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a b s t r a c t

Objective and motivation
Time-of-flight (TOF) tomography used by a clinical ultrasound tomography device can efficiently and reli-
ably produce sound–speed images of the breast for cancer diagnosis. Accurate picking of TOFs of trans-
mitted ultrasound signals is extremely important to ensure high-resolution and high-quality ultrasound
sound–speed tomograms. Since manually picking is time-consuming for large datasets, we developed an
improved automatic TOF picker based on the Akaike information criterion (AIC), as described in this
paper.
Methods
We make use of an approach termed multi-model inference (model averaging), based on the calculated
AIC values, to improve the accuracy of TOF picks. By using multi-model inference, our picking method
incorporates all the information near the TOF of ultrasound signals. Median filtering and reciprocal pair
comparison are also incorporated in our AIC picker to effectively remove outliers.
Results
We validate our AIC picker using synthetic ultrasound waveforms, and demonstrate that our automatic
TOF picker can accurately pick TOFs in the presence of random noise with absolute amplitudes up to 80%
of the maximum absolute signal amplitude. We apply the new method to 1160 in vivo breast ultrasound
waveforms, and compare the picked TOFs with manual picks and amplitude threshold picks. The mean
value and standard deviation between our TOF picker and manual picking are 0.4 ls and 0.29 ls, while
for amplitude threshold picker the values are 1.02 ls and 0.9 ls, respectively. Tomograms for in vivo
breast data with high signal-to-noise ratio (SNR) (�25 dB) and low SNR (�18 dB) clearly demonstrate
that our AIC picker is much less sensitive to the SNRs of the data, compared to the amplitude threshold
picker.
Discussion and conclusions
The picking routine developed here is aimed at determining reliable quantitative values, necessary for
adding diagnostic information to our clinical ultrasound tomography device – CURE. It has been success-
fully adopted into CURE, and allows us to generate such values reliably. We demonstrate that in vivo
sound–speed tomograms with our TOF picks significantly improve the reconstruction accuracy and
reduce image artifacts.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Ultrasound sound–speed tomography has great potential to
detect and diagnose breast cancer ([1–4]). A clinical prototype of
ultrasound breast-imaging system with a ring array, termed the
computed ultrasound risk evaluation (CURE), has been developed
at the Karmanos Cancer Institute, Wayne State University in
Detroit, MI for ultrasound tomography [5] (Fig. 1). In general,
breast cancer has higher sound–speed than the surrounding breast
All rights reserved.

+1 313 5768767.
tissue. A primary purpose of CURE is to efficiently and reliably pro-
duce sound–speed images of the breast for cancer detection and
diagnosis. A potential sound–speed reconstruction method for
such a purpose is time-of-flight (TOF) ultrasound transmission
tomography. Accurate picking of TOFs of ultrasound transmitted
signals is an extremely important step to ensure high-resolution
and high-quality reconstruction of the sound–speed distribution.

For each 2D slice of ultrasound breast data, each element of the
CURE device acts as a transmitter as well as a receiver, and all ele-
ments receive the scattered sound waves when one element trans-
mits. CURE acquires 70–80 slices of ultrasound data for whole
breast imaging, resulting in a large volume of ultrasound data for
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Fig. 1. (a) Schematic illustration of a ring transducer array (from [5]).
(b) Interaction of an ultrasound pulse with a target leads to a scattered ultrasound
field (from [17]). Tx = transmitter; Rx = receiver.
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each patient. Therefore, it is not feasible to manually pick TOFs of
transmitted ultrasound data for sound–speed tomography because
manual picking is too time-consuming (�600,000 waveforms
needs to be analyzed for each patient). An automatic TOF picker
is an important tool for ultrasound tomography, particularly for
clinical applications.

Different automatic TOF pickers have been developed, and most
of them have been used for geophysical applications to reconstruct
the internal structure of the earth. These techniques fall into three
general categories. The simplest method is the amplitude thresh-
old picker that applies an absolute value of the threshold to the
band-pass filtered signal. It is not applicable for data having low
signal-to-noise ratios (SNRs). A variation is called ‘‘short-term-
average/long-term-average (STA/LTA)” method using the signal’s
envelope [6]. The second type of auto-pickers utilizes a running
window. Certain characteristics are repeatedly calculated within
successive sections of the time series, producing a time dependent
function. The TOF is usually identified by an obvious change in the
behavior of this function ([7,8]). The third type of auto-picker relies
on using the coherence characteristic between traces. One among
these pickers convolves a shifting reference waveform with the sig-
nal. The TOF of the signal is determined when the measure of the
quality of the match is a maximum. This method assumes that
the signal is reasonably similar to the reference waveform. Several
papers describe this type of picker, including [9–11].
In 1951 Kullback and Leibler [12] proposed what is now known
as the Kullback–Leibler information criterion to measure the infor-
mation loss when approximating reality using recorded data. In
1970s, Akaike (cited in [13]) proposed a model selection criterion,
the Akaike information criterion (AIC), which relates the maximum
likelihood with the Kullback–Leibler information criterion and
minimizes the information loss during model selection. Sleeman
and Eck [14] applied the AIC and autoregressive (AR) techniques
to detect the TOFs of seismograms, and their TOF picker is called
AR–AIC picker. Autoregressive techniques are based on the
assumption that a waveform can be divided into locally stationary
segments as an AR process and the segments before and after the
TOF point are two different stationary processes. On the basis of
this assumption, the AR–AIC picker can be used to detect the TOF
of a seismogram by analyzing the variation in AR coefficients.
The AIC is usually used to determine the order of the AR process
when fitting a time series. When the order of the AR process is
fixed, the AIC is a measure of the model fit. In the AR–AIC picker,
the order of the AR coefficient is determined on a trial and error ba-
sis (for details see [14]). To overcome this difficulty and ineffi-
ciency, Zhang et al. [8] proposed a wavelet–AIC picker in which
the AIC values are calculated directly from the seismogram using
Maeda’s formula [15]. In this method, a running window and a
wavelet transform are used to guide the AIC picker by finding
the appropriate time window that includes the TOF point of a
seismogram.

All the above techniques were historically developed to pick
elastic signals, particularly seismic waves. To the best of our
knowledge, no one has developed and investigated an automatic
TOF picker for in vivo medical ultrasound data. Kurz et al. [16] is
one of the few who applied an auto-picker to acoustic emission
in concrete.

In this paper, we develop an improved AIC automatic TOF picker
and apply it to in vivo ultrasound breast data based on the wave-
let–AIC TOF picker described in [8]. The improved method makes
use of an approach termed multi-model inference (model averag-
ing), based on the calculated AIC values, to enhance the accuracy
of TOF picks. We investigate the application of a median filter to re-
move TOF outliers. We demonstrate that our improved automatic
TOF picker can accurately pick TOFs in the presence of random
noise of up to 80% of the maximum absolute synthetic signal
amplitude. We apply the improved automatic TOF picking method
to clinical ultrasound breast data, and demonstrate that ultrasound
sound–speed tomography with our improved automatic TOF picks
significantly enhances the reconstruction accuracy and reduces
image artifacts.
2. Materials and methods

2.1. Ultrasound breast data acquired using the CURE device

Clinical ultrasound breast data used for this study were col-
lected with the CURE device, a clinical prototype ultrasound scan-
ner designed for clinical ultrasound breast tomography. CURE is
capable of recording all ultrasound wavefields including reflected,
transmitted, and diffracted ultrasonic signals from the breast tis-
sue. The engineering prototype of CURE is described in [17], and
the current clinical prototype is described in [5]. Fig. 1a is a sche-
matic representation of the transducer ring. Fig. 1b illustrates scat-
tering of ultrasound emitted from a transducer element and
received by all transducer elements along the ring. There are a total
of 256 elements in the 20-cm diameter ring array. Each element
can emit and receive ultrasound waves with a central frequency
of 1.5 MHz. During the scan, the ring array is immersed in a water
tank, and encircles the breast. The signals are recorded at a sam-
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Fig. 2. Schematic flowchart of our improved AIC picker.

C. Li et al. / Ultrasonics 49 (2009) 61–72 63
pling rate of 6.25 MHz. The whole breast is scanned slice by slice,
and the scanned slice data are recorded by a computer for data
processing afterwards. A motorized gantry is used to translate
the ring along the vertical direction, starting from the chest wall
to the nipple.

2.2. Improved automatic AIC time-of-flight picker

The wavelet–AIC TOF picker [8] is based on the AR–AIC picker
which assumes that a signal can be divided into locally stationary
segments and that the segments before and after the time-of-flight
point are two different stationary processes ([14]). Data points
within the selected time window are divided into two segments
at each data point i (i ¼ 1; :::; k; :::;N; where N is the total number
of data points in the selected time window). For a given data point
k the wavelet–AIC TOF picker uses Maeda’s formula ([15]) to calcu-
late the AIC function directly from the waveform

AICðkÞ ¼ klogðvarðSð1; kÞÞÞ þ ðN � k� 1ÞlogðvarðSðkþ 1;NÞÞÞ; ð1Þ

where S(1, k) (for data points 1 through k) and S(k + 1, N) (for data
points k + 1 through N) are the two segments in the selected time
window, and the variance function ‘‘var(�)” is calculated using

varðSði; jÞÞ ¼ r2
j�i ¼

1
j� i

Xj

l¼i

ðSðl; lÞ � �SÞ2;

i 6 j; i ¼ 1; . . . ;N and j ¼ 1; . . . ;N; ð2Þ

where �S is the mean value of S(i,j) The AIC value given by Eq. (1)
measures the information loss of using the current selected model
to approximate reality. In the wavelet–AIC auto-picker in [8], the
point with minimum AIC value (that indicates the minimum infor-
mation loss, therefore it is called the best model) is selected to be
the TOF point.

We improve the automatic wavelet–AIC TOF picker by: (1)
using a weighted average model instead of the best model to deter-
mine TOFs; (2) removing outliers of TOF picks using a median
filter; and (3) eliminating effects of signal distortion due to filtering
and wavelet de-noising during data preprocessing for improving
SNR. A schematic flowchart of our improved AIC TOF picker is
shown in Fig. 2. We describe the details of our improvements as
follows.

2.2.1. Using a weighted average model to determine TOFs
An AIC value by itself has no physical meaning and it becomes

interesting only when it is compared to a series of a priori specified
models [18]. The model with the minimum AIC value is the best
among all models being compared. The measure associated with
the AIC value that can be used to compare models is the normal-
ized Akaike weights (Eq. (3) and (4)). Akaike weights indicate the
relative importance of the candidate models. In most cases, the
best model (corresponding to the minimum AIC value) may have
competitors for the top rank. An elegant solution to make an infer-
ence based on the entire set of models is to compute the weighted
average based on the model uncertainties (i.e. Akaike weights).
This is referred to model averaging or model inference.

The running window used in for the wavelet–AIC TOF picker [8]
is not necessary for clinical ultrasound data. An appropriate time
window used for the TOF pick can be well defined based on the
transmitter–receiver geometry and the sound–speed of water
since the sound–speed of breast tissue is close to that of water.
To incorporate all the information near the best model, we use a
weighted average model to pick the TOF in the following sequence:

(1) Calculate AIC values (AICi, i = 1, ...n) for a series of data points
near the point with the minimum AIC (AICmin) using Eq. (1).

(2) Obtain the differences between AICi(i = 1, ...n) and AICmin:
Di ¼ AICi � AICmin; ð3Þ

(3) Compute the Akaike weights for each data point within the
time window:
Wi ¼
expð�Di=2ÞPn

r¼1 expð�Dr=2Þ
ð4Þ

(4) Obtain the TOF value using the weighted average:
tTOF ¼
Xn

i¼1

witi; ð5Þ

where tiði ¼ 1; . . . ; nÞ are the corresponding travel times for
those points discussed in (1)–(3) and wi is obtained using Eq. (4).

When there is a sharp global minimum, the AIC value that indi-
cates a high SNR, the difference between the TOF pick based on the
weighted average model and that based on the best model is neg-
ligible. However, if the global minimum is not very sharp, which
indicates a low SNR, the weighted average model can pick the
TOF more accurately than picking based on the best model. This
is the primary advantage of the automatic TOF picking method
based on the weighted model averaging scheme. Fig. 3 shows an
example of comparison among the TOF pick based on the best
model, the TOF pick based on the weighted average model, and
the manual pick of an in vivo ultrasound breast signal acquired
using the CURE device. The circle represents the TOF picked with
the best model, the star corresponds to the manual pick of the
TOF, and the cross sign is the TOF pick using the weighted average
model. It can be seen that the latter is closer to the manual TOF
pick than the pick based on the best model.

2.2.2. Removing outliers of TOF picks
To eliminate outliers of the TOF picks, we apply a median filter

to the time differences (TDs) between our picked TOFs of ultra-
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sound breast data and TOFs calculated using the water sound–
speed and the ring array geometry. The median filter is a good tool
for reducing ‘‘pepper and salt” noise (outliers). To take advantage
of this property and the continuity property of a TOF surface
(formed by TOFs of all transmission data) ([19]), TDs are rear-
ranged into a 2-D matrix such that each row represents the TD val-
ues for a single transmitter, and TD values for adjacent
transmitters in the ring array are put into adjacent rows (except
the first and last transmitter due to the circular geometry of the
ring). This rearrangement results in a 256 by 256 matrix (D).
Another 256 by 256 matrix (M) containing all median values of
TOFs is calculated with a sliding window of the same size as the
median filter. Adaptive thresholds for the median filter are set up
by calculating the standard deviation (STD) and the mean value
(ME) of TDs

TolMin ¼ME� f � STD;
TolMax ¼MEþ f � STD:

ð6Þ

where TolMin and TolMax are the minimum (could be a negative
value) and maximum tolerance for TDs, respectively, and f is a given
scale factor of the standard deviations with a value between 0 and
1. The median filter based on the above thresholds is applied to the
matrix D: if D(i,j) �M(i,j) < TolMin or D(i,j) �M(i,j) > TolMax and
the corresponding picked TOF is replaced with the medium value.

To further clean up the remaining picks, the TOF picks for the
reciprocal transmitter–receiver pair are compared against each
other. Reciprocal transmitter–receiver pair, here, means that two
transducers in the ring array transmit and receiver signals in the
opposite directions. Ideally, the TOF picks for the reciprocal pair
should be the same, which rarely happens in practice. In our data
cleaning process, if the TOFs difference between the reciprocal pair
exceeds a predefined threshold, both picks are discarded. The pre-
Fig. 3. A comparison among the pick based on the best model (the circle), the manual pic
defined threshold value can be customized by users based on their
individual requirement and data quality.

The original matrix D and its post-processed version for an
in vivo ultrasound breast data acquired using the CURE device
are shown in Figs. 4a and b, respectively. Compared with Fig. 4a,
Fig. 4b shows that the inconsistent picks and outliers are effec-
tively eliminated. Figs. 4c and d are ultrasound sound–speed trans-
mission tomography results for an in vivo ultrasound breast
dataset using the TOF picks shown in Figs. 4a and b, respectively.
Fig. 4 demonstrates that our TOF data cleaning procedure de-
scribed above can effectively remove TOF outliers and greatly im-
prove the quality of ultrasound TOF sound–speed tomography
images.

2.2.3. Signal distortion due to filtering and wavelet de-noising
Filtering and de-noising techniques are usually used to prepro-

cess a signal to improve its SNRs. The wavelet–AIC TOF picker [8]
applies the wavelet de-noising to a raw seismogram before it picks
the TOF. In fact, both the filtering and wavelet de-noising may dis-
tort a signal while attempting to increase the SNR [20]. Fig. 5
shows a comparison of a raw ultrasound data segment (Fig. 5a) ac-
quired with the CURE device with its filtered version (Fig. 5b) and
wavelet de-noised version (Fig. 5c). The signal in Fig. 5b was fil-
tered using a second-order zero-phase Butterworth band-pass fil-
ter with the stop band corner frequencies at 0.3 MHz and
2.3 MHz, and the pass band corner frequencies at 0.9 MHz and
1.7 MHz. For the wavelet de-noised signal in Fig. 5c, thresholding
was applied to the wavelet coefficients using the Birge–Massart
penalization method [21]. The solid vertical line in Fig. 5 represents
the picked TOFs from the raw ultrasound data, while the dashed
line indicates the picked TOFs from the filtered and de-noised seg-
ments. Coincidently, TOFs picked from the band-pass filtered sig-
k (the star) and the pick obtained using the weighted average model (the cross sign).



Fig. 4. Plots of travel-time differences for an in vivo ultrasound breast dataset and the corresponding sound–speed reconstructions. (a) Plot of the time differences between
our TOF picks and the corresponding calculated TOFs in water based on the ring array geometry. (b) Post processed version of (a) (median filtered and reciprocal pair
checked). The receiver number (x-axis in (a) and (b)) is relative to its corresponding transmitter. (c) The tomography reconstruction using TOF picks in (a). (d) The tomography
reconstruction using TOF picks in (b). In (c) and (d), both x- and y-axes span 220 mm in length.
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Fig. 5. Distortions arising from band-pass filtering and wavelet de-noising of raw ultrasound data. (a) Raw ultrasound data. (b) Second order zero-phase butterworth band-
pass filtered ultrasound data. (c) Wavelet de-noised ultrasound data. The vertical solid line indicates the picked TOFs of (a); The dashed line indicates the picked TOFs of (b)
and (c). The TOF picks by the weighted average model are shown in Table 1.
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Table 1
The TOF picks for a raw ultrasound signal, the zero-phase band-pass filtered signal
and the wavelet de-noised signal (Fig. 5)

Time-of-flight pick (ls)

Raw data 100.80
Zero-phase band-pass filtered data 100.16
Wavelet de-noised data 100.16
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nal and the wavelet de-noised signal are the same (Table 1). From
Fig. 5 we can see the signal distortions due to the wavelet de-nois-
ing and zero-phase band-pass filtering. Because of the short tran-
sient time of ultrasound signals, a small distortion of the
ultrasound waveform may result in large unwanted artifacts or
erroneous information during TOF picking. For these reasons and
in order to preserve the true shapes of onsets of ultrasound signals
80 100 120 140 160
ro−sec

ro−sec

ro−sec

icro−sec
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etic ultrasound waveform to assess the maximum level of random noise that the
: 4.5 dB).
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as much as possible, we do not perform any signal preprocessing to
improve the SNRs, because our improved automatic TOF picker can
handle ultrasound data with low SNRs as demonstrated in the
following.



Table 2
Statistics of the improved AIC picks and amplitude threshold picks relative to manual
picks on a total of 1160 in vivo ultrasound waveforms

Mean of difference (from
manual picks) (ls)

Standard deviation of difference
(from manual pick) (ls)

Improved AIC picks 0.4 0.29
Amplitude

threshold picks
1.02 0.9

Table 3
TOF picks by the improved AIC picker, manual pick and amplitude threshold picker
for ultrasound breast waveforms in Fig. 9

Fig. 9a (ls) Fig. 9b (ls)

Improved AIC picks 137.60 69.59
Manual picks 137.63 69.60
Amplitude threshold picks 138.16 72.07
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2.2.4. Capability to handle noisy data
To estimate the maximum amount of random noise that our im-

proved wavelet–AIC TOF picker can tolerate, progressively greater
amounts of random noise were added to a synthetic ultrasound
waveform with a similar spectrum to that of in vivo ultrasound
breast data acquired by CURE. The average absolute amplitudes
of the random noise were, respectively, 0%, 20%, 40%, 60% and
80% of the maximum absolute amplitude of the synthetic ultra-
sound signal. Our improved TOF picker can detect consistently
the correct TOF in the presence of 80% white noise, which corre-
sponds to a 4.5 dB SNR. Fig. 6 shows two representative examples
with 0% and 80% random noise added, respectively. Both our own
tests and Kurz’s work in [16] show that the AIC-based TOF pickers
can tolerate a relatively high noise level if an appropriate time win-
dow is used.

2.3. Assessment of our improved AIC time-of-flight picker

To assess the performance of our improved AIC picker, we com-
pared our TOF picks with those of the amplitude threshold picker,
and manual picks of 1160 waveforms of in vivo ultrasound breast
waveforms acquired using the CURE device. Manual picking was
conducted by recognizing the first rise time of the signal. To exploit
the continuity of picked TOFs for adjacent waveforms [19], five
consecutive waveforms were plotted on the computer monitor at
Fig. 9. Examples of TOF picks of in vivo ultrasound breast data by our improved AIC pi
breast waveform. (b) Low SNR ultrasound breast waveform. Cross signs: our improved
the same time to further improve the accuracy of the manual pick-
ing. Fig. 7 is a snapshot of the manual picking process, in which so-
lid triangles indicate the manual TOF picks by clicking the
computer mouse.

Since the amplitude threshold picker is much more sensitive to
the noise in the data, band-pass filtering was applied before
picking the TOFs using an amplitude threshold. A second order
zero-phase Butterworth band-pass filter with stop band corner fre-
quencies at 0.3 MHz and 2.3 MHz, and pass band corner frequen-
cies at 0.9 MHz and 1.7 MHz was used to filter the ultrasound
breast data. To make a fair comparison, the same outlier removal
procedures (median filtering and reciprocal pair check) were also
applied to the amplitude threshold TOF picks.

Fig. 8a shows the absolute values of TOF differences between
manual picks and amplitude threshold picks, and Fig. 8b shows
those of TOF difference between manual picks and our improved
AIC picks. The statistics (Table 2) shows that for these 1160
in vivo ultrasound breast waveforms, over 85% of the TOFs picked
by our improved AIC picker are within three sample points
(0.48 ls) from the manual picks. The mean value and standard
deviation between our improved TOF picker and manual picking
are 0.4 ls and 0.29 ls, respectively. Among picks by the amplitude
threshold picker, only 48% of them are within the three sample
points from the manual picks, and the mean value and standard
deviation from the manual picks are respectively 1.02 ls and
0.9 ls, which are much higher than those of our improved TOF
cker, manual picking and the amplitude threshold picker. (a) High SNR ultrasound
wavelet–AIC picks; stars: manual picks; circles: amplitude threshold picks.
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picking method. Our study with other clinical ultrasound breast
data shows that the performances of our improved wavelet–AIC
TOF picker and amplitude threshold-based TOF picker are compa-
rable for data with high SNRs, but for data with high noise level (or
low SNRs), the accuracy of the amplitude threshold picker drops
abruptly. Moreover, for noisy ultrasound breast data, the failure
rate of the amplitude threshold TOF picker is much higher than
for that of the improved AIC TOF picker. Fig. 9 shows two wave-
forms of different SNRs along with TOF picks by the above three
methods. We can clearly see that for the waveform in Fig. 9a,
which has a high SNR, the three TOF picks are consistent, although
our improved AIC pick is closer to the manual pick. However, for a
noisy waveform in Fig. 9b, the amplitude threshold picker picked
the wrong TOF, while our improved AIC TOF pick is still compara-
ble to the manual pick. The TOF picks in Fig. 9 are shown in Table 3.
An example of overlays of the TOF picks by our improved AIC TOF
picker on the corresponding in vivo ultrasonic breast waveforms is
depicted in Fig. 10 (the solid dot on each waveform segment indi-
cates our TOF pick).

3. Sensitivity analysis and tomography results

3.1. Sensitivity analysis

TOF sound–speed tomography uses the TOF picks of ultrasound
breast data for reconstruction. The tomogram quality depends di-
rectly on the quality and accuracy of TOF picks. To test how the
tomography images are affected by noise (errors) in TOFs, a simple
sensitivity analysis has been done using a numerical model with
the same source–receiver geometry as CURE. The true numerical
model is illustrated in Fig. 11a, in which the background sound–
speed is 1.5 mm/ls and the anomaly (white circle at the lower right
quadrant) has a sound–speed of 1.545 mm/ls. The TOF for each
source–receiver pair is calculated by solving the Eikonal equation
on a very dense regular grid (0.1 mm � 0.1 mm). The calculated
noise-free TOFs are inverted, and the tomogram at 5th iteration is
presented in Fig. 11b. Random noise with a zero mean and standard
deviation of 0.54 ls (�3.4 sample intervals for CURE) is added to the
above TOFs to simulate noisy data. Fig. 11d is the inverted tomogram
at 5th iteration with the noisy TOFs. Even with visual comparison,
the tomogram using noise-free TOFs (Fig. 11b) is clearly superior
to the one in Fig. 11d. To quantitatively compare with true model
(Fig. 11a), the residual sound–speed tomograms for Fig. 11b and d
are presented in Fig. 11c and e, respectively. Except for the edge
smoothing effect (which is generic to the tomography algorithm),
the high sound–speed anomaly in Fig. 11c is accurately resolved
(the absolute sound–speed difference between Fig. 11b and a is
0.001 mm/ls), and the background artifacts are negligible. In
Fig. 11e, the reconstruction using noisy data results in a partially
resolved anomaly (the absolute deviation from true model is about
0.025 mm/ls) and a very noisy background. These quantitative
comparisons further prove that the noise (errors) in data have non-
negligible effects on the accuracy of tomography reconstructions.

3.2. Tomography results of in vitro and in vivo ultrasound data

We compare tomograms obtained using our improved AIC TOF
picks with that generated using amplitude threshold TOF picks for
in vitro and in vivo ultrasound datasets.

A cross-section image from an X-ray CT scan of a breast phan-
tom is shown in Fig. 12a. The ultrasound sound–speed tomograms
obtained using our improved AIC TOF picks and amplitude thresh-
old TOF picks are shown in Fig. 12b and c, respectively. It can be
seen that the tomogram in Fig. 12b contains significant fewer arti-
facts than the tomogram in Fig. 12c. Moreover, the four inclusions
and surrounding subcutaneous fat are better reconstructed in
Fig. 12b than those in Fig. 12c. In contrast to in vivo ultrasound
breast data, the phantom breast data has relatively low structural
noise due to relatively simple internal structures. In Fig. 13a and
b, we performed a similar comparison for in vivo ultrasound breast



Fig. 11. Sensitivity analysis. (a) Numerical true model in which background sound–speed is 1.5 mm/ls and anomaly (white circle) has a sound–speed of 1.545 mm/ls.
(b) Tomogram using noise-free TOFs. (c) Residual tomogram for (b) ((b)–(a), the absolute sound–speed difference between Fig. 11b and a is 0.001 mm/ls). (d) Reconstruction
using noisy TOFs by adding random noise (mean = 0, STD = 0.54 ls) to the calculated TOFs in (b). (d) Residual tomogram for (c) ((c)–(a), the absolute deviation from true
model is about 0.025 mm/ls). In (a)–(e), all x- and y-axes span 220 mm in length.
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data acquired with the CURE device. The in vivo breast data used to
obtain Fig. 13a has a relative low SNR (�18 dB). The sound–speed
tomogram produced using our improved TOF picks (the left panel
in Fig. 13a) appears to have fewer straight-line artifacts compared
to the one obtained using amplitude threshold TOF picks (the right
panel in Fig. 13a). For in vivo ultrasound breast data with relative
high SNR (�25 dB), the difference between the corresponding
sound–speed tomograms shown in Fig. 13b is trivial, although
the reconstruction with our improved TOF picks (the left panel in
Fig. 13b) still appears to be superior to the one produced using
amplitude threshold TOF picks (the right panel in Fig. 13b) in terms
of the mass detection and reconstruction noise. These comparisons
again demonstrate that our improved AIC TOF picker is much less
sensitive to varying SNRs of ultrasound data than the amplitude
threshold TOF picker.

4. Discussion

Using TOFs picked by the AIC picker, our in vitro and in vivo
reconstructions are based on a 2-D bent-ray approach, which has
been well calibrated against breast phantoms and does two things
very well.

(1) Producing reliable cross-sectional images of sound–speed
and attenuation at a resolution of 2–4 mm (see [5] for a com-
plete analysis of phantom data).

(2) Reproducing accurate estimates of quantitative image values
(e.g. sound–speed in km/sec), again verified by phantom
studies.

It has been our experience that the diagnostic content of the
images is as important as the image quality. Our rendering of
breast architecture is achieved through our higher resolution
reflection images (Fig. 14) while the sound–speed and attenuation
images provide diagnostic information that can be overlaid on the
anatomical images (Fig. 14). Given the diagnostic value of these
data it is important that we are able to pick TOFs accurately
and reliably. Again, to emphasize the point, image resolution
and detailed breast architecture, though important for our reflec-
tion imaging, is not of paramount importance to the sound–speed



Fig. 12. Tomography images of in vitro ultrasound breast data acquired by the CURE device. (a) X-ray CT scan of breast phantom. (b) Reconstruction using TOFs picked by the
improved AIC picker. (c) Reconstruction using amplitude threshold picks. In (a), (b) and (c), all x- and y-axes span 220 mm in length.

Fig. 13. Tomography images of in vivo ultrasound breast data acquired by the CURE device. (a) An example with data of low SNR. The left panel in (a) is the sound–speed
reconstruction using our improved TOF picks and the right panel in (a) is the sound–speed reconstruction using amplitude threshold picks (x- and y-axes span 220 mm in
length). (b) The same as (a) for another example with data of high SNR (x and y-axes span 220 mm in length).
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and attenuation imaging. The method we have outlined in this
paper is aimed at determining reliable quantitative values, neces-
sary for adding diagnostic information (e.g. in Fig. 14, high ss
(white) = consistent with cancer). The picking routine allows us
to generate such values reliably and the images produced are
accurate enough given their lower spatial resolution. Furthermore,
such images are needed as starting models for any wave-based
approach.



Fig. 14. Thresholded sound–speed (white) image overlaid on reflection image.
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5. Conclusions

We have developed an improved automatic TOF picking method
based on the Akaike information criterion and have successfully
applied it to in vivo ultrasound breast data collected using a ring
transducer array. To improve the accuracy of the TOF picking,
our improved picking method incorporates all the information
near the TOF point using a model inference method to determine
the TOF of ultrasound signals. Our improved method also uses a
median filter to remove TOF outliers. It can pick correct TOFs in
noisy ultrasound data (with white noise of average absolute ampli-
tudes of up to 80% of the maximum absolute amplitude of the sig-
nal) while the amplitude threshold based TOF picking method
generally fails. It can determine TOFs of ultrasound breast data
similar to those picked manually by an expert. A great advantage
of our automatic TOF picker is that it is operator independent,
and is much less time-consuming than the manual picking. This
makes it possible to adopt our improved TOF picker into a clinical
ultrasound tomography device. We have demonstrated that
ultrasound sound–speed tomography using TOFs picked using
our improved automatic TOF picker significantly improves the
reconstruction accuracy and reduces image artifacts.
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