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Abstract—We discuss a bent-ray ultrasound tomography algorithm with total-variation (TV) regularization. We
have applied this algorithm to 61 in vivo breast datasets collected with our in-house clinical prototype for imaging
sound-speed distributions in the breast. Our analysis showed that TV regularization could preserve sharper lesion
edges than the classic Tikhonov regularization. Furthermore, the image quality of our TV bent-ray sound-speed
tomograms was superior to that of the straight-ray counterparts for all types of breasts within BI-RADS density
categories 1 through 4. Our analysis showed that the improvements for average sharpness (in the unit of (m $ s)21)
of lesion edges in our TV bent-ray tomograms are between 2.1 to 3.4-fold compared with the straight ray
tomograms. Reconstructed sound-speed tomograms illustrated that our algorithm could successfully image fatty
and glandular tissues within the breast. We calculated the mean sound-speed values for fatty tissue and breast
parenchyma as 1422±9 m=s ðmean±SDÞ and1487±21 m=s, respectively. Based on 32 lesions in a cohort of 61
patients, we also found that the mean sound-speed for malignant breast lesions ð1548±17 m=sÞ was higher, on
average, than that of benign ones ð1513±27 m=sÞ (one-sided p , 0.001). These results suggest that, clinically,
sound-speed tomograms can be used to assess breast density (and therefore, breast cancer risk), as well as detect
and help differentiate breast lesions. Finally, our sound-speed tomograms may also be a useful tool to monitor the
clinical response of breast cancer patients to neo-adjuvant chemotherapy. (E-mail: lic@karmanos.org) � 2009
World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Breast cancer affects one in eight women during their

lives, making it the most common cancer and the second

most common cause of cancer death after lung cancer.

Although its false positive and false negative rates are

high, mammography is still the current gold standard

screening tool for breast cancer. Currently, conventional

ultrasound is only an adjunct technique to mammography

for breast cancer diagnosis due to its highly operator

dependent nature and inconsistency in detecting some

early cancers. Numerous ongoing studies (Kolb et al.

2002; Lucas-Fehm 2005) including the large American

College of Radiology Imaging Network (ACRIN) study

have been aimed at evaluating ultrasound (US) for breast

cancer screening. Most of the early experimental work to

develop breast ultrasound computed tomography (UCT)

was performed in late 1970s and early 1980s (Greenleaf

et al. 1974, 1977, 1981, 1987; Carson et al. 1981; Schrei-
ddress correspondence to: Cuiping Li, Karmanos Cancer
e, 110 East Warren, Hudson-Webber Cancer Research Center,
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man et al. 1984; Scherzinger et al. 1989). Since the early

investigators were often hindered by the limited memory

and processor speed of their computers, the quality of

the reconstruction images was not high enough for clinical

use (Jones 1993). As Andre et al. note in their article

(1997), after the initial experimental research, most of

the work on UCT through the mid 1990s involved theoret-

ical reconstructions and not experimental designs.

Rapidly improving computer power allowed investigators

to explore in vivo applications of breast ultrasound tomog-

raphy. Examples include the work of Carson et al. (1981),

Andre et al. (1997), Johnson et al. (1999), Marmarelis

et al. (2002), Liu and Waag (1997) and Duric et al.

(2005, 2007). Chang et al. (2007) also applied limited-

angle UCT to clinical breast radio-frequency (RF) signals

collected by conventional B-mode ultrasound machine.

Compared with conventional B-mode imaging, there

are a few advantages for ultrasound transmission imaging

(tomography): (1) transmission images are quantitative

and they provide sound-speed imaging of the whole

breast; (2) transmission measurements encode complete

information about the gross structure of the tissue; (3)

transmission measurements are independent of echo
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images; and (4) transmission measurements are relatively

easy to analyze mathematically.

There are basically two types of UCT methods. The

first is based on ray theory, which is fast and stable. The

second applies inverse scattering principles, which are

much more time consuming but have higher resolution

(Devaney 1981, 1982; Johnson et al. 1983, 1999). For

ray-theory based breast UCT, there are primarily two

modes. The first mode uses the time-of-flight measure-

ments of the transmission US signals to reproduce the

sound-speed distribution within the breast. The second

mode reconstructs attenuation measurements to give

a distribution of energy absorption and scatter within the

breast. Our study focuses on the first mode to improve

the quality of UCT by overcoming the shortcomings of

previous noniterative straight-ray mathematical models,

thereby making it more clinically acceptable for in vivo
breast imaging.

Based on Fermat’s Principle and Snell’s Law, the

ultrasound ray path in an inhomogeneous medium (such

as breast tissue) is not straight, which makes the inverse

problem nonlinear. The first bent-ray ultrasound tomog-

raphy was proposed by Schomberg in 1978 (Schomberg

1978). However, applications of bent-ray algorithm were

limited to numerical simulations and phantom studies

thereafter (Norton 1987; Andersen 1987, 1990). To record

both the transmitted and reflected ultrasound energy, a clin-

ical ultrasound ring array scanner for breast cancer diag-

nosis, termed computed ultrasound risk evaluation

(CURE), was designed and built at the Karmanos Cancer

Institute (KCI), Detroit, MI, USA (Duric et al. 2005,

2007; Littrup et al. 2001, 2002). Since most abnormal

breast lesions have higher sound-speed than normal breast

tissue (Gauss et al. 1997), the goal is to accurately and effi-

ciently produce images of breast sound-speeds based on

the ultrasound signals that are transmitted through the

breast tissue to the other side of the ring array. Therefore,

a robust ultrasound sound-speed tomography algorithm

is critical to ensure a high-resolution sound-speed tomo-

gram of the breast data.

In this study, we present an iterative bent-ray ultra-

sound tomography method to extract sound-speed infor-

mation from in vivo ultrasound breast data acquired by

CURE. We investigate the use of total-variation (TV) to

regularize the uneven ray coverage, which leads to a non-

quadratic minimization problem. The TV method was

introduced by Rudin et al. in 1992 and has been widely

used in inverse problems in image processing (denoising,

restoration and zooming). While most regularization

methods, such as Tikhonov regularization, tend to smooth

reconstructed images, TV regularization preserves edge

information. We applied a limited memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) method to solve

the optimization problem (Nocedal and Wright 2000).
Sixty-one datasets from clinical breast patients were

acquired by CURE and reconstructed using this algo-

rithm.

This article is organized as follows. Patient selection

and the CURE device are briefly described, followed by

details of the iterative tomography algorithm and applica-

tions to clinical breast data. Finally, the potential clinical

value of the reconstructed sound-speed images and their

limitations are addressed.
MATERIALS AND METHODS

Patient selection
A total of 61 patients (mean age: 43:73611:84 years)

with a variety of breast types, breast mass types and sizes,

were included in this study. Patient recruitment was done

by a research nurse at our Comprehensive Breast Center

and informed consent from each patient had been obtained

before the scan. All patients were scanned with our

clinical UCT, or CURE, prototype after mammography

and standard US exams, but before US guided biopsy.

Scanning procedures were performed under an institu-

tional review board approved protocol and in compliance

with the Health Insurance Portability and Accountability

Act (HIPAA). CURE data was not used for any clinical

decisions and reviewed only after the patient had left KCI.
The CURE device and data collection
The CURE device is a clinical prototype producing

near real-time data acquisition and integrated into

the normal patient flow of the Comprehensive Breast

Center. A detailed description of CURE was presented

by Duric et al. (2007) and a brief overview is given below.

Figure 1a is a schematic representation of the CURE

ring transducer. The 20 cm diameter ring consists of 256

equally-spaced and water-coupled transducers, immersed

in a water tank (Fig. 1a). During the scan, the patient is

positioned prone with the breast situated through a hole

in the canvas bedding. The breast is suspended in water,

inside the imaging tank and encircled by the ring.

A motorized gantry translates the ring in the vertical direc-

tion, starting from the chest wall through the breast’s

nipple region. One complete scan takes about 1 minute

and leads to approximately 75 slices of data per patient.

During scanning at each step, all 256 transducer

elements sequentially emit a fan beam of ultrasound

signals with a central frequency of 1.5 MHz toward the

opposite side of the ring. The scattered (transmission)

and backscattered (reflection) ultrasound signals are

subsequently recorded by all 256 elements at a sampling

rate of 6.25 MHz. Figure 1b (from Duric et al. 2007) illus-

trates that the ring insonofies a cross-section of the breast

that leads to data of all wavefields (including both



Fig. 1. The CURE clinical prototype. (a) Close-up of the imaging tank showing the transducer ring affixed to a mechanical
arm that steps the ring down while imaging the entire breast volume. (b) A schematic representation of the CURE ring

transducer. (From Duric et al. 2007).
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transmission and reflection) that can be used to reconstruct

images of acoustic properties.
Fig. 2. Illustration of the grid model for forward modeling. Rays
are traced from receiver to transmitter as shown in the figure.
Ultrasound sound-speed tomography
Based on the Radon transform, classical tomography

reconstruction using filtered back-projection (FBP)

cannot take ray bending into account. However, according

to Fermat’s Principle and Snell’s Law, the ultrasound ray

path is not straight in an inhomogeneous medium like

breast tissue, which makes the inverse problem nonlinear.

In this study, an iterative bent-ray ultrasound tomography

algorithm with a TV regularization term was assessed. To

solve the bent-ray ultrasound tomography problem,

a regular rectangular grid model was created on the image

plane, whose boundaries enclose the transducer ring

(Fig. 2). During each iteration, both the forward problem

and the inverse problem were solved and the sound-speed

model was updated for successive iterations. Details about

our methods to solve forward and inverse problems are

described as follows.

Forward modeling. Two-dimensional (2-D) ultra-

sound wave propagation is governed by the eikonal

equation

ð7EÞ25ðvT=vxÞ21ðvT=vyÞ25ð1=vÞ25
�

s2
x1s2

y

�
; (1)

where T is the travel-time, v is the sound-speed, and

ðsx; syÞ is the slowness vector of the ultrasound wave

that is defined as the inverse of sound-speed. In eqn (1),

E 5 const. describes the ‘‘wavefronts’’, and ‘‘rays’’ are

defined as the orthogonal trajectories of these wavefronts.

In this article, eqn (1) was solved using Klimes’ grid

travel-time tracing technique (1996), which had been

proven to be both accurate and fast. Klimes’ method

calculates the slowness vector ðsx; syÞ and travel-time

T at the center point of each grid cell simultaneously

with at least second-order accuracy (relative to the grid

spacing). ðsx; syÞ and T at an arbitrary point within the

grid model were interpolated by 2-D fourth order
Lagrange interpolation. An ultrasound ray was backpro-

pagated from receiver to transmitter in the following way:

(1) Starting from the receiver location ðxr; yrÞ; the ray

segment within the current grid cell was traced along

the direction G
2

5ð2sxr
;2syr

Þ until it intercepted the

cell boundary at point ðxi; yiÞ;
(2) Update G

2
to be the negative slowness vector of the

intercept point G
2

5ð2sxi
;2syi

Þ; and trace the ray

segment within the next adjacent cell;

(3) Repeat (2), until the current ray arrives at the

transmitter within a certain tolerance.

Assuming that the slowness is constant within each

grid cell, the bent ray path can be traced using the above

procedure fairly accurately. An illustration of the grid

model and the backpropagated is shown in Figure 2.

Inverse problem. Let Dti be the difference between

the ith picked time-of-flight (TOF) for the recorded

ultrasound data and the ith calculated TOF for the sound-

speed model, our inverse problem can be described as

follows

XM

j

lij6sj56ti; (2)



Fig. 3. Tomography images of breast phantom. (a) X-ray CT scan of breast phantom. (b) TV bent-ray ultrasound tomo-
gram. (c) Tikhonov bent-ray ultrasound tomogram. The sound-speed scale in (b) and (c) is from 1470 m/s to 1560 m/s.
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where Dsj is the slowness perturbation for the jth grid cell,

which needs to be inverted, and lij is the ray length of the

ith ray within the jth cell. Equation (2) can be expressed as

a matrix form

L6S56T : (3)

This is a nonlinear inverse problem due to ray bending.

The objective function for the inverse problem can be

described as in eqn (4)

f 5 argmin
DS

�����LDSl2DT
����21lTVðDSlÞ

�
; (4)

and

TVð6SlÞ5e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j7ð6SlÞj2

q
dxdy: (5)

However, TVðDSlÞÞ is not differentiable at zero. So to

avoid this difficulty a small positive constant value is

added to the eqn (6)

TVðDSlÞ5e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j7ð6SlÞj21b2

q
dxdy: (6)
The quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j7ð6SlÞj21b2

q
is known as the

gradient magnitude. This provides us with the information

about the discontinuities in the image. In eqn (4), l is the

regularization parameter that balances the roughness of

the inverted results and the fit to the data.

To avoid direct computation of Hessian matrices, we

applied the quasi-Newton algorithm—L-BFGS method to

iteratively solve the nonlinear problem in eqn (4) for DS,

starting with a homogeneous sound-speed model. The

L-BFGS method was proven to be both time and memory

efficient (Nocedal et al. 2000). After each iteration, an

updated sound-speed model was obtained by adding the

solution DS to the initial model. Rays were traced on the

updated model using the method discussed in the forward

modeling section, and the TOF data were updated at the

same time. The iteration continues until the TOF misfit

DT was not significantly improved from the previous iter-

ation, which meant the solutions had converged. The

regularization parameter l was determined using the

L-curve technique (Hansen 2001).
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In this study, we applied our TV bent-ray tomog-

raphy algorithm to a total of 61 in vivo breast datasets.

Uncertainties in the sound-speed tomograms were simply

estimated by calculating the standard deviation in recon-

structions for water shot data. Water shot data was

recorded before each patient scan, with only water in the

tank. Sixteen reconstructions with 1 mm by 1 mm grid

cell for water shot data were used to do the analysis.

The typical standard deviation for individual pixel

sound-speed values in water was 4 m/s.

Our clinical protocol was designed to include

a sample of patients with a wide variety of breast types,

ranging from fatty to dense on the BI-RADS categories

1 through 4. The sound-speed tomograms were reviewed

and classified by a board certified radiologist with over

10 years of breast imaging experience (P.J.L.).

Define sharpness of lesion edges
To define sharpness of lesion edges in a more illustra-

tive way, we took the TV tomogram in Figure 4a as an

example: (1) selecting a region-of-interest (ROI) by

drawing an ellipse enclosing the lesion (solid ellipse in

Fig. 4a) and the sound-speed outside the ROI is set to

zero, (2) select another ROI inside the ROI in (1) (dashed

ellipse in Fig. 4a), (3) calculate the mean background

sound-speed (BgSS) using those pixels inside the solid

ellipse but outside the dashed ellipse, (4) find the

maximum sound-speed (MaxSS) inside the dashed

ellipse, and calculate the half-power (HpSS) sound-speed

between background (BgSS) and the maximum sound-

speed (HpSS 5 BgSS 1 [MaxSS-BgSS)/2), (5) threshold

the image obtained in (1) with BgSS and HpSS, respec-

tively, then subtract the two resulting images (Fig. 4d),

(6) the edge sharpness is defined as: (HpSS – BgSS)/

(number of pixels in the subtracted image in Fig. 4d).

The unit for the sharpness obtained in the above way is

(m $ s)21.

Select region of interest (ROI)
Two methods were used to isolate lesions in the

sound-speed tomograms as described in the following.

The first method utilizes CURE reflection images for

regions-of-interest (ROI) selection at the lesion locations.

Since CURE reflection images were reconstructed

from the same data as sound-speed images, they can

be registered without any geometric discrepancies.

Figure 5a shows a typical sound-speed tomogram, with

an invasive ductal carcinoma at 12:00 to 1:00 o’clock.

The reflection image in Figure 5b for the same slice has

a clear edge for the lesion and the ROI within the enclosed

curve was manually selected. A plugin for ImageJ that was

developed in-house was used to record a mask image with

all ones (1) within the selected ROI and all zeros (0) outside

the ROI. The sound-speed tomogram in Figure 5a was
multiplied by the mask image, and the resulting image is

shown in Figure 5c with all 0s except that the original

sound-speed values are unchanged within the ROI.

The second method was used to select an ROI when

there was no clear lesion edge in the reflection image. In

this method, the half-power sound-speed (HpSS) is calcu-

lated following those steps as described in the section

‘‘Define sharpness of lesion edges’’. The ROI is selected

by thresholding the sound-speed image obtained in step

(1) with HpSS. This ROI selection method was also

applied to the sound-speed image in Figure 5a and the

resulting image (Fig. 5d) is put next to the one obtained

by referring to reflection image (Fig. 5c) for visual

comparison.

RESULTS

Phantom study
An initial phantom study was performed to justify the

selection of imaging parameters and evaluate the accuracy

of our algorithm for the in vivo study. The breast phantom

was built by Dr. Ernest Madsen of the University of

Wisconsin and provides tissue-equivalent scanning char-

acteristics of highly scattering, predominantly paren-

chyma breast tissue. A representative X-ray CT scan of

the breast phantom is shown in Figure 3a. The phantom

mimics the presence of benign and cancerous masses

embedded in glandular tissue. The sound-speed recon-

structions using the TV and the Tikhonov regularizations

are presented in Figure 3b and c with an absolute sound-

speed scale from 1470 m/s to 1560 m/s.

We quantitatively assessed the reconstructions

shown in Figure 3b and c (Table 1). The results in Table 1

show that both the TV and the Tikhonov reconstructions

are generally consistent with the known sound-speed

values and with the phantom’s X-Ray CT appearance.

The TV reconstruction demonstrates a higher accuracy

than the Tikhonov one in the phantom study, thereby justi-

fying a comparison of the two methods using in vivo data.

Furthermore, the phantom study helped us select the

imaging parameters that were used in the comparative in
vivo study described below.
In vivo study

Total-variation (L1-norm)) regularization vs. Tikho-
nov (L2-norm) regularization. We compared the TV

reconstruction (third iteration) with those reconstructed

with the classic Tikhonov regularization (third itera-

tion). One example is shown in Figure 4. Figure 4

shows a TV tomogram (a), Tikhonov tomogram (b)

and sound-speed cross-sections (c) along the solid line

from the TV tomogram and along the dashed line in Ti-

khonov tomogram. The breast in Figure 4 has

a 55 3 47 3 37 mm invasive ductal carcinoma at
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Fig. 4. Comparison of TV (L1-norm) reconstruction in (a) with classic Tikhonov (L2-norm) reconstruction in (b). The
breast has a 55 3 47 3 37 mm invasive ductal carcinoma at 12:00-1:00 o’clock. Those pixels inside the solid ellipse
but outside the dashed ellipse are used to calculate the mean background sound-speed for (a) and (b),respectively.
(c) Sound-speed cross-sections along the solid line in (a) and the dashed line in (b). (d) Segmented sound-speed image
from (a). The left over pixels have sound-speeds high than background (1468 m/s) but lower than half power value
(1530 m/s). (e) Segmented sound-speed image from (b). The left over pixels have sound-speeds high than background
(1436 m/s) but lower than half power value (1501 m/s). The sound-speed scale in (a) and (b) is from 1350 m/s to

1468 m/s.
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12:00 to 1:00 o’clock. Note that the TV method not

only preserved sharper edges of the lesionbut also

damped out the ‘‘ray’’ artifacts more than the Tikhonov

method. For fair comparison, the two tomograms in

Figure 3 are shown in the same absolute sound-speed

scale ranging from 1350 m/s to 1600 m/s.

We calculated the edge sharpness of the lesion in

Figure 4 according to the method described in the

‘‘Define sharpness of lesion edges’’ section. The obtained
sharpness in Figure 4a is 0.094 (m$s)21, while the sharp-

ness for the lesion in Figure 4b is 0.049(m$s)21. In

addition, we selected one breast with a lesion from

each density category (from fatty to dense) to further

assess the improvement of the TV regularization over

the Tikhonov regularization. The calculated results are

shown in Table 2. The average improvement of lesion

edge sharpness using the TV method is 1.88 times over

the Tikhonov method.



Fig. 5. ROI selection by referring to CURE reflection. (a) Sound-speed image showing an invasive ductal carcinoma at
12:00 to 1:00 o’clock. (b) ROI was manually selected in reflection image. (c) The ROI in (b) was applied to the image
in (a) resulting the sound-speed image ith all 0’s except that the original sound-speed values were unchanged within the

ROI. (d) ROI selected by thresholding method.
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Bent-ray inversion vs. straight-ray inversion. We

also compared TV bent-ray sound-speed tomograms for

in vivo data with their straight-ray counterparts. Our anal-

ysis showed that, for our selected patients, the TV bent-ray

approach led to sharply improved image quality (i.e. lesion

sharpness). In vivo examples are used to illustrate this

point.

In Figure 6 through Figure 8, we show three exam-

ples to demonstrate the improvements of the TV bent-

ray reconstructions over the corresponding straight-ray

ones. For fair comparisons, the TV bent-ray tomograms

and the straight-ray tomograms are shown in the same

absolute sound-speed scale from 1350 m/s to 1550 m/s.

In all three figures, (a) are the TV bent-ray inversions
Table 1. Comparison of calculated and kno

Material Diameter (mm) Known sound-speed (m/s) TV c

Big fat sphere 12 1470
Small fat sphere 6 1470
Subcutaneous fat 1470
Glandular 1515
Small tumor 9 1549
Irregular tumor 15 1559
(third iteration), (b) are the straight-ray inversions, and

(c) are sound-speed cross-sections along the solid line in

(a) (upper panel) and the dashed line in (b) (lower panel).

Arrows in all three figures indicate the lesion locations.

A fibroadenoma within a fatty breast is shown in Figure 6.

The TV bent-ray inversion exhibited higher resolution

and sharper lesion edge than the straight-ray inversion.

Figure 7 shows a high sound-speed mass at the 2:00

o’clock position in a patient with scattered breast density,

which was pathologically confirmed as a 4.8 3 1.7 3

2.9 cm invasive carcinoma. The sound-speed and position

tracings for the TV bent-ray image (Fig. 6c, top) confirm

a significantly higher sound-speed for the mass

(mean 5 1553 m/s) than the adjacent water in the bath
wn sound-speeds for breast phantom

alculated sound-speed (m/s) Tikhonov calculated sound-speed (m/s)

1468 1472
1480 1488
1468 1470
1515 1508
1544 1539
1558 1552



Table 2. Comparison of sharpness of lesion edges

Sharpness for Tikhonov
bent-ray tomograms ((m$s)21)

Sharpness for TV bent-ray
tomograms ((m$s)21)

Sharpness for straight-ray
tomograms ((m$s)21)

Fatty (Fig. 6) 0.046 0.086 0.034
Scattered (Fig. 7) 0.043 0.072 0.032

Hetero. 0.057 0.102 0.049
Dense (Fig. 8) 0.061 0.134 0.039
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(mean 5 1498 m/s; one-sided p , 0.001). Whereas the

straight-ray image (Fig. 6c, bottom) shows no significant

sound-speed differences between the tumor and adjacent

water (mean 5 1491 m/s vs. 1488 m/s; one-sided

p . 0.19). The dense breast shown in Figure 8 shows a

1.6 3 1.1 3 1.8 cm fibroadenoma in the 2:00 o’clock

position. The higher contrast for the fibroadenoma is

confirmed by the sound-speed tracing (Fig. 8a and c,

upper), effectively making it much more clinically

discernible than the straight-ray inversion (Fig. 8b and c,

lower). Again, the straight-ray tomogram has the mass

sound-speed insignificantly different than from the
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Fig. 6. Sound-speed tomograms for a breast with a 21 3 17 3
speed tomograms using bent-ray algorithm (third iteration); (b)
Sound-speed along the solid line in (a) and the dashed line in (b)

1550 m/
adjacent water, literally washing out the image. In this

article, p values were calculated using a one-sided z-test.

Sound-speeds of the lesions are also illustrated in

their cross-sections (Fig. 6c through Fig. 8c), where the

lesions are indicated by arrows. The edge sharpness was

calculated as described in the section ‘‘Define sharpness

of lesion edges’’. The same three breasts as in previous

section were analyzed to compare the lesion edge sharp-

ness for bent-ray reconstruction and straight-ray recon-

struction. The average improvement using the TV bent-

ray is 2.6 times over the TV straight- ray ones. The calcu-

lated results for the four lesions are presented in Table 2.
150 200
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20 (mm) fibroadenoma at 9:00-10:00 o’clock. (a) Sound-
Sound-speed tomograms using straight-ray algorithm. (c)
. The sound-speed scale in (a) and (b) is from 1350 m/s to
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Fig. 7. Sound-speed tomograms for a breast with scattered fibroglandular tissue containing a 27 3 17 3 19 mm invasive
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Fatty tissue vs. breast parenchyma. Breast density is

a known risk factor for developing breast cancer. Breast

density is determined by the ratio of breast parenchyma

to fatty tissue within the breast. Separation of fatty tissue

from breast parenchyma would be a significant step for

breast density evaluation using our sound-speed tomo-

grams (Glide et al. 2007; Glide-Hurst et al. 2008).

We utilized the k-mean clustering routine of ImageJ

to segment the sound-speed tomograms for a cohort of

61 patients. To reduce workload, we segmented every

10th sound-speed tomogram for each patient. Since the

abnormal lesions were not considered part of the normal

breast architecture, we removed them from the sound-

speed tomograms before we applied the clustering. Details

of k-mean clustering segmentation are described by Glide

et al. (2007). For more quantitative comparison, we calcu-

lated the mean sound-speeds for fatty tissue and breast

parenchyma based on these segmentation results. The

calculated mean sound-speeds were 1422 6 9 m/s (mean

6 SD) and 1487 6 21 m/s for fatty tissue and breast paren-

chyma (one-sided p , 0.001), respectively (Table 3).
Benign vs. malignant lesions. Out of 32 lesions in 61

patients, 19 were malignant (16 invasive ductal carcinoma

(IDC) and 3 ductal carcinoma in situ (DCIS); mean age:

48.24 611.31 yrs) and 13 were benign (8 fibroadenoma

and 5 cysts, complicated cysts or fibrocystic structures;

mean age: 44.17 613.44 years). We selected the slices

that contained lesions based on radiologists’ evaluations.

We isolated lesions using the methods discussed in the

section ‘‘Select region of interest (ROI).’’ Of a total 32

lesions, 20 were isolated with the first method and 12

were isolated using the second method. The mean

sound-speed of a lesion for a single patient was calculated

by summing all sound-speeds for every pixel within the

ROI in the selected slices, then dividing this summation

by the total number of pixels. To avoid bias because of

different ROI selection methods, we compared the mean

sound-speeds for benign and malignant lesions for the

above two groups (Table 4). No systematic difference

was seen between these two ROI selection methods.

Mean sound-speed histograms for 13 benign lesion and

19 malignant lesions are depicted in Figure 9, where
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Fig. 8. Sound-speed tomograms for a dense breast with a 16 3 11 3 18 mm fibroadenoma at 2:00 o’clock. (a) Sound-
speed tomograms using bent-ray algorithm (third iteration); (b) Sound-speed tomograms using straight-ray algorithm.
(c) Sound-speed along the solid line in (a) and the dashed line in (b). The sound-speed scale in (a) and (b) is from

1350 m/s to 1550 m/s.
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malignant lesions show, on average, higher mean sound-

speed than benign lesions. As presented in Table 3, the

mean sound-speeds for malignant and benign lesions

were 1548617 m=s and 1513627 m=s (one-sided

p , 0.001), respectively.
Table 3. Mean sound-speed with standard deviation (SD)

Sound-speed (m/s)

Fat 1422 6 9
Parenchyma 1487 6 21
Malignant mass 1548 6 17
Benign mass 1513 6 27
DISCUSSION

The results of the phantom study, summarized in

Figure 3 and Table 1 provided the necessary calibration

to justify the application of the TV bent-ray tomography

to in vivo breast data. In addition, the comparisons in

Figure 4 make it clear that the TV reconstruction is

superior to the reconstruction obtained with the classic

Tikhonov regularization. Although TV is computationally

more intensive than Tikhonov reconstruction, Vogel et al.

(1998) demonstrated that this difference was not signifi-

cant. Our own experience suggests that reconstruction

time for TV and Tikhonov regularization are about the

same. We also compared in vivo TV bent-ray tomograms

with their straight-ray counterparts. These comparisons
(Fig. 6 to Fig. 8, especially the cross-section plots from

Fig. 6c through 8c) clearly showed that the TV bent-ray

tomograms exhibited more tissue structures within the

breast than their straight-ray counterparts. It was also

obvious that the straight-ray tomograms were strongly

degraded relative to the TV bent-ray tomograms because

the linear approximation in straight-ray tomography was

not accurate enough for the nonlinear inverse problem.

For our TV bent-ray tomograms (Fig. 6 through Fig. 8),

there were improvements for average sharpness of lesion

edges seen in all four breasts from fatty to dense. Perhaps

more importantly, the improved contrast in the TV bent-

ray tomograms leads to significantly greater enhancement

of the masses relative to the background. Also, our results



Table 4. Mean sound-speed with standard deviation (SD)

Mean sound-speed (m/s)
(ROI selected by referring

to reflection image)

Mean sound-speed (m/s)
(ROI selected by

thresholding)

Benign 1514 6 34 1511 6 14
Malignant 1549 6 18 1546 6 16

ROI 5 region-of-interest.
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on mean sound-speeds of benign (1513627 m=s) and

malignant lesions (1548617 m=s) generally corresponds

with those reported in literature. Duck (1990) has

calculated the mean sound-speeds for carcinoma and fi-

broadenoma to be 1584627 m=s and 1550632 m=s,

respectively. Chang et al. (2007) reports a mean sound-

speed of 1499:8626:8 m=s for fibroadenoma and a

mean sound-speed of 1530:9636:2 m=s for carcinoma.

The results of our study suggest three potential clin-

ical applications for our TV bent-ray algorithm that require

accurate differentiation of focal areas that have different

sound-speeds, including tracking them over time as

a means to potentially reduce overall x-ray exposure to

the breast in screening and follow-up. First, our sound-

speed tomograms may be used to improve the accuracy

of assessing breast density. Second, they can help to

improve the detection and characterization of breast

lesions. Third, they also can be used to better monitor

clinical response of breast cancer patients to neo-adjuvant

chemotherapy. We now discuss each of these applications.

Breast density is an important risk factor for devel-

oping breast cancer. Studies have shown that women

with high mammographic breast density are at higher

risk of developing breast cancer (Boyd et. al. 1995,

2002; Wolfe, et al. 1987; Hall 2008). We have previously

shown (Glide et al. 2007; Glide-Hurst et al. 2008)
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Fig. 9. Histogram of mean sound-speeds for 13 benign lesions
(solid line) and 19 malignant lesions (dashed line).
a definite positive correlation (Pearson correlation coef-

ficient 5 0.87) between mean sound-speed values and

breast density. From fatty to dense breasts, the mean

sound-speed values tend to increase. Based on straight-

ray reconstructions, Glide-Hurst et al. (2008) already

established the feasibility of employing CURE sound-

speed tomograms to estimate volumetric breast density.

As a result, CURE sound-speed tomograms can be poten-

tially used to assess this breast cancer risk factor. Our in
vivo study indicates that the TV bent-ray tomography

algorithm can successfully image fatty and glandular

tissue within the breast with higher resolution than the

straight-ray algorithm (Fig. 6 through Fig. 8). As a result,

we expect more accurate and better quantitative correla-

tion between sound-speed and breast density in future

studies.

Another potential clinical application is to help detect

and characterize breast lesions. Since most abnormal

breast lesions have higher sound-speed than normal breast

tissue (Gauss et al. 1997), UCT is a potential way to detect

abnormal breast lesions. More importantly, our study

suggests greater detection of these elevated sound-speeds

over the background for both malignant and benign breast

lesions with the TV bent-ray algorithm. This further

confirmed the feasibility of using sound-speed UCT to

detect breast lesions, allowing higher contrast settings

and improved threshold values for more prospective

assessment of mass detection in the future. These more

accurate sound-speed characterizations also applied to

characterizing higher sound-speeds for malignant than

benign lesions. One potential way to characterize a breast

lesion is to compare a sound-speed tomogram with the

corresponding CURE attenuation and reflection images.

Statistically, the malignant lesions have elevated sound-

speed and attenuation relative to surrounding tissue

(Greenleaf et al. 1977). The architectural distortion at

the tumor region in the reflection image is another indi-

cator of cancer (Stavros et al. 1995). The addition of

reflection and attenuation data can potentially further

improve the separation of benign from cancer as illus-

trated in the color-coded fused image in Figure 10. Studies

based on such image fusions are undergoing in our group.

The third potential clinical application of UCT is to

monitor clinical response of breast cancer patients to

neo-adjuvant chemotherapy. Although chemotherapy is

widely used to treat cancers, it is important to identify

patients who are not responding to chemotherapy as early

as possible, to avoid unsuccessful treatment strategies and

unnecessary side effects (Rousseau et al. 2006; Tozaki

2008). Accurate evaluation of a tumor’s response to

therapy is also necessary to plan for surgery (Partridge

et al. 2002; Londero et al. 2004). In an ongoing study,

we have used CURE images to monitor the progress of

chemotherapy for six patients. CURE exams were



Fig. 10. Color-coded fused image for a breast with an infiltrating ductal carcinoma. CURE images are constructed from the
same data, so they can be fused together without any geometric discrepancies.
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performed at each cycle of chemotherapy. The sound-

speed distribution from each scan was reconstructed to

track the change in size, shape and mean sound-speed of

the tumor. Compared with MRI, a significant potential

advantage of using our sound-speed tomograms for

chemotherapy monitoring is the low cost for both patients

and health care providers. Figure 11 illustrates our sound-

speed tomograms, fused with CURE attenuation and

reflection images, for one patient’ chemotherapy moni-

toring, in which the change of the tumor size and shape

during chemotherapy is demonstrated. Again, the greater

potential accuracy of sound-speed measurements with
Fig. 11. Clinical response of one breast cancer patient to neo-a
(sound-speed 1 reflection) over a period of 8 weeks. The time r

position and shows dramatic
the TV bent-ray algorithm and the ability to increase the

contrast over the background makes this a more feasible

procedure which could easily be automated and compared

for patients at each follow-up visit over time.

There are several limitations in our study. First, the

performance of our tomography algorithm declined

when the lesion size dropped to and below the elevation

beam width (5 mm for our ring array), since the signal

dilution led to a loss of contrast. Another important factor

influencing the performance of our algorithm is the signal-

to-noise ratio of the acquired patient data. Although our in-

house time-of-flight picker was tolerant to white noise,
djuvant chemotherapy shown in gray-scale fused images
esolution was 2 weeks. The large mass is in the 2 o’clock
shrinkage over time.
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coherent noise in the ultrasound data might still affect the

performance of the picker (Li et al. 2009). Thus, low

signal-to-noise of the data might affect the accuracy of

our time-of-flight picks. Consequently, bigger data errors

would degrade the reconstructed sound-speed tomograms.

Second, the trade-off between image resolution and

computation speed needs to be balanced. For a typical

breast scan with 76 slices, three-iteration inversion of the

whole stack with 2 mm by 2 mm grid points on a 2.4

GHz Dell Precision workstation Duo Core (4 GB memory,

redhat linux, Dell Inc., Round Rock, Texas) required

1.5 hours to finish. If 1 mm by 1 mm grid size is used,

the running time on the same computer is�4 hours. Since

most parts of our current algorithm implementation are

sequential, the computation speed can be improved by par-

allelizing the code. Finally, the clinical implications

suggest that it will be important to assess the relative

contrast levels for algorithms in defining thresholds for

viewing images on a prospective basis. Accurate depic-

tions of local areas of increase sound-speed may then

become more reliable parameters for diagnostic assess-

ment in clinical applications.
CONCLUSIONS

We developed a TV based bent-ray tomography

algorithm for imaging the sound-speed distribution of

the breast. We applied this algorithm to 61 breast datasets

acquired using our clinical prototype CURE. Our sound-

speed images showed that the TV regularization, in

combination with bent-ray tomography, better defined

lesion edges and improved not only spatial resolution

but significantly improved tissue contrast for better lesion

conspicuity over background. Fatty and dense tissues

could be well separated and mean sound-speeds of malig-

nant lesions was higher than that of benign masses on

average. Fusing sound-speed images with the correspond-

ing attenuation and reflection images may help differen-

tiate benign from malignant breast lesions. The lower

costs compared with MRI and the lack of radiation

exposure potentially allows UCT a prominent role in the

future for therapeutic interventions, either for breast

density deduction or cancer treatment.
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