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Tomography of complex three-dimensional objects with diffractive waves remains an open
challenge due to the large number of scattering measurements required to obtain a stable solution to
the inverse problem of reconstructing an image of the object from a set of independent scattering
experiments. Here, this problem is addressed with a multiscale approach that is demonstrated
experimentally using ultrasonic waves and which leads to high resolution images comparable to
x-ray computerized tomography but without the limitations associated with ionizing radiation.
© 2009 American Institute of Physics. [DOI: 10.1063/1.3204021]

X-ray computerized tomography (CT) has provided a
unique window into the anatomy of the human body since
the invention of the CT scanner by Hounsfield in 1972. How-
ever, the presence of ionizing radiation still limits its use to
relatively low resolution applications. In fact, the higher the
resolution the greater the number of x-ray projections re-
quired and the higher the radiation dose for patients. Thus,
for instance, CT cannot be used for breast cancer screening.
In contrast, ultrasound is devoid of risk and the possibility of
developing it into a safe tomography modality has attracted
much interest since early 1970s.!

There are two fundamental aspects that distinguish how
ultrasound and x-ray radiation interact with biological tissue.
First, the absorption of x-ray depends on mass density ac-
cording to Beer-Lambert’s law; therefore, the absorption
contrast observed in a CT image can be related to density
variations across an object. In clinical applications, this leads
to a clear separation between soft tissue and bones while the
contrast within soft tissue might be not sufficient. Therefore,
techniques that exploit the phase shift of x rays rather than
their absorption are being developed.2 In contrast, ultrasound
is also sensitive to the elastic moduli of a solid or the com-
pressibility of a liquid, and the amplitude and phase of the
scattered field can be readily measured without the need for
interferometric techniques. Second, the interaction of x-ray
with biological tissue can be described by ray theory
whereas, diffraction effects are not negligible in the case of
ultrasound due to the wavelength approaching the scale of
tissue structures (typically 0.1-1 mm).

The ray approximation simplifies the inverse problem of
reconstructing the absorption coefficient map from the mea-
surements, as the x-ray intensity measured at a particular
detector depends on the line integral from the source to the
receiver of the absorption coefficient. In contrast, the encod-
ing of information in ultrasonic measurements is more com-
plicated as it is no longer possible to confine the region of
interaction to a ray. To unravel this information, the so-called
inverse scattering problem has to be solved. Although the
solution (image) exists and is unique, provided that all the
independent scattering measurements can be collected, the
problem is ill-posed in the sense of Hadamard as the solution
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is unstable, i.e., the reconstruction is not a continuous func-
tion of the input (measurements). The instability is triggered
by the presence of measurement noise and is amplified when
the set of independent scattering measurements iS incom-
plete. For an object with characteristic radius Ry, the maxi-
mum order of the scattered partial waves leads to a number
of independent measurements which is N~ (47R,/\)?
in two dimensions (2D) and N ~ (477'RO/)\)4 in three dimen-
sions (3D), where \ is the wavelength These measurements
can be performed with an array consisting of \rN transducers
deployed around the object. Each transducer illuminates the
object and all the transducers, including the transmitter, mea-
sure the scattered field, according to the diagram shown in
Fig. 1(a), thus leading to N measurements in total. However,
while this is feasible in 2D for a realistic object with R,
~50\N (in breast imaging w1th ultrasound at 1.5 MHz \
=1 mm) using toroidal arrays, * the 3D case is beyond the
capabilities of current technology due to the vast number of
transducers required. Therefore, current experimental studies
of ultrasound tomography have made use of the ray approxi-
mation that allows a slice of the object in the plane of a
toroidal array to be decoupled from the rest of the object.
This leads to what is known as ultrasonic computed
tomography1 or travel-time tomography (TTT).” However,
the ray approximation is known to cause resolution degrada-
tion and image artifacts due to its inability to account for
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FIG. 1. (a) A circular aperture consists of an array of sensors used to probe
a complex 3D object shown in the cartoon. (b) Cross section of the array
with an axysimmetric object showing beam divergence. (c) Forward scatter-
ing produced by an internal mass.
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FIG. 2. (Color online) Scattering measurements performed with the array
(color scale is the same in a.u.). (a) No phantom is immersed in the water
background. (b) The plane of the aperture intersects the phantom but not the
inclusions. (c) The aperture intersects the inclusions. (d) Transmit-receive
pairs mostly affected by the inclusions.

diffraction and ultrasound tomography has not yet found
clinical or industrial applications.

This letter introduces a multiscale approach aimed at
high resolution imaging of targeted structures within a com-
plex 3D object probed with a toroidal array that forms a
circular aperture. The main idea is that structures with a char-
acteristic size comparable to A and contained in the plane of
the aperture can be separated from the global 3D structure of
the object using wave refraction and diffraction. We assume
that scattering within the fine structures can be described by
weak scattering models such as the Born approximation.
Here, we consider ultrasound; however, the approach applies
to other mechanical and electromagnetic waves.

Let us consider the case of a homogeneous axisymmetric
object with the cross section shown in Fig. 1(b) and im-
mersed in a homogeneous background. Assuming that A is
much smaller than the characteristic size of the object, ray
theory predicts that the refracted wave emerging from the
object diverges from the original propagation direction [Fig.
1(b)] in a similar fashion to the deflection experienced by a
light beam passing through a prism.(’ As a result, the sensors
(R,) opposite to the source do not detect the beam. The ul-
trasonic field ¢, can be described by the inhomogeneous
Helmholtz equation, (V2+k?)(r,w)=-k*O(r,w)ir, ),
where k is the background wavenumber (277/\) and w is the
angular frequency. The object is described by the so-called
object function, O(r,w), of support D corresponding to the
volume occupied by the object. Here, it is assumed that den-
sity variations across the object and material absorption can
be neglected. Therefore, O(r)=[cy/c(r,w)]*~1, where ¢, is
the speed of sound of the background and ¢ the local speed
of sound inside the object. The speed of sound and the com-
pressibility, x, are related via ¢™'=vpy where p is the den-
sity. The objective of ultrasound tomography is to recon-
struct the object function from the scattering measurements.
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This can provide useful diagnostic information since, for in-
stance, it is know that a cancer mass tends to have higher
Young’s modulus than healthy tissue.® Applications of the
Green’s theorem and Sommerfeld condition to the Helmholtz
equation lead to the Lippman—Schwinger equation

(ki) = Wy(r, ki) — f d3r’G(r,r’)0(r’)¢(r’,kf'0), (1)
D

where i(r,kfy)=exp(ikf-r) is an incident plane wave that
illuminates the object from direction ¥, and G(r,r’) is the
free space Green function. Now let us consider the case in
which inclusions with speed of sound ¢+ Ac and characteris-
tic size comparable to A are contained inside the object as
shown in Fig. 1(c). The contrast Ac is a function of space
and vanishes outside the inclusions. Let O’ be the new object
function and OP=0"-0. For weak inclusions with Ac/c
<1 and to the first order approximation, 01’%—20(2)/ ASAc
which is proportional to the sound speed contrast of the in-
clusions. With inclusions, Eq. (1) becomes

W’=¢o—f &r'GlO+ 0"y, ()
D

where ¢/ is the new total field and the arguments of the
functions have been dropped for brevity. The total field in-
side the object can be decomposed into the total field ob-
served without the inclusion and a weaker field due to the
inclusion, ¢/, i.e., Y=+’ with ' <. By subtracting Eq.
(1) from Eq. (2) and using the definition of ¢, ¥ becomes

W’=¢—J d3r’G[0+O"]¢/’—f &r' GOPy. (3)
D D

The field emerging from the object contains three main com-
ponents. The field ¢ is the dominant deflected wave that
would be observed in the absence of the inclusion. The two
additional weaker fields described by the integral terms de-
pend on the properties of the inclusions O”. However, since
/' < the first integral on the RHS of Eq. (3) can be ne-
glected. It is now observed that the integral of Eq. (3) in the
direction perpendicular to the plane of the aperture, £ |, over
the interval [-A,A] with A>N\ is

A A
f dryyf = - f dr} f d’r'Gory, (4)
-A -A D
where the contribution from ¢ becomes negligible thanks to
the beam deflection phenomenon discussed before. The LHS
in Eq. (4) represents the measurement from an array element
that has a small (<\) width in the circumferential direction
and a 2A aperture along ¥ .

The object O can be reconstructed by inverting Eq. (4).
For this purpose the far-field expression G(r,r’)=—exp(ikr
—ikf-r')/47r and the Born approximation® ¢= exp(ikfy-r)
are used in Eq. (4) to obtain

A . A
| =220 [ g utey e, )
—A darr —A

where 0%, is the 3D Fourier transform of O” and £(r}) is the
scattering direction corresponding to a point along the re-
ceiver at height ;. Equation (5) can further be simplified by
observing that the radius of the array r is much larger than A,
therefore kf(r;) = kf+krj/rf |, with £ being the unit vector
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FIG. 3. Images of the cross section of the phantom containing the four
inclusions. (a) Sound-speed map. (b) X-ray CT image providing the density
distribution across the same slice as in (a).

in the plane of the array pointing at the receiver. By using the
variable transformation k3=kr;/r in Eq. (5) one obtains

A ikr) -
| i = G e ), ©
—A i

where 05, is the 2D Fourier transform of O calculated in
the plane of the array (r;=0). Equation (6) is formally
equivalent to conventional 2D diffraction tomography,6’9
which is based on a proportionality relationship between the
scattered field, ¥ — i, and the Fourier transform of O, i.e.,

P =y Ob o[ k(F,— Fy)]. This expression can be derived from
Eq. (2) (adjusted for the 2D case) by applying the Born ap-
proximation. However, if this expression were applied to the
case considered in this letter, O’ would not be reconstructed
because due to the beam deflection phenomenon, - i=
—ify since ¥ <, meaning that the information about O” is
lost in the incident field.

The multiscale approach described by Eq. (6) is demon-
strated by means of an experiment performed with a breast
phantom tested with a 256 element ultrasonic array devel-
oped at Karmanos Cancer Institute.* The internal diameter of
the ring is 200 mm and each element has a 0.5 mm width and
12 mm height (2A=12 mm). The phantom has a shape that
approximate that of a truncated cone 100 mm height with
100 mm average diameter and 40° aperture. It consists of
several materials mimicking a subcutaneous fat layer that
embeds an irregular glandular parenchyma where the main
biological functions of the breast take place, and four 3D
inclusions corresponding to two tumors and two fat spheres
[a diagrammatic cross section of the phantom is shown in
Fig. 1(a), see also Ref. 4]. Both the array and the phantom
are immersed in a water bath at 24 °C that provides the
background medium. The measurements were obtained at
700 kHz which corresponds to A=2.14 mm in water.

Figure 2(a) shows the amplitude of the total field mea-
sured without the phantom as a function of the illumination
angle, 60, and the scattering angle, ¢, at 700 kHz. The diag-
onal 6=¢ refers to measurements performed with the re-
ceiver facing the transmitter, these measurements are re-
ferred to as direct transmissions. Since the wave field excited
by each transducer is directional, the direct transmissions
have the largest amplitudes. Next, Fig. 2(b) shows the field
measured when the phantom is immersed in the water back-
ground and the plane of the array does not intersect the in-
clusions. Due to the curved shape of the phantom and the
water-phantom impedance contrast, a strong beam deflection
occurs and the direct transmission is no longer the strongest
signal. Instead, the largest signals are measured for those
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transmit-receive pairs joined by a ray that is tangent to the
boundary of the phantom in the plane of the array. The struc-
ture of the measurements is different when the plane of the
array intersects the four inclusions as shown in Fig. 2(c). In
this case, in addition to the signals corresponding to the
boundaries of the phantom, a number of patterns emerges
close to the direct transmission measurements. These are the
acoustic signatures of the four inclusions, as can be deduced
from Fig. 2(d) that provides those particular transmit-receive
combinations for which the straight ray from the transmitter
to the receiver intersects the center of one inclusion. There-
fore, thanks to the deflection caused by the body of the phan-
tom, the field detected by the array is largely due to the
energy scattered by the structures in the plane of the array
(OP) and marginally affected by the out-of-plane structures.

The measurements shown in Fig. 2(c) correspond to the
LHS term in Eq. (6) and can be used to reconstruct O by
inverting the mapping in Eq. (6) using the technique in'® and
lead to the image shown in Fig. 3(a). Indeed, the inversion
uses a subset of the measurements in Fig. 2(c) that corre-
sponds to the so-called transmission data that is used in TTT
and covers a 120° interval around the diagonal 6= ¢ in Fig.
2(c), i.e., 6-60° < p<0+60° VO ec[-180°,180°].

To better appreciate the features of Fig. 3(a), a x-ray CT
image of the same phantom obtained with a commercial
scanner is shown in Fig. 3(b). Despite the fact that the CT
image is a density map, there are striking similarities with
the sound-speed image. Not only is the overall size of the
inclusions correctly determined, but also the details of their
shapes are well defined. A careful analysis of Fig. 3(a) also
reveals the irregular outline of the glandular tissue. The arti-
fact outside the phantom boundary is due to aliasing caused
by the limited number of array elements which also is the
reason why the subcutaneous fat is not as clearly visible as
the inclusions (for a phantom diameter of 120 mm and A
=2 mm the Nyquist criterion requires a minimum number of
377 sensors while the array has 256 only). Overall Fig. 3
demonstrates that the inversion based on the model provided
by Eq. (6) achieves unprecedented tomographic image qual-
ity comparable to that obtained with x-ray CT. The time re-
quired to collect the data used to build the image in Fig. 3(a),
is under 0.1 s, making the technology viable for a number of
clinical applications including breast imaging.
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