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ABSTRACT

Ultrasound computed tomography (USCT) holds great promise for improving the detection and management
of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruc-
tion methods can produce images that possess improved spatial resolution properties over those produced by
ray-based methods. However, waveform inversion methods are computationally demanding and have not been
applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accel-
erated USCT reconstruction method that circumvents the large computational burden of conventional waveform
inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, en-
codes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound
distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm.
Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graph-
ics processing unit card, each iteration can be completed within 25 seconds for a 128× 128 mm2 reconstruction
region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion
methods while significantly reducing the computational burden.

1. INTRODUCTION

Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of
breast cancer. This study will focus on the speed-of-sound (SOS) reconstruction using an existing USCT breast
imaging system.1, 2 The USCT imaging system employs a ring-shaped transducer array mounted on the inside
wall of a tank. The tank is filled with warm water and placed below a hole on an operating table. In a typical
data acquisition, a patient lays in the prone position on the operating table and let her breast pass the hole and
suspend in the warm water. One element on the transducer array transmits an acoustic pulse to insonify the
breast. The pulse propagates through the breast and water, and the resultant wavefield data are measured by
all other elements, completing one data acquisition. By repeating the pulse-transmission and data acquisition
procedure sequentially until every transducer element has functioned as the transmitter, one acquires a full data
set. The goal of USCT is to reconstruct the SOS distribution of the breast from the acquired data.

To achieve this goal, a wide variety of image reconstruction algorithms have been developed. Most of these
algorithms are based on geometrical acoustics, and are commonly referred to as “ray-based” methods.3–8 While
they can be computationally efficient, these methods, in general, result in images with a limited spatial resolution
because they neglect high-order acoustic diffraction effects. USCT reconstruction methods based on the acoustic
wave equation, also known as full-wave inverse scattering or waveform inversion methods, have also been explored
for a variety of applications including medical imaging.9–12 Because they account for higher-order diffraction
effects, waveform inversion methods can produce images that possess higher spatial resolution properties than
those produced by ray-based methods.9, 10 However, conventional waveform inversion methods are iterative
in nature and require the wave equation to be solved numerically a large number of times at each iteration.
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Consequently, such methods can be extremely computationally burdensome. For special geometries,12 efficient
numerical wave equation solvers have been reported. However, apart from special cases, the large computational
burden of waveform inversion methods has hindered their widespread application.

The purpose of this study is to develop an algorithmically-accelerated waveform inversion method for breast
SOS reconstruction. Aided by a graphics processing unit (GPU)-accelerated implementation, the developed
method will maintain the high spatial resolution of standard waveform inversion methods with a significant
reduction in computational time.

2. BACKGROUND: STANDARD WAVEFORM INVERSION

A conventional waveform inversion method seeks the solution of

ĉ = argmin
c

1

2

M−1
∑

m=0

‖gm −Hcsm‖
2 + βR(c), (1)

where c is the sought-after object to be reconstructed, i.e, SOS distribution, gm denotes the measured data vector,
sm denotes the (known) source vector, Hc denotes a numerical wave equation solver (NWES) that maps the
known source vector to the measured data vector, and R(c) denotes the penalty term, whose impact is controlled
by the regularization parameter β. The superscript in Hc indicates the dependence of Hc on c. Note that one
USCT measurement involves firing a sequence of acoustic pulses in turn and recording the data corresponding
to every pulse. Each pulse-firing and data recording process will be indexed by m for m = 0, 1, · · · ,M − 1.

A standard gradient descent algorithm, also known as a batch gradient descent algorithm, solves Eqn. (1)
iteratively by updating the estimate of c by taking a small step along the direction opposite the gradient of
the cost function. The step size is commonly determined by using a line search method.13 The conventional
waveform inversion method using a batch gradient descent algorithm is described in Alg. 1. In Alg. 1, Jm denotes

Algorithm 1 Standard waveform inversion using batch gradient descent algorithm.

Input: {gm}, {sm}, c
(0)

Output: ĉ
1: k ← 0 {k is the number of algorithm iteration.}
2: while stopping criterion is not satisfied do
3: k ← k + 1
4: J←

∑M−1
m=0 Jm + βJR { Jm and JR are the derivative of 1

2‖gm −Hcsm‖
2 and R(c), respectively.}

5: c(k) ← c(k−1) − λJ {Step size λ is determined via a line search}
6: end while
7: ĉ = c(k)

the Fréchet dirivative of 1
2‖gm − Hcsm‖

2 with respect to c. An adjoint state method has been developed to

calculate Jm.10, 14 The method requires the NWES to be run twice, resulting in at least 2M NWES runs in
every iteration. This makes the batch gradient descent algorithm computationally intensive and greatly limits
the application of the waveform inversion method in practice.

3. WAVEFORM INVERSION WITH SOURCE ENCODING

In order to reduce the computational burden, we introduce source encoding concepts that were originally devel-
oped in the geophysics literature.15–17 The proposed waveform inversion with source encoding (WISE) method
employs the objective function

ĉ = argmin
c

Ew

{1

2
‖gw −Hcsw‖2

}

+ βR(c), (2)



where Ew denotes the expectation operator with respect to the random source encoding vector w ∈ R
M , and

gw and sw denote the w-encoded data and source vectors, defined as

gw =

M−1
∑

m=0

[w]mgm, and sw =

M−1
∑

m=0

[w]msm, (3)

respectively. When w is zero-mean with an identity covariance matrix, it can be shown that Eqn. (2) is equivalent
to Eqn. (1).16, 18, 19 Equation (2) can be solved by use of a stochastic gradient descent algorithm,16, 18 summarized
in Alg. 2. In Alg. 2, Jw can be calculated using the same adjoint state method employed in the calculation of

Algorithm 2 WISE using stochastic gradient descent algorithm.

Input: {gm}, {sm}, c
(0)

Output: ĉ
1: k ← 0 {k is the number of algorithm iteration}
2: while stopping criterion is not satisfied do
3: k ← k + 1
4: Draw elements of w from independent and identical Rademacher distribution.
5: J← Jw + βJR {Jw is the gradient of 1

2‖g
w −Hcsw‖2 for the k-th realization of w.}

6: c(k) ← c(k−1) − λJ {Step size λ is determined via a line search}
7: end while
8: ĉ = c(k)

Jm in Alg. 1. Therefore, the minimum number of NWES runs is reduced from 2M to 2, greatly reducing the
computational cost at each iteration. Although it, in general, requires more algorithmic iterations to average out
the randomness in the realizations of w, the WISE method with the stochastic gradient descent algorithm can
greatly reduce the overall number of NWES runs, as demonstrated in the results to follow.

4. DISCRIPTION OF COMPUTER-SIMULATION STUDIES

Computer-simulation studies were conducted to demonstrate the accuracy and efficiency of the proposed WISE
method.

4.1 Generation of pressure data

A two-dimensional numerical phantom was employed to represent the SOS distribution in a coronal section of
a human breast as shown in Fig. 1-(a). The phantom contains a skin layer and six insertions with SOS values
of adipose, parenchyma, cyst, benign tumor and malignant tumor.20 The object had a diameter of 100 mm and
was surrounded by water with SOS 1.5 mm/µs. We employed a ring-shaped transducer array of radius 110 mm
to image the breast phantom. The transducer array consists of 256 uniformly-distributed detecting elements,
and each element was fired sequentially. The emitted acoustic pulse propagated through the breast, and the
resultant wavefield data were recorded by all transducer elements. The wave propagation was calculated using
a first-order k-space method-based NWES on a Cartesian grid of spacing 0.25 mm.21 Sampling at 20 MHz, we
calculated 3600 temporal samples for every receiver. The simulated time traces were then undersampled to 10
MHz, resulting in one data acquisition containing 256 time traces with 1800 temporal samples each. Repeating
the procedure for all transducers, we generated a noise-free data set containing 256 acquisitions. To the noise-free
data set, we added 5% Gaussian white noise to simulate noise-contaminated measurements.

4.2 Image reconstruction

We reconstructed images from the noise-free data set by use of the WISE method using the stochastic gradient
descent algorithm described in Alg. 2. A second-order k-space method-based NWES was employed.22 The NWES
was implemented using a grid size 0.5 mm and a sampling rate 10 MHz, both different from the parameters
employed to generate the data. For image reconstruction from the noise-free data, no explicit regularization was



employed, i.e., β = 0 in Eqn. (2). By use of the same NWES, we also implemented the batch gradient descent
algorithm described in Alg. 1 for comparison.

From the noisy data set, we reconstructed images by use of the WISE method with a total variation penalty
defined as23, 24

R(c) =

Ny−1
∑

j=1

Nx−1
∑

i=1

√

ǫ+ ([c]jNx+i − [c]jNx+i−1)2 + ([c]jNx+i − [c](j−1)Nx+i)2, (4)

where Nx and Ny are the dimensions of the reconstructed image, and ǫ = 10−12 was introduced to avoid dividing
by 0 in the gradient calculation. The iteration was terminated when the difference between two consecutive
estimates fell below 0.5 × 10−3. The accuracy of the reconstructed images was quantified by their root-mean-
square error (RMSE) from the numerical phantom.

5. NUMERICAL RESULTS

The image reconstructed by use of the WISE method from the noise-free data is shown in Fig. 1-(b), and its
profile is plotted in Fig. 2. As confirmed by comparing with the numerical phantom in Fig. 1-(a), the image
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Figure 1. (a) Numerical breast phantom and images reconstructed by use of (b) the WISE method after the 200-th
iteration (1, 023 runs of NWES) (c) the conventional waveform inversion method after the 1-st iteration (1, 024 runs of
the NWES) and (d) the conventional waveform inversion method after the 48-th iteration (61, 952 runs of the NWES)
from the noise-free data. The grayscale window is [1.46, 1.58] mm/µs.
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Figure 2. Profile at y = 7.0 mm of the image reconstructed by use of the WISE method from the noise-free data.

is highly accurate with a RMSE of 1.10× 10−3. The image was obtained after 200 iterations, corresponding to
1023 NWES runs. Approximately half of the NWES runs were due to the line search in Line-6 of Alg. 2. On a
platform consisting of an octa-core CPUs with a 3.30 GHz clock speed, 64 gigabytes (GB) of random-accessing
memory, and a single NVIDIA Tesla K20 GPU, the computation took 1.3 hours. Within the same computational
time, the conventional waveform inversion method only completed 1 iteration (1024 NWES runs). The resultant



image is shown in Fig. 1-(c). This image obviously lacks quantitative accuracy—with a RMSE of 10.94× 10−3—
as well as qualitative value for identifying features. In order to achieve the same accuracy as the image shown
in Fig. 1-(b), the conventional waveform inversion method required 48 iterations or 61952 NWES runs. The
computational time was approximately 60 times longer that that required by the WISE method. The resultant
image is shown in Fig. 1-(d) with RMSE 1.11× 10−3. These results suggest that the WISE method converged
to a highly accurate image using less than 2% the time required by a conventional waveform inversion method.

The convergence plots are shown in Fig. 3. As expected, the WISE method, in general, requires more
algorithmic iterations to achieve the same RMSE. However, because the computation per each iteration for
the WISE method is significantly less than that for the conventional waveform inversion method, the overall
computational efficiency remains higher for the WISE method by approximately two-orders of magnitude.
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Figure 3. Plots of the root-mean-square errors (RMSEs) of the images reconstructed from the noise-free data versus (a)
the number of iterations and (b) the number of numerical wave equation solver runs.

Figure 4 shows the image reconstructed from the noisy data and its profile. The image was reconstructed
after the 1000-th iteration, and the RMSE is 1.33× 10−3. These preliminary results suggest that the proposed
WISE method is numerically stable.
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Figure 4. (a) Image reconstructed by use of the WISE method (β = 5× 10−4) from the noisy data and (b) its profile at
y = 7.0 mm.

6. SUMMARY

It is known that waveform inversion methods can produce SOS images with higher resolution than do ray-based
methods. However, waveform inversion methods are computationally demanding and have not been applied
widely in USCT breast imaging. In this work, source encoding concepts are demonstrated in breast USCT
experimental studies for the first time. With our current GPU-based implementation, the computation time
was reduced from weeks to hours. The results suggest that the method holds value for USCT breast imaging
applications in a practical setting.
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