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ABSTRACT 
 

Breast ultrasound tomography is a rapidly developing imaging modality that that has the potential to impact breast 
cancer screening and diagnosis. A new ultrasound breast imaging device (CURE) with a ring array of transducers has 
been designed and built at Karmanos Cancer Institute, which acquires both reflection and transmission ultrasound 
signals. To extract the sound-speed information from the breast data acquired by CURE, we have developed an iterative 
sound-speed image reconstruction algorithm for breast ultrasound transmission tomography based on total-variation 
(TV) minimization. We investigate applicability of the TV tomography algorithm using in vivo ultrasound breast data 
from 61 patients, and compare the results with those obtained using the Tikhonov regularization method. We 
demonstrate that, compared to the Tikhonov regularization scheme, the TV regularization method significantly improves 
image quality, resulting in sound-speed tomography images with sharp (preserved) edges of abnormalities and few 
artifacts. 
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1. INTRODUCTION 
 
Recent studies have demonstrated the effectiveness of ultrasound tomography imaging in detecting breast cancer1-8. 
There are basically two types of tomography methods. The first one is based on ray theory, which is fast and stable. The 
second one uses inverse scattering, which is much more time consuming but has relatively higher resolution3-4,9-10. For 
ray-theory based breast ultrasound tomography, there are primarily two modes. The first mode uses the time-of-flight 
(TOF) measurements of the transmission ultrasound signals to reconstruct the sound-speed distribution within the breast. 
The second one is based on attenuation measurements and reconstructs the distribution of energy absorption and 
scattering within the breast. This study focuses on the first mode. In most applications of ultrasound tomography to in 
vivo breast imaging, the image quality is insufficient. This is mainly due to the shortcoming of non-iterative straight-ray 
mathematical model employed. Based on Fermat’s Principle and Snell’s Law, the ultrasound ray path in an 
inhomogeneous medium (such as breast tissue) is not straight, which makes the inverse problem nonlinear. The first 
bent-ray ultrasound tomography was proposed by Schomberg in 197811. However, applications of bent-ray algorithm 
were limited to numerical simulations and phantom studies thereafter12-14.     
 
To record both the transmitted and reflected ultrasound energy, a clinical ultrasound ring array scanner for breast cancer 
diagnosis, termed Computed Ultrasound Risk Evaluation (CURE), was designed and built at Karmanos Cancer Institute 
(KCI), Detroit, MI7,8. Since most abnormal breast lesions have higher sound-speed than normal breast tissue15, one of the 
primary purposes of CURE is to be able to accurately and efficiently produce images of breast sound-speeds based on 
the ultrasound signals that are transmitted through the breast tissue to the other side of the ring array. Therefore, a robust 
ultrasound sound-speed tomography algorithm is critical to ensure a high-resolution sound-speed tomogram of the breast 
data. 
 
In this study, we present an iterative bent-ray ultrasound tomography method to extract sound-speed information from in 
vivo ultrasound breast data acquired by CURE. We investigate the use of total variation (TV) to regularize the uneven 
ray coverage, which leads to a non-quadratic minimization problem. The TV method was introduced by Rudin et al in 
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1992, and was widely used in inverse problems in image processing (denoising, restoration and zooming) since then. 
While most of the regularization methods (such as Tikhonov regularization) tend to smooth reconstructed images, TV 
regularization preserves edge information. We apply limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 
method to solve the optimization problem16, and apply the method to sixty-one in vivo breast datasets acquired by 
CURE.  

 
2. MATERIALS AND METHODS 

 
2.1 Data acquisition 
 
The CURE device is a clinical prototype capable of near real time data acquisition. It is integrated into the normal patient 
flow of the Comprehensive Breast Center at Karmanos Cancer Institute. A detailed description of CURE was presented 
by Duric et al.8 while a brief overview is given here.  
 
The 20-cm-diameter CURE ring array consists of 256 equally-spaced and water-coupled transducers, immersed in a 
water tank. During the scan, the patient is positioned prone with the breast situated through a hole in the canvas bedding. 
The breast is suspended in water, inside the imaging tank, and encircled by the ring. A motorized gantry translates the 
ring in the vertical direction, starting from the chest wall through the breast nipple region. One complete scan takes 
approximately 1 minute, and consists of 50-80 slices of data per patient depending on the size of the breast.  
 
During scanning at each step, each of  256 transducer elements sequentially emits a fan beam of ultrasound signals with 
a central frequency of 1.5 MHz toward the opposite side of the ring. The forward scattered (transmission) and 
backscattered (reflection) ultrasound signals are subsequently recorded by all 256 elements at a sampling rate of 6.25 
MHz. The data are used to reconstruct images of acoustic properties.  
 
2.2 Ultrasound Sound-speed Tomography 
 
Based on the Radon transform, classical tomography reconstruction using filtered back-projection (FBP) cannot take ray 
bending into account. However, according to Fermat’s Principle and Snell’s Law, the ultrasound ray path in an 
inhomogeneous medium (such as breast tissue) is not straight, which makes the inverse problem nonlinear. We study an 
iterative bent-ray ultrasound tomography algorithm with a TV regularization term for ultrasound transmission sound-
speed tomography. To solve the bent-ray ultrasound tomography problem, a regular rectangular grid model is created on 
the image plane, whose boundaries enclose the transducer ring. During each iteration, both the forward problem and the 
inverse problem are solved, and the sound-speed model is updated for the successive iterations. Details about our 
methods to solve forward and inverse problems are described in the following.  

 
Forward Modeling 
 
2-D ultrasound wave propagation is governed by the eikonal equation 

                                            )()/1()/()/()( 222222
yx ssvyTxTE +==∂∂+∂∂=∇ ,                                       (1) 

where T is the travel-time, v is the sound-speed, and ),( yx ss  is the slowness vector of the ultrasound wave that is 

defined as the inverse of the sound speed. In eq. (1), .constE =  describes the ‘wavefronts’, and ‘rays’ are defined as 
the orthogonal trajectories of these wavefronts. 
 
In this paper, eq. (1) is solved using Klimes’ grid travel-time tracing technique (1996), which has been proven to be both 
accurate and computationally efficient. Klimes’ method calculates the slowness vector ),( yx ss  and travel-time T at the 

center point of each grid cell simultaneously with at least second-order accuracy in space. ),( yx ss  and T at an arbitrary 
point within the grid model are interpolated by a 2-D fourth-order Lagrange interpolation algorithm. An ultrasound ray is 
backprojected from a receiver to the transmitter in the following way: 
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(1) Starting from the receiver location ),( rr yx , the ray segment within the current grid cell istraced along the direction 

),(
rr yx ssG −−=

−

 until it intercepted the cell boundary at point ),( ii yx ; 

(2) Update 
−

G  to be the negative slowness vector of the intercept point ),(
ii yx ssG −−=

−

, and trace the ray segment 
within the next adjacent cell; 
(3) Repeat (2), until the current ray reaches the transmitter within a certain tolerance. 
 
Assuming that the slowness is constant within each grid cell, the bent ray path can be traced using the above procedure 
accurately.  

 
Inverse Problem 
 
Let itΔ  be the difference between the ith picked time-of-flight for the recorded ultrasound data and the ith calculated 
TOF for the sound-speed model, our inverse problem can be described as follows 

                                                                     ∑ Δ=Δ
M

j
ijij tsl ,                              (2) 

where jsΔ  is the slowness perturbation for the jth grid cell, which needs to be inverted, and ijl  is the ray length of the ith 
ray within the jth cell. Equation (2) can be expressed as a matrix form  

 
                                                                         TSL Δ=Δ .                                      (3) 

 
This is a nonlinear inverse problem due to ray bending. The objective function for the inverse problem can be described 
as in eq. (4)  

              ))(||(||minarg 2
λλ λ STVTSLf

S
Δ+Δ−Δ=

Δ
,                        (4) 

with 

                                                                  2( ) | ( ) |TV S S dxdyλ λΔ ≡ ∇ Δ∫∫ .                           (5) 

 
However, ))( λSTV Δ  is not differentiable at zero. To avoid this problem, a small positive constant value is added to the 
equation (6) 

                                                               ∫∫ +Δ∇=Δ dxdySSTV 22|)(|)( βλλ .                        (6) 

The quantity 22|)(| βλ +Δ∇ S  is known as the gradient magnitude. This provides us with the information about the 

discontinuities in the image. In eq. (4),λ  is the regularization parameter that balances the roughness of the inverted 
results and the fit to the data. 
 
To avoid direct computation of Hessian matrices, we apply the quasi-Newton algorithm—limited memory Bryoyden-
Fletcher-Goldfarb-Shanno (LBFGS) method to iteratively solve the nonlinear problem in eq. (4) for SΔ , starting with a 
homogeneous sound-speed model (algorithm available at: http://www.alglib.net/optimization/lbfgs.php). The LBFGS 
method has been proven to be both time and memory efficient16. After each iteration, an updated sound-speed model is 
obtained by adding the solution SΔ  to the initial model. Rays are traced on the updated model using the method 
discussed in the forward modeling section, and the TOF data are updated at the same time.  The iteration continues until 
the TOF misfit TΔ  is not longer significantly improved from the previous iteration, which means the solutions have 
converged. The regularization parameter λ  is determined using L-curve technique (refer to Hansen’s paper for details, 
available at http://www.math/sintef.no/vskoler/2005/notes/Lcurve.pdf). 

 

Proc. of SPIE Vol. 7265  726506-3

Downloaded from SPIE Digital Library on 21 Jun 2012 to 146.9.105.5. Terms of Use:  http://spiedl.org/terms



1.6

1.55 -

1.5

=
.g. 1.45 -

.4-

1.35 -

1.3

1.6

1.55

'.5
S

1.45

1.4

1.35

1.3

50

50

100

100

150 200

7

---- \ I -

"4

150 200

 

 

3. RESULTS 
 

We apply our TV tomography algorithm to a total of 61 in vivo breast datasets. Uncertainties in the sound-speed 
tomograms are simply estimated by calculating the standard deviation in reconstructions for water shot data. Water shot 
data are recorded right before each patient scan, with only water in the tank. Sixteen reconstructions with 1 mm by 1 mm 
grid cell for water shot data are used to do the analysis. The typical standard deviation for the sound-speed values in 
water is 4 m/s per pixel. 

 
Our clinical protocol is designed to include a sample of patients with a wide variety of breast types, ranging from fatty to 
dense on the BI-RADS categories 1-4. The sound-speed tomograms are reviewed and classified by radiologists.  

 
3.1 Total-variation (L1-norm)) regularization vs. Tikhonov (L2-norm) regularization  
 
We compare the TV sound-speed tomograms (with three iterations) to those reconstructed with the classic Tikhonov 
regularization (also with three  iterations). One example is presented in Fig. 1, where (a)-(c) are TV tomogram, 
Tikhonov tomogram, and sound-speed cross-sections along the solid in (a) (upper panel) and along the dashed line in (b) 
(lower panel), respectively. The breast in Fig. 1 has a 55 x 47 x 37 mm invasive ductal carcinoma at 12:00 to 1:00 
o’clock. Note that the TV method not only preserved sharper edges of the lesion, but also damped out the “ray” artifacts 
much better than the Tikhonov method. Two tomograms in Fig. 1 are shown in the same absolute sound-speed scale 
ranging from 1350 m/s to 1600 m/s. 

          
                          (a)  TV reconstruction                             (b) L2-norm reconstruction 

 
(c) Cross sections along the solid line in (a) and dashed line in (b) 

Figure 1.Comparison of  TV (L1-norm) reconstruction in (a) with classic Tikhonov (L2-norm) reconstruction in (b). The 
breast has a 55 x 47 x 37 mm invasive ductal carcinoma at 12:00-1:00 o’clock. The sound-speed scale in (a) and (b) is 
from 1350 m/s to 1600 m/s. Figures in (c) show cross sections along the solid line in (a) (upper panel) and the dashed 
line in (b) (lower panel). The arrows point to the locations where the TV reconstruction preserves a better/sharper edge 
of the lesssion. 
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3.2 Bent-ray inversion vs. straight-ray inversion  
 
We also compared TV bent-ray sound-speed tomograms for in vivo data with their straight-ray counterparts. Our 
analysis shows that, for our selected patients, the bent-ray approach led to sharply improved image quality. An in vivo 
example is used to illustrate this improvement. 

 
Figure 2 is an example demonstrating the improvements of the TV bent-ray reconstruction over a straight-ray 
reconstruction. Figure 2a is the TV bent-ray inversion (third iteration), Fig. 2b is a straight-ray inversion result, and (c) is 
sound-speed cross-sections along the solid line in 2a (upper panel) and the dashed line in 2b (lower panel). The arrows 
indicate the lesion location. According to clinical examinations (mammogram, ultrasound and pathology), the breast 
shown in Fig. 2 has a 1.6 x 1.1 x 1.8 cm big fibroadenoma at 2:00 o’clock. Our radiologist is able to pick it up in the TV 
bent-ray image (indicated by the arrow in Fig. 2a), while it is much less obvious in the straight-ray inversion (Fig. 2b). 
Both the TV bent-ray tomogram and the straight-ray tomogram in Fig. 2 are shown in the same absolute sound-speed 
scale from 1350 m/s to 1550 m/s. Sound-speeds of the lesions are also illustrated in their cross sections (Fig. 2c) where 
the lesions are indicated by the arrows.  

 

           
                                (a) Sound-speed tomograms using bent-ray          (b) Sound-speed tomograms using  

                             algorithm (third iteration).                            straight-ray algorithm. 

 
(c) Cross sections along the solid line in (a) and dashed line in (b). 

Figure 2. Sound-speed tomograms for a dense breast with a 16 x 11 x 18 mm fibroadenoma at 2:00 o’clock. The sound-
speed scale in (a) and (b) is from 1350 m/s to 1550 m/s. Cross sections in (c) demonstrate that the TV reconstruction 
method give a clear high-sound-speed lesion that is not clearly shown in the straight-ray inversion result. 
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3.3 Fatty tissue vs. breast parenchyma 
 
Breast density is a known risk factor for developing breast cancer. Breast density is determined by the ratio of breast 
parenchyma to fatty tissue within the breast. Separation of fatty tissue from breast parenchyma would be a significant 
step for breast density evaluation using our sound-speed tomograms. Examples of sagittal views of four breasts within 
the BI-RAD categories 1-4 are presented in Fig. 3, where the breast parenchyma (in light color) is clearly discernible 
from fatty tissue (in dark color). These sagittal sound-speed tomograms are generated by reslicing the coronal sound-
speed stacks in ImageJ, and illustrated in the same absolute sound-speed scale from 1350 m/s to 1550 m/s. 

 
                  Fatty            Scattered        Heterogeneous        Dense 

             
Figure 3. Sagittal views constructed from our sound-speed image stacks, for breasts of different densities corresponding to 

BI-RADS categories 1-4 from the left panel to the right panel. All figures are shown in the same absolute sound-speed 
scale from 1350 m/s to 1550 m/s 

 
We utilize the k-mean clustering routine of ImageJ (an open source package available at http://rsb.info.nih.gov/ij) to 
segment every 10th sound-speed tomogram for each patient. Since the abnormal lesions are not considered part of the 
normal breast architecture, we remove them from the sound-speed tomograms before we apply the clustering. Details of 
k-mean clustering segmentation are described by Glide et al.17. For more quantitative comparison, we calculate the mean 
sound-speeds for fatty tissue and breast parenchyma based on these segmentation results. The calculated mean sound-
speeds are sm /91422 ± (mean± SD) and sm / 211487 ± for fatty tissue and breast parenchyma, respectively 
(Table 1). 
 

Table 1. Mean sound-speed with standard deviation (SD). 
 Sound-speed ( sm / ) 

Fat 1422± 9 
Parenchyma 1487± 21 

Malignant mass 1548± 17 
Benign mass 1513± 27 

 

3.4 Benign vs. malignant lesions 
 
Of 32 lesions in 61 patients, 19 are malignant (16 invasive ductal carcinoma (IDC) and 3 ductal carcinoma in situ 
(DCIS)) and 13 are benign (8 fibroadenoma and 5 cyst, complicate cyst or fibrocystic structure). We select the slices that 
contain lesions based on radiologists’ evaluations, and isolate the lesions by either referring to reflection images or 
thresholding. 
 
The mean sound-speed of lesion for a single patient is calculated by summing all sound-speeds for every pixel within 
ROI in the selected slices, then dividing this summation by the total number of pixels. Mean sound-speed histograms for 
13 benign lesion and 19 malignant lesions are depicted in Fig. 4, where malignant lesions show, on average, higher mean 
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sound-speed than benign lesions. The mean sound-speeds for malignant and benign lesions are sm / 171548±  
and sm / 721513± , respectively. Our results generally corresponded with those reported in literature. Duck18 has 
calculated the mean sound-speeds for carcinoma and fibroadenoma to be sm / 271584 ± and sm / 321550 ± , 
respectively. Chang19 reports a mean sound-speed of sm / 8.268.1499 ± for fibroadenoma and a mean sound-speed of 

sm / 2.369.1530 ±  for carcinoma. 

 
Figure 4. Histogram of mean sound-speeds for 13 benign lesions (solid line) and 19 malignant lesions (dashed line). 

 

4. DISCUSSION AND CONCLUSIONS  
 
We have developed a total-variation-based bent-ray tomography algorithm for imaging sound-speed distribution of the 
breast. We have applied this algorithm to 61 breast datasets acquired using a clinical prototype CURE with a ring 
transducer array. Our in vivo results clearly demonstrate  that the TV reconstruction is superior to the reconstruction 
obtained with the classic Tikhonov regularization. Although TV is computationally more expensive than Tikhonov 
reconstruction, Vogel et al20 have demonstrated that the difference in computational expense between the two methods is 
not significant. Our TV reconstruction takes almost the same computational time as the Tikhonov reconstruction.  In  
 
We have shown that fatty and dense tissues could be well separated in our sound-speed images. The mean sound-speed 
of malignant lesions, on average, is higher than that of benign ones.  
 
The results of our study suggest some potential clinical applications for our bent-ray tomography algorithm. First, our 
sound-speed tomograms may be used to assess breast density. The positive correlation between mean sound-speed and 
breast mammographic density makes it possible to use mean sound-speed to evaluate breast density, and consequently to 
assess breast cancer risk. Second, sound-speed images can help to detect and characterize breast lesions. Fusing sound-
speed images with the corresponding attenuation and reflection images may help differentiate benign from malignant 
breast lesions. 
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