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Abstract
Application of the frequency domain acoustic wave equation on data acquired 
from ultrasound tomography scans is shown to yield high resolution sound 
speed images on the order of the wavelength of the highest reconstructed 
frequency. Using a signal bandwidth of 0.4–1 MHz and an average sound speed  
of 1500 m s−1, the resolution is approximately 1.5 mm. The quantitative sound 
speed values and morphology provided by these images have the potential to 
inform diagnosis and classification of breast disease. In this study, we present the 
formalism, practical application, and in vivo results of waveform tomography 
applied to breast data gathered by two different ultrasound tomography 
scanners that utilize ring transducers. The formalism includes a review of 
frequency domain modeling of the wave equation  using finite difference 
operators as well as a review of the gradient descent method for the iterative 
reconstruction scheme. It is shown that the practical application of waveform 
tomography requires an accurate starting model, careful data processing, 
and a method to gradually incorporate higher frequency information into the 
sound speed reconstruction. Following these steps resulted in high resolution 
quantitative sound speed images of the breast. These images show marked 
improvement relative to commonly used ray tomography reconstruction 
methods. The robustness of the method is demonstrated by obtaining similar 
results from two different ultrasound tomography devices. We also compare 
our method to MRI to demonstrate concordant findings. The clinical data 
used in this work was obtained from a HIPAA compliant clinical study (IRB 
040912M1F).
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1. Introduction

The purpose of this work is to produce high resolution quantitative in vivo sound speed images 
of the human breast for aiding in the detection and diagnosis of breast cancer. Ultrasound 
tomography is an ideal technique for obtaining 3D images of breast structures since the breast 
is comprised of soft tissues without bones or other materials which would strongly scatter 
and attenuate transmitted signal energy (Greenleaf et al 1977). Potential clinical benefits of 
ultrasound tomography include safety, comfort, and 3D imaging. This is in contrast to exist-
ing clinically accepted modalities such as x-ray mammography which only provides planar 
projections, involves ionizing radiation, and uses uncomfortable compression.

The two ultrasound tomography devices used to generate data for this work (Duric et al 
2007, 2013) operate in a similar fashion. During an exam, the patient lies prone on a table and 
inserts a breast into a ring transducer which is immersed in a water filled chamber (figure 1(a)). 
The water is heated to just below body temperature (approximately 32 °C) to yield a sound 
speed that is intermediate to the range of sound speeds found in breast issues. Furthermore, 
the warm water provides patient comfort, and it is degassed to reduce noise and scattering pro-
duced by air bubbles. The ring transducer then scans the entire breast acquiring coronal slices 
from the chest wall to the nipple region. Tomographic B-mode images are then reconstructed 
from the reflected signals while sound speed and attenuation images are reconstructed from 
the transmitted signals. The three image types can then be used to evaluate the presence of 
breast disease. The B-mode images are qualitative reconstructions which measure the varia-
tions in the impedance properties of the breast tissue (Schmidt et al 2011). They provide use-
ful contrast and morphological information. The sound speed and attenuation images map 
the sound speed (m s−1) and attenuation (dB mm−1) of the reconstructed breast volume. In 
addition to providing contrast and morphological information, this quantitative data helps in 
the identification of unknown structures in an absolute and consistent way (Li et al (2008a, 
2008b)).

In this work, we focus on the reconstruction of the sound speed in breast tissue using 
waveform tomography techniques. Waveform tomography reconstruction algorithms model 
the propagating wave fields using the full wave equation, hence taking into account higher 
order effects such as diffraction and multiple scattering (Virieux and Operto 2009). This is in 
contrast to more common ray tomography techniques which only consider the arrival times 
of transmitted wavefronts (Li et al 2008a). A limitation of our approach is that we model 2D 
wave propagation which neglects the out of plane scattering present in real data acquisition. 
However, this approach has significant advantages in terms of computational speed, complex-
ity of hardware, and chest wall access. It is also motivated by the fact that the considered 
transducer ring focuses most of the acoustic energy into the coronal plane. It will be seen that 
the 2D approach still significantly improves upon ray tomography methods which are also 
2D. By careful data-fitting of the numerical wave fields to real acoustic data, we use an itera-
tive gradient search algorithm to produce sound speed models of the breast. We highlight the 
robustness and practicality of our approach by reconstructing data acquired by two different 
ultrasound tomography units using ring transducers. The improved image quality enabled by 
waveform tomography has the potential to significantly increase the clinical value of sound 
speed images for the detection and diagnosis of breast cancer.

G Y Sandhu et alPhys. Med. Biol. 60 (2015) 5381



5383

In the preceding decades, various research teams have made significant advances in wave-
form tomography. A growing body of geophysics research has demonstrated the potential of 
waveform tomography to image the earth subsurface with greater accuracy (Tarantola 1984, 
Song et al 1995, Pratt 1999). See Virieux and Operto (2009) for a review. Of these methods, 
the approach and techniques used in Pratt (1999) was crucial in developing our algorithm. 
While some research has investigated medical applications using numerical data sets (Natterer 
2008, Roy et al 2010, Huang et al 2014, Li et al 2014), to the best of our knowledge, very 
few have successfully applied these techniques to clinical in vivo data. The work in Borup  
et al (1999) and Wiskin et al (2007) was a major pioneering contribution using an ultrasound 
tomography device with planar transducer arrays. Their reconstruction technique contrasts 
sharply with ours. While Borup et al (1999) used an implicit integral equation technique to 
find the scattered wave fields, we use finite difference and matrix inversion methods using 
data acquired from a ring transducer. Another important contribution to waveform tomogra-
phy for breast imaging is given in Pratt et al (2007). The authors use a very similar waveform 
tomography algorithm to produce sound speed and attenuation images of a physical tissue 
mimicking breast phantom and in vivo data obtained using our older ultrasound tomography 
unit. Their work relies on manual travel time picking to build the initial sound speed model. 
Manual travel time picking requires a user to look at a received waveform and decide the time 
of arrival of the acoustic signal. Due to the vast amount of data collected, this approach is 
not suitable for practical clinical applications. By contrast, our method utilizes a completely 
automatic time-of-flight picker which is capable of separating system noise and the arrival of 
the acoustic signal. We also use different preprocessing techniques in the implementation of 
our algorithm.

The outline of the paper is as follows. We present the inverse problem in section 2. In sec-
tion 3, we review the steps needed to numerically model acoustic wave propagation. We also 
show how simulated and real wave field measurements are used to solve the inverse problem of 
obtaining a sound speed model of the breast. In section 4, we explain the main steps necessary 
to process the acquired data to a form that can be used by the inversion process. In section 5, we 
present and discuss reconstructed sound speed images of a numerical simulation, tissue mim-
icking breast phantom, and several in vivo data sets. We also show a comparison of our method 
to MRI. We summarize the discussion with our conclusions in section 6. We acknowledge our 
funding sources and potential conflicts of interest in the acknowledgment section.

Figure 1. Ultrasound tomography transducer acquisition setup. (a) Placement of breast 
in ring. (b) Transducer ring configuration.

(a) (b)
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2. Problem statement

Let us consider the ultrasound tomography acquisition setup depicted in figure 1. The breast 
is immersed in water and surrounded by an ultrasound transducer ring with n elements. The 
positions of the transducer elements are given by rk for = …k n1, 2, , .

Our goal is to estimate the sound speed model ( )c r  as a means to quantitatively characterize 
breast tissue. The sound speed is assumed to be independent of the frequency (no dispersion). 
Note that attenuation can easily be included by adding an imaginary component to the sound 
speed model (Song et al 1995, Aki and Richards 2002). Attenuation reconstruction is beyond 
the scope of the current work and will not be addressed. The sound speed model is sampled on 
an uniform ×m m reconstruction grid and stacked into an m2 dimensional vector c.

The acquisition works as follows. Each transducer element sequentially emits an ultra-
sound pulse which propagates throughout the medium. In the frequency domain, the trans-
mitting pulse of the transducer operating at frequency ω is given by complex valued quantity 

ω( )s , and the resulting complex wave field at position r is denoted ω( )d r, . The wave field is 
measured at the transducer locations rk, giving complex valued experimental measurements 

ω( )d r ,k . The measurements obtained for all emitter-receiver pairs can be stacked into an n2 
dimensional vector ω( )dobs . The expected numerical wave field obtained at position r for a 
given operating frequency ω and sound speed model c is denoted ω( )u r c, , . Similar to the 
experimental measurements, the simulated wave field is sampled at the transducer locations 
and the values are stacked in an n2 dimensional vector ω( )u c,obs .

The problem that we would like to solve is to estimate the sound speed model c that gener-
ates, upon numerical simulation, simulated measurements ω( )u c,obs  that best match the exper-
imental measurements ω( )dobs . More specifically, we would like to minimize the real valued 
mean squared error cost function

ω ω ω( ) = ( ) ( )E c e c e c,
1

2
, , ,H (1)

where H denotes the Hermitian transpose, and e is the residual mismatch defined as

ω ω ω( ) = ( ) − ( )e c u c d, , .obs obs (2)

A regularization term can easily be added to smooth the reconstructed sound speed images 
in order to stabilize the inversion process. Note that the dependence on the frequency ω and 
the sound speed model c is explicitly given in the above expressions to emphasize that the opti-
mization is performed on one frequency at a time, and that the simulated wave field depends 
on the assumed sound speed model. In other words, if the sound speed model is updated, the 
simulated wave field needs to be reevaluated. In the rest of the paper, however, the dependency 
on these two parameters will be implicit.

3. Sound speed reconstruction

The optimization problem stated in the previous section  is solved in an iterative manner. 
We start from an initial estimate of the sound speed model and update it using conventional 
gradient descent methods. The iterations stop when a convergence criterion is satisfied. The 
computation of the simulated wave field for a given sound speed model is achieved through 
forward modeling. The update of the sound speed model based on the computed measurement 
mismatch is obtained by solving the corresponding inverse problem. We explain below the 
approach taken in this work to address these two key aspects of the reconstruction process.

G Y Sandhu et alPhys. Med. Biol. 60 (2015) 5381
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3.1. Forward modeling

We assume that the propagation of acoustic waves in the human breast is governed by the 
acoustic wave equation with constant density. Because of the high computation cost of time 
domain modeling and the efficiency of the frequency domain approach for a multi-source 
problem, we model the propagation of ultrasound within the breast in the frequency domain 
using the Helmhotz equation

⎛
⎝
⎜

⎞
⎠
⎟ω ω ω∇ +

( )
( ) = ( )

c
u s

r
r r, , ,2

2

2 (3)

where ∇2 is the Laplacian operator. Equation (3) describes the wave field u at location r origi-
nating from a spatial source s. In the case s is a point source at position rk, it can be expressed 
as ω ω δ( ) = ( ) ( − )s sr r r, k , where δ denotes the delta distribution.

In order to use computer programs to numerically solve the above differential equation, 
we sample the wave field values on an uniform ×m m forward modeling grid. The grid size is 
computed as λ λn/ , where λ is the wavelength at the chosen optimization frequency, and =λn 5 
is the number of grid points per wavelength chosen to balance the computation cost, the qual-
ity of the reconstructed image, and the mitigation of numerical dispersion. Choosing ⩽λn 4 
leads to a complete breakdown of the algorithm as this is a limiting value for our chosen finite 
difference stencil. Choosing a value >λn 5 increases the computation time without providing 
a substantial increase in the quality of the reconstructed image. To compute the wavelength, 
we use the mean sound speed of the water bath as a reference value. The wave field values are 
stacked into an m2 dimensional vector u. Similarly, we define the m2 dimensional vector s that 
has non-zero values only at the grid indices that correspond to the position of the transmitting 
transducer element. The Helmholtz operator that appears in equation (3) is discretized using 
a finite difference stencil whose values are stored in a matrix S with dimensions ×m m2 2. The 
matrix S is large but very sparse. Its entries depend on the assumed sound speed model c and 
the chosen absorbing boundary conditions. In this work, we choose the optimal nine-point 
finite difference stencils detailed in Jo et al (1996) and the absorbing boundary conditions 
exposed in Engquist and Majda (1977). With the above discretization, the Helmholtz equa-
tion can be written in matrix form as

=Su s . (4)

Note that the above equation needs to be solved for each source which we have grouped 
in the source vector s. Since the matrix S does not change unless the sound speed model is 
updated, these systems of equations can be efficiently solved using LU factorization (Marfurt 
1984, Li 2005). Once S has been factored, its LU constituents can be re-used to rapidly solve 
the system of equations corresponding to each source. We note that the solution u of equa-
tion  (4) depends on the source vector s for which we can make an arbitrary initial guess. 
The guess is scaled by a complex scalar using a method to estimate the source signal (see  
section 4.3). The field values u are also scaled by the same factor.

3.2. Inverse problem

To solve the inverse problem for sound speed reconstruction, we use an iterative approach. 
The starting sound speed model ( )c 0  is created using a travel time reconstruction method (Li et 
al 2008a). For each frequency ω, we define a stopping criterion by updating the sound speed 
a configurable number of times. This is based on balancing computation cost with the quality 
of the reconstructed image. The quality of the image is a subjective metric which balances the 

G Y Sandhu et alPhys. Med. Biol. 60 (2015) 5381
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interpretation of the apparent ability of the algorithm to correctly image structures and the 
introduction of noise and artifacts into the reconstructed image. Often times, the quality can 
be improved by taking more iterations at a particular frequency or by incorporating higher 
frequency information. However, there is a point where the improvements in quality by mak-
ing further iterations or moving to higher frequencies are negligible when compared to the 
additional computation cost. An optimal frequency and iteration schedule is a topic of current 
and ongoing investigation.

In the inversion process, we start at the lowest frequency in the set of selected frequencies, 
and then we move to the next frequency until all frequencies have been used. Given a current 
estimate ( )c i  of the sound speed model, we find the gradient of the cost function defined in 
equation (1). We then update the sound speed in the direction of the steepest descent to obtain 
a new estimate ( + )c i 1 . The sound speed update can be written as

α ω= − ∇ ( )( + ) ( ) ( )Ec c c, ,i i i1 (5)

where α is the step size as determined by a line search method (Nocedal and Wright 1999), and 
the gradient ∇ is taken with respect to the sound speed. A derivation of a practical computer 
implementation of the gradient of the cost function is given in Pratt (1999). The gradient is 
then given by

∇ = { }E F vRe ,H (6)

where the back-propagated data residuals = [ ]−v S ê1 H  are multiplied by virtual source terms 
F. The vector ê is the residual mismatch vector e appended with zeros to match the dimen-
sions of S. Also, the j-th column f j of the virtual source matrix F is given by = (−∂ ∂ )cf S u/j j . 
Examples of the cost function gradients are shown in figure 2.

4. Processing of experimental data

In this section, we describe the steps needed for the successful inversion of experimental 
data. The same steps are applied to data acquired by the two considered tomographic ultra-
sound units. These include: computing a low resolution sound speed starting model using ray 
tomography, applying digital signal processing to the raw signals to extract the frequency 

Figure 2. The gradient of the cost function. (a) Gradient for one emitter and one 
receiver. (b) Accumulated gradient for one emitter and all receivers. (c) Accumulated 
gradient for all emitters and all receivers.

G Y Sandhu et alPhys. Med. Biol. 60 (2015) 5381
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components used for the optimization, compensating for the transducer response, and estimat-
ing the unknown source signal.

4.1. Acquisition hardware

Two ultrasound tomography devices were used to gather clinical data. The first device (Duric 
et al 2007), an early prototype developed at the Karmanos Cancer Institute, has a ring array 
transducer with a 100 mm radius, 256 transducer elements, and a signal bandwidth centered 
at 1.5 MHz. The second device (Duric et al 2013), a recent prototype developed by Delphinus 
Medical Technologies, Inc., has a transducer with a 110 mm radius, 2048 transducer elements, 
and a signal bandwidth centered at 2.75 MHz. For further details, see Roy et al (2013). Only 
256 transducer elements were used in this work to facilitate comparison with the older proto-
type and to minimize reconstruction time. The two devices, uniquely different in their manu-
facturing, have different performance properties and provide excellent test cases to assess the 
robustness of the proposed waveform tomography reconstruction scheme.

4.2. Starting model

In order to ensure that the waveform tomography algorithm converges to a solution close to 
the global minimum, an accurate starting sound speed model is needed to avoid cycle skipping 
phase mismatch between the simulated measurement uobs and the experimental measurements 
dobs (Brossier et al 2008). For example, let the true phase of a discrete frequency component 
of the received waveform be ϕ = 0d . If an initial sound speed model c1 predicts a phase ϕ1 such 
that π ϕ π− < ⩽1 , then the algorithm will update the sound speed model to ′c1 in order to mini-
mize the phase mismatch: ϕ ϕ→ d1 . However, if another initial sound speed model c2 predicts 
a phase ϕ2 such that π ϕ π− < ⩽ −3 2 , then the algorithm will update the sound speed model to 
the wrong local minimum ′c2 to minimize the phase mismatch: ϕ ϕ π→ − 2d2 . We generate our 
starting model using the ray tomography method detailed in Li et al (2008a). The travel time 
(or ray) reconstruction algorithm is iterated sufficiently to output a high enough resolution 
image that avoids phase mismatch due to cycle skipping. However, overiteration is avoided 
as it introduces strong ray artifacts which are retained throughout the waveform tomography 
inversion process. Paralleling the need for an accurate starting model, once the inversion pro-
cess begins, each subsequent update of the sound speed needs to adequately avoid the cycle 
skipping problem in order to converge in the direction of the global minimum. This require-
ment becomes stricter as higher frequencies are incorporated into the inversion process.

4.3. Frequency component extraction

The proposed algorithm works on the frequency components extracted from the raw time 
series (figure 3(a)) acquired by the hardware. The raw time series is preprocessed before the 
frequency selection (figure 3(b)). This is achieved by applying the steps below.

Time windowing. The time of first arrival for each waveform is evaluated using an automatic 
travel time estimation method described in Zhang et al (2003). These travel times allow us to 
define windows which extract the primary transmitted portion of the received waveforms and 
reject reflected and multi-scattered signals. This is done to force the algorithm to match the 
primary features of the true sound speed model (Pratt et al 2007). The length of the window is 
chosen so that it includes the contribution of the primary transmitted waveform. Short cosine 
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tapers (≈0.5 μs) are applied to both sides of the window before to avoid leakage in the Fourier 
domain.

Exponential damping. We dampen the tail of the signal for the same reason we window. A 
damping profile of the form τ{ [−( − − ) ]}t t tmax 1, exp /d0  is applied to every waveform as a 
means to further focus the inversion process on information contained in the primary trans-
mitted signal. We use a value of td that begins damping the signal after the main transmitted 
portion of the waveform (≈5 μs after the travel time t0), and a short scaling factor τ (≈1 μs) 
to quickly attenuate the later portion of the signal that is contaminated by non-transmitted 
components.

Waveform selection. A calibration of the ring array transducer (Roy et al 2011) and the deter-
mination of travel time statistical outliers in the clinical data set allow us to detect faulty trans-
ducer elements and discard waveforms that are too noisy to be included in the reconstruction 
process. We use an automated calibration method which estimates the position of the trans-
ducer elements using a travel time measurements done in water bath at controlled temperature. 
The calibration method also analyses the power of the transmitted signals to flag faulty trans-
ducer elements. For example, the transducer element directional beam profiles make small 
angle emitter-receiver contributions unreliable. For this reason, we omit waveforms that do 
not lie within an arc of approximately 270 degrees with respect to the source transducer.

Fourier transformation. The processed waveforms are then Fourier transformed to extract 
the frequency components given as input to the optimization process. A typical magnitude 
spectrum for the new device is shown in figure 3(c). We start the iterative optimization pro-
cedure with the lowest frequency that has enough energy (around 400 kHz for the older unit 
and 500 kHz for the newer unit). We iterate multiple times on that frequency and then move 
to the next frequency using an increment of 30 kHz up to a maximum frequency of 1 MHz. 
Since computation cost is not linearly proportional to the size of mesh, and thus, the chosen 
frequency, the maximum reconstruction frequency of 1 MHz was found to be an appropriate 
maximum frequency since further improvements in the quality of the reconstructed image 
were overshadowed by significant increases in computation cost and model mismatch. The 
chosen optimization process allows us to gradually incorporate shorter wavelength features 
to prevent the algorithm from being stuck in a local minimum. Experiments have shown that 
this optimization schedule performs well across all considered data sets. Note that the cur-
rent transducer ring has not been optimized to operate at such low frequencies. The energy 

Figure 3. Processing of raw ultrasound signal generated by newer prototype. (a) 
Original waveform. (b) Processed waveform. (c) Magnitude spectrum of processed 
waveform.

G Y Sandhu et alPhys. Med. Biol. 60 (2015) 5381
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available in the considered frequency range is significantly lower than what is available near 
the central frequency (figure 3(c)). Thus, further optimization of the acquisition hardware 
holds great promise for even better image reconstruction quality.

Transducer response. For the simulated data set to best match the experimental one, we 
must also take the characteristics of the transducer beam profile into account. This can be 
achieved either by including the transducer response in our propagation model or by modify-
ing the waveforms to best match a simple numerical model that assumes omni-directional 
point sources. For simplicity, we have chosen the latter approach. We normalize the magnitude 
spectrum of both the simulated and experimental data sets. In other words, we only match the 
phase of the frequency components in the inversion process. However, neglecting amplitude 
information may lead to residual artifacts. This is true especially in a propagation medium 
rich with scattering.

Source signal estimation. In order to solve our forward problem, the input signal s must be 
known. We could calibrate our transducers and obtain the signal, but that would add an addi-
tional layer of complexity to our algorithm. In addition, by estimating the source, we provide 
an additional degree of freedom to the inversion problem. For a given sound speed model, the 
estimation of a source signal is a linear estimation task. We need to find the optimal complex 
valued source scaling factor γ such that the simulated and experimental measurements best 
match in a mean squared sense. The optimal value is obtained through orthogonal projection 
(Pratt 1999) and is given by

γ =
d u

u u
.obs

H
obs

obs
H

obs
 (7)

In our case, a single scaling factor is computed by matching the data gathered from all 
emitters. Using this scaling factor, the source vector and field values are scaled to γ→s s, and 

γ→u u, respectively. The reconstruction algorithm alternates between updating the source 
signal using the above scaling factor for a known sound speed model and estimating the sound 
speed model for a given source signal.

5. Results and discussion

In this section, we present numerical, physical breast phantom, and in vivo reconstruction 
results. We also make a comparison of our waveform tomography method to MRI. We high-
light the improvements made upon existing travel time imaging methods and the robustness of 
the proposed algorithm to data acquired by the two considered ultrasound tomography units. 
Note that our goal is not to compare the two units in terms of image reconstruction quality, but 
to demonstrate the applicability of the algorithm to data sets acquired with different devices. 
A detailed discussion on numerical results that includes numerical phantom reconstructions, 
resolution assessment, accuracy analysis, and computational cost can be found in our previous 
work (Li et al 2014).

5.1. Numerical simulation results

A numerical phantom with various lesions of different sizes and sound speeds was recon-
structed using both travel time and waveform tomography methods. The reconstructions along 
with the true model are shown in figure 4. It can be seen that the waveform reconstruction is 
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nearly identical to the true model while the travel time reconstruction is smooth with diffuse 
boundaries. This is due to the fact that ray tomography methods only partially compensate for 
refraction and do not model diffraction effects. Critical diagnostic information contained in 
the morphological features of tumors is unveiled using the waveform tomography reconstruc-
tion method. For example, the margins of the star shaped lesion are not visible with the travel 
time reconstruction.

5.2. Physical phantom results

A physical tissue mimicking breast phantom, built by Dr E Madsen of the University of 
Wisconsin, was used to assess the real-world reconstruction ability of our algorithm. It has 
been previously used in the studies presented in Duric et al (2007) and Li et al (2008a). An 
x-ray computed tomography (CT) image of the phantom is shown in figure 5(c). The phantom 
has scanning characteristics of a highly scattering predominantly parenchymal breast, and it 
has two embedded high speed tumors and two low sound speed fat inclusions which are sur-
rounded by a cascading subcutaneous fat layer that is further surrounded by a layer of skin. 
The travel time and waveform tomography reconstruction results of data obtained from the old 
prototype are shown in figure 5. An x-ray computed tomography (CT) scan is also shown in 
figure 5(c) to highlight concordant findings. Note that the phantom images have been manu-
ally masked so that the reader can focus on the contained lesions instead of artifacts outside 
the field of view. Also, in contrast to in vivo patients scans, the temperature of the water bath 
was approximately 22 °C.

The waveform tomography reconstruction method show significant improvements in the 
morphological quality of the reconstructed image over the method based on travel times. For 
example, the inclusion at 1 o’clock is clearly visible in the higher resolution waveform image 
while it is barely visible in the ray tomography image. In addition to finding smaller lesions, 
the shape and margins of the larger lesions in the waveform image are better delineated and 
match more closely the CT reconstruction. Since the shape and margins of tissues, including 
tumors, cysts, and parencyhma have critical diagnostic value in the assessment of disease 
(Stavros et al 1995), an observer would be able to make a more accurate diagnosis with the 
additional information present in the waveform reconstruction.

We assess the accuracy of the reconstructed sound speed values by selecting a region of 
interest (ROI) around the structures labeled in figure 5(c). Each ROI is contoured to match 
the morphological feature of the imaged lesion. For an ROI of N pixels, we obtain the mean 

Figure 4. Reconstruction of numerical phantom. (a) Ray tomography reconstruction. 
(b) Waveform tomography reconstruction. (c) True Model.
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sound speed μ = ∑ ( )=N c i1/ i
N

1  and unbiased variance σ μ= ( − ) ∑ [ ( ) − ]=N c i1/ 1 i
N2

1
2. We 

then compare the obtained sound speeds to reference values reported by the manufacturer. 
Table 1 summarizes these results. In most cases, the reconstructed sound speed values are very 
similar, especially within the error of the measurements, and close to the reference values. 
However, there was a significant lapse in time between the creation of the phantom and its 
scanning using our older ultrasound tomography unit. It is likely that the phantom degraded 
over that time. Thus, the reference values are not reliable estimates of the true sound speed 
of the phantom at the time of scanning. What is of importance is the trend in sound speed. 
For example, the large tumor should have greater sound speed than the small tumor. We can 
see that both the waveform and travel time methods agree with these trends. The recovered 
sound speed of the small tumor and fat deposit is most problematic. Due to their small size, 
we approach the resolution limitations of waveform tomography when the highest recon-
structed frequency is 1 MHz. Due to volume averaging effects and convergence issues, the 
reconstructed sound speeds of the lesions are averaged with the adjacent glandular tissue 
leading to skewed sound speed values. By looking at the values in table 1, we see that the 
waveform reconstructions have significant variance in the reported sound speed values. This 
could be reduced and smoothed by incorporating a regularization penalty to the cost function. 
For example, a Tikhonov penalty would help balance data fitting and image roughness by 
prohibiting updates which significantly change the sound speed (Golub et al 1999).

Artifacts are present in both the travel time and waveform reconstruction. The most signifi-
cant artifact in the travel time sound speed images are streaks or ray artifacts arising around 
regions of higher tissue contrast. This is seen to some degree in the phantom reconstruction 
in figure 5(a), but are more clearly seen in the in vivo reconstructions in figures 6 and 7 (top 
row). The ray artifacts are distracting because they mask the true morphology contained in the 
margins of the tumor.

The waveform results contain other artifacts. They arise from the hardware, phase mis-
matching, and the inaccuracy of the starting model. The waveform images reconstructed by 
the older prototype have significantly more artifacts than the newer prototype. The artifacts 
are readily seen within the regions corresponding to water in figures 6 and 7 (bottom rows). 
This can lead to problems in imaging the skin contour of the breast. The artifacts are present 

Figure 5. Reconstruction of physical breast phantom using older ultrasound tomography 
unit. Gray scale values in the sound speed images correspond to a range of 1475–1550 
m s−1. Brighter areas correspond to higher sound speed. (a) Ray tomography method. 
(b) Waveform tomography method. (c) Computed tomography reference with arrow 
overlays labeling structures: (1) small tumor, (2) large fat deposit, (3) large tumor, (4) 
small fat deposit, (5) glandular tissue, (6) subcutaneous fat layer.

(a) (b)

1

2

3

4

5

6

(c)

G Y Sandhu et alPhys. Med. Biol. 60 (2015) 5381



5392

due to defective transducer elements whose corrupted data is discarded by the calibration pro-
cess (see section 4.3) which discards noisy waveforms whose time-of-flight cannot be found 
using an automatic process. Due to poor signal quality, other problems exist near the chest 
wall or when the imaging ring is filled to capacity. Also, the presence of more signal energy 
at 400 kHz and the different acquisition hardware alters the overall perception of the old pro-
totype images. A phase mismatch also results in artifacts within the reconstructed image. For 
example, the waveform phantom image in figure 5(b) contains aberrations which look like 
false contours or clouds on the outer portions of the cascading skin layer (11, 1, and 6 o’clock 

Table 1. Comparison of reference sound speed values (m s−1) of travel time and 
waveform tomography reconstructions.

Structure Reference values
Travel time 
rec. (μ σ± )

Waveform 
Rec. (μ σ± )

Large tumor 1559 ±1551 10 ±1551 5
Small tumor 1549 ±1542 2 ±1535 3
Large fat deposit 1470 ±1501 10 ±1490 9
Small fat deposit 1470 ±1524 3 ±1511 4
Glandular tissue 1515 ±1528 3 ±1521 3

Note: Values are reported using the mean sound speed μ in the ROI and the corresponding stand-
ard deviation σ.

Figure 6. Comparison of travel time (top row) and waveform (bottom row) 
reconstruction methods using older ultrasound tomography unit. Gray scale values in 
the sound speed images correspond to a range of 1400–1575 m s−1. Brighter areas 
correspond to higher sound speed. (a) Complex parenchyma shape. (b) 1.5 cm tumor. 
(c) 4 cm tumor (1 o’clock) and parenchyma (9 o’clock).

(a) (b) (c)
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positions). They arise from a phase offset induced on the reconstructed wavelets. This phase 
mismatch occurs as a result of the impedance mismatch between the water and the outer skin 
layer of the tissue mimicking breast phantom and the finite vertical dimension of the ultra-
sound transducer which confuses the origins of received signals from the sloping edges of the 
insonified object. Problems pertaining to the imaging of the outer skin is not as important as 
the success of imaging clinically relevant features (tumors, cysts, parenchmya, etc) which are 
better resolved by using the waveform technique. Ray artifacts inherited from the travel time 
starting model also corrupt the waveform images. An example is seen in figure 6(a). This issue 
will be addressed in future work.

5.3. In vivo results

The usefulness of the waveform tomography method is most clearly seen in the improve-
ments made in imaging the sound speed of in vivo structures. To highlight the robustness of 
the method, we present images reconstructed from data acquired by both the old and new 
ultrasound tomography units. These reconstructions include examples of the bulk breast tis-
sue and parenchyma, small tumors, and large tumors. Note that each reconstructed image 
corresponds uniquely to a different patient. We also demonstrate the accuracy of our in vivo 
sound speed reconstructions by imaging a saline breast implant with known sound speed. 
Last, we show the validity of our waveform tomography method by demonstrating concor-
dant findings with MRI.

Figure 7. Comparison of travel time (top row) and waveform (bottom row) 
reconstruction methods using newer ultrasound tomography unit. Gray scale values 
in the sound speed images correspond to a range of 1400–1575 m s−1. Brighter areas 
correspond to higher sound speed. (a) Very fine parenchyma patterns. (b) 1 cm tumor 
(10 o’clock). (c) 4 cm tumor (3 o’clock).

(a) (b) (c)
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The sound speed reconstructions of data recorded by the older prototype are shown in 
figure 6. The top row corresponds to the travel time reconstruction method while the bottom 
corresponds to the waveform method. In figure 6(a), we see an example of parenchymal tissue 
(white) embedded in fat (black). Improvements are made with the waveform reconstruction 
(bottom row). The cascading layers of the parenchymal tissue are revealed with great clarity 
in the waveform image where only a fuzzy image marred with ray artifacts is revealed by the 
travel time reconstruction method (top row). In addition, ray artifacts are clearly seen in the 
travel time reconstructions. In figures 6(b) and (c), we see examples of a smaller (≈1.5 cm 
at 6 o’clock) and larger (≈4 cm at 1 o’clock) tumors, respectively. As stated before, many 
structures in the breast can be uniquely identified by their sound speed. However, when deal-
ing with structures with similar sound speed, the improvements made in the delineating the 
margins of unknown breast structures are of utmost importance (Stavros et al 1995). These 
margins facilitate the differentiation of parencyhma and other breast structures from malig-
nant and benign masses. The improvements made with the waveform reconstruction allows an 
observer to better classify the unknown lesions as tumors when, for example, an identification 
of parenchyma might have resulted from the travel time reconstruction image.

The sound speed reconstructions of data recorded by the newer prototype is shown in  
figure 7. In figure 7(a), we see another example of breast parenchyma. Unlike the big cascad-
ing layers in figure 6(a), figure 7(a) shows a patient with very fine parenchymal strands. When 
compared to the ray tomography reconstruction in figure 7, which only has a faint hint of some 
of these detailed structure, the delineation of these fine strands is a testament to the resolv-
ing power of waveform tomography. In figures 7(b) and (c), we see examples of a smaller  
(≈1 cm at 9 o’clock) and larger (≈4 cm at 3 o’clock) tumors, respectively. As was stated before, 
a proper reconstruction of the margins of a tumors aids in the best identification of unknown 
masses. Note the very fine structures resolved in all the cases shown in figure 7. From figures 6 
and 7, it can be seen that the sound speed of waveform reconstructions tend to be lower in 
fatty regions while being accentuated in tumors and parenchyma. As in section 5.2, this can 
partially be explained by volume averaging effects and convergence issues. An explicit com-
parison of waveform and ray sound speeds is shown in figure 8 where a vertical line profile has 
been taken through the tumor in figure 7(c). From the profiles, it can be seen that ray tomog-
raphy tends to overestimate fat sound speeds while underestimating tumor sound speeds. In 
addition, the improvements in resolution are apparent through the increased sharpness of the 
edge response of the line profiles.

In section 5.2, we presented quantitative sounds speed measurements for a tissue mimick-
ing phantom. We demonstrate the in vivo accuracy of quantitative sound speed measurements 
by imaging a saline breast implant as shown in figure 9. Saline breast implants contain an 
outer silicone shell filled with a sterile saline solution (US FDA 2014). Typical saline is com-
posed of 0.9% NaCl solution. Using an empirical formula (Wilson 1960), we calculated the 
sound speed of the saline breast implant assuming a body temperature of 37 °C, a salinity of 
0.9%, and a pressure of 1 atm to predict a sound speed of 1535 m s−1. Drawing a 25 mm radius 
circular ROI within the center of the implant gives an average sound speed μ with error σ of 

±1533 3 m s−1 and ±1528 1 m s−1 for waveform and travel time reconstructions, respectively. 
Thus, we see that sounds speed of the breast implant is fairly uniform across measurements 
from three different modalities. This should give some verification to the quantitative capabili-
ties of waveform tomography sound speed imaging and clear up some of the inconsistencies 
in the measured sound speed values reported in section 5.2.

In order to verify morphological comparison, we also present a corresponding MRI slice to 
the image of very fine parenchymal structures in figure 7(a). This is seen in figure 10. Note that 
the gray scale values of the sound speed reconstruction have been inverted to match the gray 
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scale convention of the T1 weighted MRI image. Also, it is hard to perfectly register MRI and 
our ultrasound tomography images due to the differences in the data acquisition procedure. 
For example, the breast is freely suspended in air during MRI acquisition. From figure 10, we 
see many concordant findings between our waveform tomography sound speed method and 
that of MRI. In particular, the x-shaped lesions at 9 o’clock is nearly identical in both images 
and the general parenchymal patterns on the right hand side of the images are similar.

6. Conclusions

We have developed and presented an ultrasound tomography algorithm to estimate the sound 
speed of breast tissue to aid with the detection and diagnosis of breast cancer. The adopted 
method is based on the principles of full waveform inversion and operates in the frequency 

Figure 8. Vertical line profile through the tumor in figure 7(c).

Figure 9. Saline breast implant reconstructions. Gray scale values in the sound speed 
images correspond to a range of 1450–1550 m s−1. Brighter areas correspond to higher 
sound speed. (a) Waveform tomography method. (b) Travel time tomography method.

(a) (b)
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domain. The robustness of the scheme has been demonstrated using carefully processed data 
sets obtained from different ultrasound tomography devices with ring transducers. Our recon-
struction results using a physical tissue mimicking breast phantom and in vivo data sets have 
shown that the proposed method is a marked improvement over ray tomography. The apparent 
improved contrast, better resolution, and more accurate margin delineation have the potential 
to greatly increase the clinical value of breast sound speed images. Furthermore, by comparing 
our method to MRI, we demonstrate concordant findings of very fine parenchymal structures. 
Current research is focusing on optimizing the algorithm, reducing the reconstruction time, 
and improving the reconstruction accuracy by reducing artifacts, investigating a more optimal 
transducer design, and using more transducers in the reconstruction process. In addition, we 
are investigating reconstruction of attenuation via the inversion of a complex valued sound 
speed. The clinical implications of sound speed imaging derived from waveform tomography 
will be discussed in a future paper.

Acknowledgments

This work was partially funded by the National Institutes of Health (NIH) through National 
Cancer Institute grants R43CA171601 and R44CA165320. Neb Duric has financial inter-
ests in Delphinus Medical Technologies, Inc. Potential conflicts are managed by Wayne State 
University.

References

Aki K and Richards P G 2002 Quantitative Seismology vol 1 (San Francisco, CA: Freeman)
Borup D T, Johnson S A, Natterer F, Olsen S C, Wiskin J W, Wubeling F and Zhang Y 1999 Apparatus 

and method for imaging with wavefields using inverse scattering techniques US Patent 6,005,916

Figure 10. Comparison of waveform tomography reconstruction method using new 
ultrasound tomography unit to T1 weighted MRI. Gray scale values in the sound speed 
image have been inverted to match the gray scale convention of T1 MRI. The gray scale 
corresponds to a range of 1575–1400 m s−1. (a) Waveform tomography sound speed 
reconstruction. (b) T1 weighted MRI.

(a) (b)

G Y Sandhu et alPhys. Med. Biol. 60 (2015) 5381



5397

Brossier  R, Virieux  J and Operto  S 2008 Parsimonious finite-volume frequency-domain method for 
2-dp–sv-wave modelling Geophys. J. Int. 175 541–59

Duric N, Littrup P, Poulo L, Babkin A, Pevzner R, Holsapple E, Rama O and Glide C 2007 Detection 
of breast cancer with ultrasound tomography: first results with the computed ultrasound risk 
evaluation (cure) prototype Med. Phys. 34 773–85

Duric N et al 2013 Breast imaging with the softvue imaging system: first results SPIE Medical Imaging 
Int. Society for Optics and Photonics p 86750K

Engquist B and Majda A 1977 Absorbing boundary conditions for numerical simulation of waves Proc. 
Natl Acad. Sci. 74 1765–6

Golub G H, Hansen P C and O’Leary D P 1999 Tikhonov regularization and total least squares SIAM J. 
Matrix Anal. Appl. 21 185–94

Greenleaf  J F, Johnson  S and Bahn  R C 1977 Quantitative cross-sectional imaging of ultrasound 
parameters Ultrasonics Symp. IEEE pp 989–95

Huang  L, Lin  Y, Zhang  Z, Labyed  Y, Tan  S, Nguyen  N, Hanson  K, Sandoval  D and Williamson  M 
2014 Breast ultrasound waveform tomography: using both transmission and reflection data, and 
numerical virtual point sources SPIE Medical Imaging Int. Society for Optics and Photonics p 
90400T

Jo C H, Shin C and Suh J H 1996 An optimal 9-point, finite-difference, frequency-space, 2-d scalar wave 
extrapolator Geophysics 61 529–37

Li  C, Duric  N and Huang  L 2008a Clinical breast imaging using sound-speed reconstructions of 
ultrasound tomography data Medical Imaging Int. Society for Optics and Photonics p 692009

Li C, Duric N and Huang L 2008b Comparison of ultrasound attenuation tomography methods for breast 
imaging Medical Imaging Int. Society for Optics and Photonics p 692015

Li  C, Sandhu  G S, Roy  O, Duric  N, Allada  V and Schmidt  S 2014 Toward a practical ultrasound 
waveform tomography algorithm for improving breast imaging SPIE Medical Imaging Int. Society 
for Optics and Photonics p 90401P

Li  X S 2005 An overview of SuperLU: algorithms, implementation, and user interface ACM Trans. 
Math. Softw. 31 302–25

Marfurt K J 1984 Accuracy of finite-difference and finite-element modeling of the scalar and elastic 
wave equations Geophysics 49 533–49

Natterer F 2008 Acoustic mammography in the time domain Technical Report University of Münster, 
Germany

Nocedal J and Wright S J 1999 Numerical Optimization (New York: Springer)
Pratt R G, Huang L, Duric N and Littrup P 2007 Sound-speed and attenuation imaging of breast tissue 

using waveform tomography of transmission ultrasound data Medical Imaging Int. Society for 
Optics and Photonics p 65104S

Pratt R G 1999 Seismic waveform inversion in the frequency domain, part 1: theory and verification in 
a physical scale model Geophysics 64 888–901

Roy O, Jovanovic I, Duric N, Poulo L and Vetterli M 2011 Robust array calibration using time delays 
with application to ultrasound tompography SPIE Medical Imaging vol 7968

Roy O, Jovanović I, Hormati A, Parhizkar R and Vetterli M 2010 Sound speed estimation using wave-
based ultrasound tomography: theory and GPU implementation SPIE Medical Imaging Int. Society 
for Optics and Photonics p 76290J

Roy O, Schmidt S, Li C, Allada V, West E, Kunz D and Duric N 2013 Breast imaging using ultrasound 
tomography: from clinical requirements to system design Int. Ultrasonics Symp. IEEE  
pp 1174–7

Schmidt S, Duric N, Li C, Roy O and Huang Z F 2011 Modification of kirchhoff migration with variable 
sound speed and attenuation for acoustic imaging of media and application to tomographic imaging 
of the breast Med. Phys. 38 998–1007

Song Z M, Williamson P R and Pratt R G 1995 Frequency-domain acoustic-wave modeling and inversion 
of crosshole data: part II-inversion method, synthetic experiments and real-data results Geophysics 
60 796–809

Stavros  A T, Thickman  D, Rapp  C L, Dennis  M A, Parker  S H and Sisney  G A 1995 Solid breast 
nodules: use of sonography to distinguish between benign and malignant lesions Radiology  
196 123–34

Tarantola  A 1984 Inversion of seismic reflection data in the acoustic approximation Geophysics  
49 1259–66

G Y Sandhu et alPhys. Med. Biol. 60 (2015) 5381

http://dx.doi.org/10.1111/j.1365-246X.2008.03839.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03839.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03839.x
http://dx.doi.org/10.1118/1.2432161
http://dx.doi.org/10.1118/1.2432161
http://dx.doi.org/10.1118/1.2432161
http://dx.doi.org/10.1073/pnas.74.5.1765
http://dx.doi.org/10.1073/pnas.74.5.1765
http://dx.doi.org/10.1073/pnas.74.5.1765
http://dx.doi.org/10.1137/S0895479897326432
http://dx.doi.org/10.1137/S0895479897326432
http://dx.doi.org/10.1137/S0895479897326432
http://dx.doi.org/10.1190/1.1443979
http://dx.doi.org/10.1190/1.1443979
http://dx.doi.org/10.1190/1.1443979
http://dx.doi.org/10.1145/1089014.1089017
http://dx.doi.org/10.1145/1089014.1089017
http://dx.doi.org/10.1145/1089014.1089017
http://dx.doi.org/10.1190/1.1441689
http://dx.doi.org/10.1190/1.1441689
http://dx.doi.org/10.1190/1.1441689
http://dx.doi.org/10.1190/1.1444597
http://dx.doi.org/10.1190/1.1444597
http://dx.doi.org/10.1190/1.1444597
http://dx.doi.org/10.1118/1.3539552
http://dx.doi.org/10.1118/1.3539552
http://dx.doi.org/10.1118/1.3539552
http://dx.doi.org/10.1190/1.1443818
http://dx.doi.org/10.1190/1.1443818
http://dx.doi.org/10.1190/1.1443818
http://dx.doi.org/10.1148/radiology.196.1.7784555
http://dx.doi.org/10.1148/radiology.196.1.7784555
http://dx.doi.org/10.1148/radiology.196.1.7784555
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1190/1.1441754


5398

US FDA 2014 Saline-filled breast implants (www.fda.gov/MedicalDevices/ProductsandMedical 
Procedures/ImplantsandProsthetics/BreastImplants/ucm258564htm)

Virieux  J and Operto  S 2009 An overview of full-waveform inversion in exploration geophysics 
Geophysics 74 WCC1–26

Wilson W D 1960 Equation for the speed of sound in sea water J. Acoust. Soc. Am. 32 1357
Wiskin J, Borup D, Johnson S, Berggren M, Abbott T and Hanover R 2007 Acoustical Imaging (Berlin: 

Springer) pp 183–93
Zhang H, Thurber C and Rowe C 2003 Automatic p-wave arrival detection and picking with multiscale 

wavelet analysis for single-component recordings Bull. Seismol. Soc. Am. 93 1904–12

G Y Sandhu et alPhys. Med. Biol. 60 (2015) 5381

http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ImplantsandProsthetics/BreastImplants/ucm258564htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ImplantsandProsthetics/BreastImplants/ucm258564htm
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1121/1.1907913
http://dx.doi.org/10.1121/1.1907913
http://dx.doi.org/10.1785/0120020241
http://dx.doi.org/10.1785/0120020241
http://dx.doi.org/10.1785/0120020241

