost function.
For example, in the problem above, the cost function consists
of two terms: a stochastic but differentiable data fidelity
term and a deterministic regularization term. In SGD, this
knowledge is ignored, and the gradients of the stochastic and
deterministic terms are lumped together. Second, it assumes
that all terms in the cost function are differentiable. This is not
true of many sparsity-promoting regularization functions, such
as the �1-norm and the total variation (TV) seminorm. In [30],
the TV seminorm was approximated by a smoothed differen-
tiable version through the introduction of a small smoothing
parameter. While this approach can be effective, modifications
to other nonsmooth regularization functions could be more
challenging. Third, it fails to exploit information from previous
iterations. For SGD, at each iteration, only the gradient for
a single realization of the encoding vector is considered
when determining the search direction. When combined with
a line search for choosing the step size, this can lead to
overfitting [44]. In this case, the line search method will
choose a large step that effectively minimizes the cost function
evaluated for a single realization of the encoding vector,
but which increases, or less effectively minimizes, the cost
function evaluated for a large number of realizations. This
problem can be overcome by the use of a fixed step size, at
the expense of slowing the convergence rate.

Algorithm 2 Regularized Dual Averaging Method
Input: c0, λ
Output: ĉ
1: k ← 0 {k is the algorithm iteration number.}
2: A−1← 0
3: while stopping criterion is not satisfied do
4: Draw wk according to chosen distribution.
5: Calculate Gk ← ∇c f (ck, wk)
6: Choose weight αk > 0 {Unweighted case: αk = 1}
7: Ak ← Ak−1 + αk

8: Gk←
(
1− αk

Ak

)
Gk−1+ αk

Ak
Gk {Compute weighted average

of gradient.}
9: Choose μk {For example, μk = γ Ak , where γ > 0 is a

constant.}
10: ck+1 ← c0 − μkGk

11: ck+1 ← proxλμkR (ck+1)
12: k ← k + 1
13: end while
14: ĉ← ck

III. REGULARIZED DUAL AVERAGING METHOD

The dual averaging method is a primal-dual optimization
method originally developed by Nesterov [33]. Xiao [32] later
extended this approach to include regularization. It can be
employed to solve optimization problems of the same form
as given in (3). Here, we review the RDA method and detail
its application to waveform inversion. Our presentation is
similar to that of Xiao [32] and Nesterov [33], but differs
in several respects due to differences in the target application.
In particular, the data fidelity term of our cost function is
nonconvex. This affects how the step size or weights for
each gradient term must be chosen. Further, for clarity, we
do not attempt to describe the most general form of the RDA
method, but merely one that has proved effective for waveform
inversion. For the dual averaging method, as described in
Algorithm 2, the update step for the (k + 1)th iteration is
given by

ck+1 = arg min
c

{
〈Gk, c〉 + 1

2μk
‖c− c0‖22 + λR(c)

}
(9)

where Gk is the average gradient of the data fidelity term over
all past iterations and μk > 0 is a scalar. This differs from
the update step for SGD in two key ways. First, instead of
considering the gradient at a single point, the average gradient
is employed. Second, the proximal term, (1/2)‖c − c0‖22,
does not depend on the iteration number. In these ways,
the RDA method is able to incorporate nonlocal information
when determining the estimate of the object for the next
iteration.

In the case of simple averaging, the average gradient is given
by

Gk = 1

k + 1

k∑

i=0

∇c f (ci , wi ). (10)
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A weighted average of gradient estimates can also be consid-
ered, as suggested in [33]. In this case

Gk = 1
∑k

i=0 αi

k∑

i=0

αi∇c f (ci , wi ) (11)

where {αi }ki=0 are weights for each of the gradient estimates.
Here, the weights are chosen using a line search. Since the
search direction is given by the average gradient, adjusting
this weight will determine the contribution of the most recent
gradient estimate to the search direction. As a result, the
direction of the line search changes as this parameter is
adjusted. This is in contrast to most line search methods, where
the direction is fixed and only the magnitude of the update is
affected. As the search direction incorporates information from
multiple iterations corresponding to different realizations of
the encoding vector, this approach is less prone to overfitting
than SGD with a line search. A detailed description of this
approach is provided in the Appendix.

If R is convex, the dual averaging update step can be written
in terms of the proximity operator of R as

ck+1 = proxλμkR(c0 − μkGk) (12)

where the proximity operator is defined as [45]

proxλR(x) ≡ min
y

{
R(y)+ 1

2λ
‖x − y‖2

}
. (13)

From this expression, it becomes clear that the update step for
the dual averaging method can be divided into two parts. First,
a reference value is updated based on a weighted sum of all
past gradient estimates. Second, regularization is incorporated
by the use of the associated proximity operator. In this way,
the stochastic estimates of the gradient of the data fidelity term
are treated separately from the deterministic regularization
term. Averaging the gradient estimates obtained over several
iterations may help minimize the impact of the variance of
the gradient estimates. Further, since the regularization term is
not explicitly differentiated, nonsmooth penalties can be easily
incorporated through the use of the corresponding proximity
operator.

Unless otherwise noted, the regularization function is cho-
sen to be the TV seminorm of the sound speed. The TV semi-
norm has been shown to be effective at mitigating noise while
preserving sharp edges [46]. The proximity operator of the
TV seminorm is computed using the fast gradient projection
method described in [47] and [48]. Using this approach,
the computational cost of applying the proximity operator is
much less than that of computing the gradient, so that the
computational cost of the RDA method is approximately the
same as that of SGD on a per-iteration basis.

The sequence {μk} determines the amount by which the
algorithm steps in the search direction. Here, we choose
μk = γ Ak , where Ak = ∑k

i=0 αi and γ > 0 is a constant.
In this case, line 10 in Algorithm 2 becomes

ck+1 ← c0 − γ

k∑

i=0

αi Gi . (14)

Fig. 1. Schematic of the measurement geometry. The measurement system
consists of a circular ring array of ultrasonic transducers. These transducers
are located in a larger rectangular simulation grid, over which the acoustic
wave equation is solved. Within the ring array is a smaller rectangular region
representing the reconstructed image. The estimated sound speed distribution
is calculated within the gray circular field of view within that region.

The constant γ should be chosen to be sufficiently small to
insure convergence. In the unweighted case, γ could be chosen
to be the inverse of the Lipschitz constant of the gradient of the
data fidelity term. It could be similarly chosen in the weighted
case as the inverse of the product of the Lipschitz constant and
the maximum allowable weight of the gradient, αmax.

IV. COMPUTER SIMULATION STUDIES

A. Methods

Two-dimensional computer simulation studies were per-
formed to compare USCT image reconstruction methods based
on SGD and RDA. Studies were performed for two numerical
phantoms: 1) a numerical breast phantom [shown in Fig. 2(a)]
and 2) a low-contrast phantom with two homogeneous bars
[shown in Fig. 2(b)]. The first was employed to establish
the potential utility of the proposed approaches for USCT
breast imaging and the second was employed to perform a
bias–variance analysis comparing SGD and RDA. For both
phantoms, the same measurement geometry, excitation pulse,
and numerical simulation methods were employed.

1) Measurement Geometry: The measurement system con-
sisted of a circular transducer array with a radius of 110 mm
and 256 evenly distributed elements. This geometry was
chosen to match an existing USCT imaging system [17], [49],
[50]. The wavefield data were simulated for 256 views using
the first-order k-space method, as described in Section IV-A4
[30], [39], [41]. For each view, one transducer served as the
emitter and the pressure was recorded by all 256 transducers.
All transducers were modeled as point emitters and receivers.
A schematic of this measurement geometry is shown in Fig. 1.

2) Excitation Pulse: The excitation pulse was given by

s(t) = exp

(
− (t − tc)2

2σ 2

)
sin(2π fct) (15)

where fc = 0.8 MHz is the central frequency, and tc = 3.2 μs
and σ = 0.75 μs are the center and width of a Gaussian win-
dow, respectively. This corresponds to roughly three cycles.
Since the transducers are treated as point emitters, when
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Fig. 2. Sound speed distribution of (a) the numerical breast phantom and
(b) the low-contrast two bar phantom employed in the bias-variance analysis,
given in mm/μs.

nearest neighbor interpolation is employed, the source term
for the mth view is given simply by

sm(r, t) = s(t)δ(r− rm) (16)

where rm is the location of the pixel nearest to the emitter for
the mth view.

3) Numerical Phantoms: The numerical breast phantom
had a radius of 49 mm and was composed of eight struc-
tures representing adipose tissues, parenchymal breast tissues,
cysts, benign tumors, and malignant tumors [see Fig. 2(a)].
A detailed description of the numerical breast phantom can
be found in [30]. A phantom consisting of two low-contrast
bars was created for the bias–variance analysis [see Fig. 2(b)].
The bars were placed far apart to minimize their influence on
one another in the reconstructed images.

4) Simulation of Pressure Data: In order to avoid inverse
crime [51], two related methods were employed to simulate
the measured pressure. When generating the pressure data
recorded by each transducer, the wave equation was solved
by the use of a first-order pseudospectral method [39]. In this
method, when attenuation and dispersion are neglected, the
acoustic wave propagation is modeled by two coupled first-
order differential equations

∂u(r, t)

∂ t
= −∇ p(r, t) (17)

1

c(r)2

∂p(r, t)

∂ t
= −∇ · u(r, t)+ 4π

∫ t

0
dt ′s(r, t ′) (18)

where u(r, t) is the acoustic particle velocity and p(r, t) is
the acoustic pressure. The calculation domain was of size
512×512 mm2, sampled on a 2048×2048 uniform Cartesian
grid with a spacing of 0.25 mm. Nearest neighbor interpolation
was employed to place the transducers on the grid points. The
pressure was simulated for 3600 time points at a sampling
rate of 20 MHz. Additive Gaussian white noise was added to
the pressure data. The noise had zero mean and a standard
deviation of 5% of the maximum pressure amplitude received
by the transducer opposite the emitter for a homogeneous
medium.

When reconstructing the sound speed images, the oper-
ator H(c) was computed by the use of the second-order
pseudospectral k-space method [40]. This method solves a
single second-order differential equation

∇2 p(r, t)− 1

c(r)2

∂2 p(r, t)

∂ t2 = −4πs(r, t). (19)

TABLE I

SUMMARY OF IMAGE RECONSTRUCTION PARAMETERS

Here, the calculation domain was of size 512 × 512 mm2,
sampled on a 1024 × 1024 uniform Cartesian grid with a
spacing of 0.5 mm. The number of time points and the
sampling rate were reduced to 1800 and 10 MHz, respectively.
These reconstruction parameters are summarized in Table I.
Both wave solvers were implemented using NVIDIA’s CUDA
platform [52]. These pseudospectral k-space methods were
chosen for their high numerical accuracy for coarse spatial
sampling rates [39], [40].

5) Bias–Variance Analysis: The statistical properties of
the images produced by the two methods were compared
by the use of a bias–variance analysis. The measured pres-
sure was simulated as described above. Five different noise
realizations were generated, each with 5% noise. Images
were reconstructed for each noise realization for six different
regularization parameter values by the use of both SGD
with a constant step size and the unweighted RDA method.
Each pixel in the reconstructed images can be treated as a
random variable ĉi (for the i th pixel), whose true value in the
original phantom is ci . Due to the long reconstruction times
(approximately 1 h for 250 iterations), it was not feasible
to reconstruct images for a large number of noise realiza-
tions. Instead, each reconstructed image was divided into
several regions, which were treated as independent samples
for the purposes of this analysis. Specifically, each bar in the
reconstructed image was divided into ten identical regions.
Corresponding pixels in these regions were treated as having
arisen from additional noise realizations. This yielded a total
of 100 samples per regularization parameter value. In other
words, if the set Ĉi contains the values of the i th pixel for the
five noise realizations, an augmented set C̃i was created such
that

C̃i =
Nc⋃

j=1

ĈIi ( j ) (20)

where Nc is the total number of regions (20) and Ii is an
iterator that gives the indices of all pixels (across regions) that
correspond to the i th pixel. The bias for a pixel was calculated
by averaging these 100 samples and computing the difference
between the average value and the corresponding value in the
true phantom

Biasi = 1

Ns

∑

ĉ∈C̃i

ĉ − ci (21)

where Ns is the total number of samples. A summary measure
of the bias was calculated by computing the �2-norm of the
bias values for each pixel. The sample variance of each pixel
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Fig. 3. Plot of RMSE versus the number of iterations for images reconstructed
by the use of SGD with a constant step size of 0.1 for several regularization
parameter values.

across all samples was computed as

Vari = 1

Ns − 1

∑

ĉ∈C̃i

⎛

⎝ĉ − 1

Ns

∑

ĉ∈C̃i

ĉ

⎞

⎠
2

. (22)

The average variance for the pixels was computed as a
summary measure. It should be noted that corresponding pixels
in different regions may not have the same expected values
and variances. In spite of this, the above bias and variance
measures still provide insight into the ability of the two
reconstruction algorithms to mitigate noise.

B. Images Reconstructed by SGD

In order to provide a clear and fair point of comparison
of the RDA and SGD methods, USCT image reconstruction
from noisy data by the use of SGD was first considered and
optimized. As seen in Fig. 3, the above choice of 5×10−4 for
the regularization parameter value results in the most accurate
reconstructed image for SGD, as quantified by the root-mean-
square error (RMSE). As such, this value will be taken as the
optimal value for SGD-based USCT image reconstruction and
will be employed in all future comparisons with the results
obtained by the use of the RDA method.

A similar methodology was employed to choose the optimal
step size for the SGD method. Several constant step sizes were
compared with the use of a line search method. As seen in
Fig. 4, when a constant step size is too large, the optimization
algorithm will diverge. However, when the step size is small,
the convergence of the optimization algorithm will be slow.
Use of a line search method can provide fast convergence
but, as mentioned above, can result in reduced image quality.
Since the use of a line search method introduces an additional
computational cost, the convergence of these approaches are
given both in terms of iteration number and the number of
times the wave equation must be solved, referred to here as
wave solver runs. Every step size considered as part of the
line search will add one additional wave solver run. However,
even when this additional computational effort is accounted
for, the use of a line search can still produce a more accurate

Fig. 4. Plot of RMSE versus (a) number of iterations and (b) number of
wave equation solver runs for images reconstructed by the use of SGD with
a line search and with several constant step size values for a regularization
parameter value of 5× 10−4.

reconstructed image for a given level of computational effort
than use of a constant step size (at least, up to some threshold
level of total computational effort). In addition, it removes
the need to wisely choose the step size, a task that is often
accomplished through trial and error. From Fig. 4, it can be
seen from the constant step size results that a step size of 0.1
produces the fastest convergence rate while still resulting in
an accurate reconstructed image.

In Section II, it was suggested that the use of a line search
method may have a negative impact on the obtained solution
for SGD. This is demonstrated in Fig. 4. Here, it is seen that
the line search method results in oscillations in the RMSE
of the reconstructed image, while the use of a constant step
size produces a smoother convergence curve with fewer jumps.
Also, note that the final RMSE is lower for the constant step
size method (RMSE = 1.42× 10−3) than for the line search
method (RMSE = 1.73× 10−3).

C. Images Reconstructed by RDA

The optimal step size (or, equivalently, the value of γ in
line 9 of Algorithm 2) and regularization parameter value for
the RDA method will be determined in the same manner as
employed for the SGD method. First, the regularization para-
meter value that resulted in the most accurate reconstructed
image was determined. Example images reconstructed by RDA
for several regularization parameter values are shown in Fig. 5.
From Fig. 6(a), it can be seen that a regularization parameter
value of 1 × 10−4 results in the most accurate reconstructed
image. This is smaller than the value obtained for SGD. From
Fig. 6(b), the optimal step size value is 0.1, the same value
obtained for SGD.

The weighted RDA method can be used to accelerate
the convergence of the RDA method. As was done for
the unweighted implementation, images were reconstructed
for several regularization parameter values (see Fig. 7).
The impact of regularization appears unchanged by the
weighting strategy. Once again, a regularization parameter
value of 1 × 10−4 results in the smallest RMSE. While
the ultimate image obtained after many iterations is largely
unchanged by the weighting strategy, reconstructed images
obtained at early iterations can be greatly improved. As seen in
Fig. 8, the accuracy of the reconstructed images after 20, 50,
and even 100 iterations is improved by the use of the weighted
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Fig. 5. Images reconstructed by the unweighted RDA method with a fixed step size of 0.1 for the regularization parameter values of (a) 1×10−5, (b) 5×10−5,

(c) 1× 10−4, and (d) 5× 10−4, shown after 300 iterations. All images are shown in a grayscale window of [1.47, 1.58] mm/μs.

Fig. 6. Plot of RMSE versus the number of iterations for (a) several
regularization parameter values and a fixed step size of 0.1 and (b) several
constant step size values and a fixed regularization parameter value of 1×10−4

for images reconstructed by the use of the unweighted RDA method.

RDA method. This is seen in both the RMSE of the recon-
structed images and in the apparent visual quality of the
images. This improvement is reflected in the profiles through
the reconstructed images shown in Fig. 9. This improvement
is maintained even when the convergence of the reconstruction
methods is viewed in terms of the number of wave solver runs
as opposed to the number of iterations (see Fig. 10). After
approximately 250 wave solver runs (or 250 iterations for the
unweighted method), the weighted and unweighted approaches
produce images of similar accuracy.

D. Comparison of Images Reconstructed by SGD and RDA

The images produced by the use of the SGD and RDA
methods were compared directly. Images reconstructed by all
four implementations are shown in Fig. 11: 1) SGD with a
constant step size; 2) unweighted RDA; 3) SGD with a line
search; and 4) weighted RDA. As indicated by the RMSEs
noted in the bottom-left of each image, the initial convergence
rates of SGD with a line search and the weighted RDA method
are much faster than that of either SGD with a constant step
size or the unweighted RDA method. However, the accuracies
of the reconstructed images at later iterations are superior
for the two RDA methods compared with those obtained
for the SGD-based methods. In fact, the accuracy of the
image reconstructed by the weighted RDA method is better
than that obtained by SGD with a constant step size. This
demonstrates that the weighted RDA method can provide both

fast convergence and more accurate images than was possible
using the SGD method.

The improved accuracy of the weighted RDA method com-
pared with that of SGD with a line search is reflected in
the profiles through the reconstructed images (see Fig. 12).
The profile obtained by the use of SGD is notably noisier
than that obtained by the use of RDA. This suggests that
the RDA method may be more effective in mitigating noise
than SGD. This potential benefit will be considered more
closely through the use of a bias–variance analysis, as detailed
in Section IV-E.

The plots of the convergence rates, as shown in Fig. 13,
further confirm the benefits provided by the RDA method.
SGD with a line search has a fast initial convergence, but
results in a less accurate final image. From this plot, it is also
clear that the estimates of the object provided by SGD with a
line search also exhibit a high variance, even at later iterations.
This is likely due to the fact that the line search only evaluates
the cost function for a single realization of the encoding vector.
As a result, the line search will tend to choose a larger step size
that effectively minimizes the cost function evaluated for that
encoding vector, but which increases the cost function when
all encoding vectors or a large number of encoding vectors
are considered. This behavior is not seen for the weighted
RDA method. Since for the RDA method the search direction
is given by a weighted average of the gradient estimates for
all past encoding vector realizations, it does not overfit the
cost function evaluated for a single realization of the encoding
vector. This is true even though the weight at a given iteration
is chosen only by evaluating the cost function for a single
realization. Thus, the high variance of the object estimates is
eliminated, while the computational cost of selecting a weight
for the RDA method is the same as that of performing the line
search for SGD.

E. Bias–Variance Analysis

The investigations with a numerical breast phantom,
described above, suggested that the RDA method could pro-
vide more effective regularization than SGD. However, care
must be exhibited when evaluating this claim. Stronger regu-
larization does not mean better image quality. It is not enough
to compare two different reconstruction methods with the
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(a) (b) (c) (d)

Fig. 7. Images reconstructed by the weighted RDA method for the regularization parameter values of (a) 1 × 10−5, (b) 5 × 10−5, (c) 1 × 10−4, and
(d) 5× 10−4, shown after 300 iterations. All images are shown in a grayscale window of [1.47, 1.58] mm/μs.

Fig. 8. Images reconstructed by the use of the unweighted dual averaging method with a fixed step size of 0.1 after (a) 20, (b) 50, (c) 100, and
(d) 250 iterations. Images reconstructed by the use of the weighted dual averaging method after (e) 20, (f) 50, (g) 100, and (h) 250 iterations. All results
are shown for a regularization parameter value of 1× 10−4 and in a grayscale window of [1.47, 1.58] mm/μs. The RMSE for each reconstructed image is
displayed in the bottom-left of each subfigure.

same regularization parameter value. While one may appear to
produce a superior image, the other may produce a comparable
image when another regularization value is employed. Thus, it
is necessary to consider a range of regularization parame-
ter values when comparing any two methods. Furthermore,
image quality is most properly evaluated through task-based
measures of image quality [37]. However, such studies are
substantial undertaking and are outside the scope of this paper.
Instead, here, we use bias–variance curves as a proxy for this
more complete assessment.

Bias–variance curves depict the inherent tradeoff between
noise mitigation and close agreement with the measured data.
As described above, an estimate of the sound speed is obtained

by solving a minimization problem consisting of two terms,
the data fidelity term and the regularization term. The rela-
tive weight of these terms is controlled by varying a scalar
regularization parameter. Noise can be more severely sup-
pressed by increasing the value of the regularization parameter,
but this can result in reduced resolution or other forms of
bias.

The bias–variance curves for SGD with a constant step size
and the unweighted RDA method are shown in Fig. 14. The
curves are generated by reconstructing a collection of images
across a range of regularization parameter values. As seen in
Fig. 14, the RDA method consistently produces lower variance
images (less noisy) for a given level of bias. This difference
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Fig. 9. (a) Profiles through y = −6.5 mm for reconstructed images obtained
by the use of the weighted RDA method and the unweighted RDA method
with a fixed step size of 0.1, shown after 20 iterations. (b) Profiles through
y = −6.5 mm for reconstructed images obtained by the use of the weighted
RDA method and the unweighted RDA method with a fixed step size of 0.1,
shown after 250 iterations.

Fig. 10. Plot of RMSE versus (a) number of iterations and (b) number of
wave solver runs for the weighted and unweighted RDA methods.

is seen in the reconstructed images. In Fig. 15, reconstructed
images corresponding to the same bias level are shown. The
image reconstructed by the use of SGD with a constant step
size is notably noisier than the image obtained by the use of
the unweighted RDA method.

V. EXPERIMENTAL VALIDATION

A. Methods

Clinical data were acquired previously by the use of the
SoftVue USCT scanner [49]. The system consisted of a
ring-shaped array with a radius of 110 mm, containing
2048 transducers. The transducers had a central frequency
of 2.75 MHz with a pitch of 0.34 mm. Each element was
elevationally focused to isolate a 3-mm-thick slice of the
object. See [17], [49] for additional information regarding the
measurement system and clinical studies.

Every other transducer element served as an emitter. The
resulting pressure wave was then measured by the same
set of 1024 transducers. The pressure was recorded with a
sampling rate of 12 MHz for 2112 time points, corresponding
to approximately 176 μs. This measurement process was
repeated with and without the object. Forty-eight transducers
were identified as bad channels following manual inspection.
The data from these channels were discarded, resulting in
measurements from 976 transducers. The pressure data were
upsampled to a sampling rate of 20 MHz by the use of linear
interpolation in order to avoid the introduction of numerical

errors by the numerical wave solver [40]. The number of
samples in each time trace was 3500. A Butterworth bandpass
filter with the cutoff frequencies of 0.5 and 1.0 MHz was
applied to each signal. The shape of the excitation pulse was
estimated from the measured data without the object using the
method described in [30].

An initial estimate of the object was reconstructed by the
use of an adjoint state method (see Fig. 16) [53]. This estimate
was used to generate a set of synthetic data. As detailed in [30],
measurements near the emitter may not contribute positively
to the reconstructed image due to mechanical cross talk, model
mismatch, and measurement noise. The impact of these effects
can be mitigated by replacing the measurements near the emit-
ter with synthetic data. Unlike [30], here we substitute pressure
data corresponding to an estimate of the object, provided by an
adjoint state method [53], rather than a homogeneous medium.
The 512 measurements from transducers opposite the emitter
were kept. The others were replaced with the synthetic data.

The images were reconstructed by solving (3), where
the operator H (c) was calculated by the use of the
second-order k-space pseudospectral wave equation solver, as
described in Section IV-A4 [40]. The calculation domain was
512×512 mm2, divided into a 2560×2560 Cartesian grid with
a spacing of 0.2 mm. The sound speed was updated within a
circle of radius 105 mm. Reconstruction was performed on a
platform consisting of dual hexa-core CPUs, 128 GB of RAM,
and an NVIDIA Tesla K40 GPU. These reconstruction para-
meters are summarized in Table I.

While image quality is most objectively assessed using task-
based methods of image quality [37], here, for reasons of
expediency, the contrast-to-noise (CNR) ratio was employed
as a proxy for the detectability of the tumor. The CNR of
the reconstructed images was calculated by identifying three
regions. The tumor was segmented manually. Regions of
similar size corresponding to the parenchymal tissue and the
water bath were also identified. The contrast was calculated
based on the tumor and parenchymal tissue regions. The
noise, however, was calculated based on the water bath to
avoid misattributing any real variations within the parenchymal
tissue to noise. The CNR was calculated as

CNR = c̄t − c̄p

σn
(23)

where c̄t is the average sound speed of the tumor, c̄p is the
average sound speed over a comparably sized region of the
parenchymal tissue, and σn is the standard deviation over a
comparably sized region of the water bath.

B. Clinical Results
As seen in Fig. 17, the weighted RDA method consistently

produces reconstructed images with higher CNRs than SGD
with a constant step size, as indicated by the CNR values that
label each image. This is shown across a range of regulariza-
tion parameter values. Further, the maximum CNR obtained
by SGD is lower even when the regularization parameter value
is optimized. This improvement in the CNR is likely due to
the favorable noise mitigation properties of the RDA method
observed in the computer simulation studies. While not shown,
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Fig. 11. Images reconstructed by the use of SGD with a constant step size of 0.1 and a regularization parameter value of 5 × 10−4 after (a) 20, (b) 50,
(c) 100, and (d) 250 iterations. Images reconstructed by the use of unweighted RDA with a fixed step size of 0.1 and a regularization parameter value of
1× 10−4 after (e) 20, (f) 50, (g) 100, and (h) 250 iterations. Images reconstructed by the use of SGD with a line search and a regularization parameter value
of 5 × 10−4 after (i) 20, (j) 50, (k) 100, and (l) 250 iterations. Images reconstructed by the use of weighted RDA with a regularization parameter value of
1× 10−4 after (m) 20, (n) 50, (o) 100, and (p) 250 iterations. All images are shown in a grayscale window of [1.47, 1.58] mm/μs.

the CNRs for both methods do not continue to increase beyond
100 iterations. The CNR can serve as a proxy of detectability
in cases where task-based measures of image quality cannot
be performed [37]. While the CNRs of all the images shown

in Fig. 17 are quite high, the improvement in CNR could be
more impactful for small or low-contrast tumors.

The reconstructed images as a function of iteration number
are shown in Fig. 18. Since a nonconstant initial guess
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Fig. 12. Profiles through y = −6.5 mm for images reconstructed by the use
of SGD with a line search and weighted RDA.

Fig. 13. Plot of RMSE versus (a) number of iterations and (b) number of
wave solver runs for SGD with a line search, SGD with a constant step size
of 0.1, unweighted RDA with a step size of 0.1, and weighted RDA.

Fig. 14. Bias–variance curve for SGD with constant step size and the
unweighted RDA method. The corresponding regularization parameter values
are given by each point.

was provided, the differences in the convergence rates of
SGD with a constant step size and the weighted RDA
method are less pronounced. However, a good initial guess
is needed to avoid local minima since the data fidelity term
is nonconvex. Still, the weighted RDA method produces
a higher CNR at each iteration. The difference between
the CNRs of the two methods continues to grow over the
first 50 iterations. This gap is eventually decreased at later
iterations. This suggests that the weighted RDA method is

Fig. 15. Example reconstructed images from the bias–variance analysis.
(a) Image reconstructed by SGD with a regularization parameter value of
5 × 10−5. (b) Image reconstructed by RDA with a regularization parameter
value of 1× 10−4. The two images have approximately the same bias. Both
images are shown in their full dynamic ranges. The sound speed values are
given in mm/μs.

Fig. 16. Initial estimate of the object reconstructed by the use of an adjoint
state method described in [53].

able to provide some initial improvement in the conver-
gence rate. This is consistent with the computer simulation
studies.

As discussed previously, the RDA method allows natural
incorporation of nonsmooth penalties. This may allow the
optimization problem be designed more optimally for a given
image reconstruction task. While the determination of an
optimal choice of regularization function (let alone the design
of the entire optimization problem) is outside the scope of
this paper, in Fig. 19, we show the results corresponding to
an alternative nonsmooth penalty in order to emphasize the
flexibility of this approach. The regularization function was
chosen to be

R (c) = ‖�c‖1 (24)

where � is the 2-D wavelet transform of the object and the
mother wavelet was the 12-tap Daubechies wavelet [54]. The
wavelet transform was computed by the use of the GNU
Scientific Library [55]. Images reconstructed with several
regularization parameter values are shown.

VI. CONCLUSION

WISE can produce high-resolution sound speed images
without the computational burden of other time-domain wave-
form inversion approaches. Estimates of the sound speed
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Fig. 17. Images reconstructed by the use of SGD with a constant step size of 2.5×105 and regularization parameter values of (a) 1×10−10 , (b) 3×10−10,
(c) 1 × 10−9, and (d) 3 × 10−9. Images reconstructed by the use of the weighted RDA method with regularization parameter values of (e) 1 × 10−10,
(f) 3× 10−10, (g) 1× 10−9, and (h) 3× 10−9. Images are shown after 100 iterations and in a grayscale window of [1.38, 1.60] mm/μs.

Fig. 18. Images reconstructed by the use of SGD with a constant step size of 2.5×105 after (a) 5, (b) 20, (c) 50, and (d) 100 iterations with a regularization
parameter value of 1×10−9. Images reconstructed by the use of weighted RDA after (e) 5, (f) 20, (g) 50, and (h) 100 iterations with a regularization parameter
value of 1× 10−9. All images are shown in a grayscale window of [1.38, 1.60] mm/μs.

distribution can be obtained using this method by minimizing
an objective function consisting of a data fidelity term and a
regularization term. While this optimization problem can be
solved using SGD, use of a structured optimization method,
such as the RDA method, provides several advantages. First,
it exploits knowledge of the structure of the cost function to

separate the stochastic data fidelity term from the deterministic
regularization term. This appears to result in more effective
regularization. In the case of the TV seminorm, noise is more
effectively reduced while preserving the accuracy and contrast
of the reconstructed images. Second, it does not assume that
all terms in the objective function are differentiable, allowing
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Fig. 19. Images reconstructed by the use of the weighted RDA method with a wavelet-based penalty and regularization parameter values of (a) 3× 10−10,
(b) 1× 10−9, (c) 3× 10−9, and (d) 1× 10−8. Images are shown after 100 iterations and in a grayscale window of [1.38, 1.60] mm/μs.

natural incorporation of nonsmooth penalties, such as the total
variation seminorm. Third, it exploits information from past
iterations when determining the search direction. This allows
the method to employ a line search while avoiding overfitting
a particular realization of the encoding vector. This allows a
fast initial convergence rate without sacrificing image quality.
This was demonstrated through computer simulation studies
involving a numerical breast phantom, generation of a bias-
variance curve, and experimental studies involving clinical
data.

Some reconstruction parameters were not strictly optimized,
particularly for the clinical results. Similar results to those
presented could potentially be obtained with coarser tem-
poral or spatial sampling rates. In addition, the number of
measurements kept as part of the data filling strategy may
not be optimal. The optimal number of measurements will
depend on the object and the degree of model mismatch and
measurement noise. Further tuning of these parameters could
lead to improved performance.

Opportunities for further improvement exist. The acoustic
model employed in the calculation of the data fidelity term
ignores a number of important factors that could lead to
artifacts in the reconstructed images. In particular, the model
ignores acoustic attenuation and dispersion and out-of-plane
scattering. Since the assumed imaging model is 2-D, scattering
out of the plane defined by the transducer ring array is not
modeled. It also treats the transducers as ideal point detec-
tors and emitters. Additional investigation of the numerical
properties of this approach remains a topic for future study.
As noted previously, the frequency content of the excita-
tion pulse and the strength of the acoustic heterogeneities
have a sizable impact on the reconstructed images [30].
A comparison with other image reconstruction methods is also
needed [4], [14], [56], [57].

APPENDIX

LINE SEARCH FOR WEIGHTED RDA METHOD

The weights for the weighted RDA method were chosen
via the line search method described in Algorithm 3. Other
line search methods may produce similar, or even superior,

Algorithm 3 Line Search for RDA Method

Input: c0, Ak−1, wk , Gk , Gk−1, f (ck, wk), λ, αmax

Output: αk {Weight for k-th iteration.}
1: α̃← αmax {αmax is the initial guess for the weight.}
2: f ound ← false
3: while not f ound do
4: Ã← Ak−1 + α̃

5: G̃←
(

1− α̃

Ã

)
Gk−1 + α̃

Ã
Gk

6: μ̃← γ Ã {Should be consistent with Alg. 2.}
7: c̃← proxλμ̃R

(
c0 − μ̃G̃

)

8: if f (c̃, wk)+ λR (c̃) < f (ck, wk)+ λR (ck) then
9: f ound ← true

10: else
11: α̃← α̃/2
12: end if
13: end while
14: αk ← α̃

results. Each weight value considered for a given iteration
requires f (c, w) to be evaluated one additional time. Since
f (c, w) is evaluated for only one realization of the encoding
vector, this requires only one additional wave solver run. This
is the same computational cost as for the line search procedure
employed for SGD. The goal of the line search procedure
is to find weights that improve the convergence rate of the
algorithm while minimizing the computational cost needed to
select those weights. Thus, it is neither practical nor advisable
to choose weights that most minimize the cost function at each
iteration. Here, we decrease the weight by a factor of two if
the stopping criterion for the line search is not satisfied. This
factor can be adjusted to perform the line search more coarsely
(larger factor) or more finely (smaller factor).
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