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Abstract—We propose a subaperture based method for
synthetic aperture radar (SAR) imaging of moving targets. It
exploits low-rank and sparse decomposition for extraction of
moving targets from the complex SAR scene. First SAR raw
data are divided into subapertures in the azimuth direction.
Subsequently, low-rank and sparse decomposition is applied
using the multiple subapertures data to accomplish the separation
of moving targets from the stationary SAR background. A full
resolution moving target image is reconstructed by combining
the spectral information of the sparse subaperture images. Such
an image has a high signal to clutter ratio and is well suited
for motion estimation and focusing algorithms. This proposed
framework extends the applicability of sparsity-driven moving
target focusing methods to very low signal to clutter ratio
environments. We demonstrate the performance of our approach
through experiments with synthetic and real SAR data.

Index Terms—SAR imaging, moving targets, low-rank and
sparse decomposition, subaperture processing.

I. INTRODUCTION

Synthetic aperture radar (SAR) imaging of moving targets
requires compensation of phase errors caused by these targets
to avoid defocusing in the processed image. A major step in
this respect is the detection of moving targets by suppression
of the static background/clutter. The subsequent steps are
motion estimation and focusing of the moving targets.

Conventionally, the single antenna SAR systems employ
filtering approaches for clutter suppression [1]. However, con-
sidering the typical pulse repetition frequencies of the SAR
systems, the performance is degraded by the slow moving
targets, higher azimuth compression ratios and the slower SAR
platform velocities. More complicated and expensive systems
address these limitations by incorporating multiple antennas in
order to utilize the phase information. However, we consider
single antenna SAR systems in this work.

In comparison to the conventional methods of SAR imaging,
sparsity-based methods have achieved improved resolution
and reconstruction quality [2], [3]. The authors in [4], [5]
proposed a sparsity-based moving target imaging approach,
which considers the extra phase terms induced by the moving
targets as errors in the observation model of a static scene.
Nevertheless, their method requires a relatively high signal
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to clutter ratio (SCR) for a good performance. Since most
practical SAR systems produce images with a medium to low
SCR, static background suppression is an essential step before
any focusing could be applied.

Low-rank and sparse decomposition (LRSD) has found ex-
tensive applications for background and foreground separation
in magnetic resonance imaging (MRI) [6], [7] and computer
vision [8]. In order to exploit the LRSD framework for SAR
moving target imaging, a data matrix needs to be constructed
that contains the temporal SAR images as columns. Such
temporal images are readily available in the case of MRI and
optical camera videos. However, the temporal images for SAR
may not be directly accessible, instead the full resolution SAR
image can be split into a number of subaperture images at the
cost of a lower azimuth resolution.

Compared to the existing methods, the novel contributions
of this paper are: 1) enhancing the applicability of the sparsity-
driven moving target imaging/focusing approach [4] to very
low SCR scenarios, 2) extension of the LRSD framework
proposed in [9] for the moving targets case where background
may not be spatially low-rank, and 3) a frequency domain
subaperture construction approach which is capable of recov-
ering the original azimuth resolution in the sparse and low-
rank images after the LRSD stage.

The final sparse image could be used for motion estimation
and focusing of moving targets. The focused moving target
image could eventually be overlaid with the corresponding
background image to obtain an overall focused and recon-
structed SAR image.

II. PRELIMINARIES
In this section, we provide a brief coverage of the sparsity-
driven methods for SAR moving target imaging and the LRSD.
A. Sparsity-driven Methods for Moving Target Imaging

A SAR signal from a target moving in azimuth direction
[1] can be described as:
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where 7 is the slow time, v, is the SAR platform velocity,
Ry is the range of closest approach and v, represents the
azimuth velocity of the target. a(.) includes the azimuth



weighting, target reflectivity f and the constant phase terms.
The quadratic phase error due to cross-range velocity of the
target [10] can be approximated as:
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A sparsity-driven framework was proposed in [4] for spot-
light mode SAR moving target imaging. They treat the phase
terms induced by the target motion as errors in the imaging
model. The SAR observation model considered by this frame-
work is as follows:

g=C@)f +n 3)

where g is the noisy observation, C' is the model matrix, f
is the unknown reflectivity of the underlying complex scene,
and n is the observation noise. ¢ represents the phase terms
caused by the target motion. Joint estimation of f and ¢ is
sought by solving the following optimization problem:
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where (3 incorporates the phase errors due to all the points
in the scene for every aperture position. A, Ao are the
regularization parameters and 1 denotes a vector of ones.

B. Low-rank and Sparse Decomposition

The objective of LRSD is to decompose a matrix D into
its low-rank B and sparse .S components as follows:
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where A is a regularization parameter. However, the rank
minimization requires a minimization of non-zero singular
values which is an NP-hard problem. It was suggested by
[11] and [12] that a convex relaxation could be employed
under some conditions by replacing the rank(.) and Iy norm
constraints with the nuclear norm(||.||.) and the 1 norm,
respectively. After considering these convex relaxations, the
reformulated problem is given as:
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This problem has been solved in a variety of ways by using
local optimization algorithms. A bilateral random projections
(BRP) scheme was proposed in [13] to significantly accelerate
the solution.

III. PROPOSED METHOD

We propose a subaperture based approach combined with
the low-rank and sparse decomposition framework for SAR
moving target imaging. Extraction of moving targets from
the stationary background is an essential step for their proper
imaging. This can be accomplished by LRSD of the complex
SAR scene exploiting the subaperture images. A complex SAR
image I € C™*™ could be used to construct the subaperture
images. Here we consider a band-limited Fourier transform
as the forward model to reconstruct the complex SAR image
from the raw data g.

A. Subapertures and the corresponding data matrix

In order to tailor the LRSD framework for the moving target
imaging problem, multiple temporal images of the SAR scene
should be stacked to form the matrix D € CP*9 as given
below: | |
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where each column in D is a vectorized temporal image of the
same SAR scene and we have p = n x m. This is achieved by
constructing g subaperture SAR images and arranging them as
columns of this matrix for LRSD. The first step is to apply the
discrete Fourier transform (DFT) in azimuth to the complex
SAR image I, ,,) containing unfocused moving targets. This
is followed by a rectangular filtering operation where non-
overlapping filtering windows are used to extract the frequency
domain subapertures. This frequency domain filtering process
can be described as follows:
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where ¢ is the subaperture number, n is the azimuth sample
number, £ is the frequency bin number, and m is the range bin
number. Moreover, L is the length of a subaperture window,
i.e., the number of nonzero elements in the rectangular window
function. Each subaperture image is then reconstructed by
a zeropadded inverse discrete Fourier transform (IDFT) of
original image size as given below:
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The column vectors for the matrix D are constructed from the
subaperture images as follows:
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The bandwidth of the azimuth signal is reduced in the pro-
cess of subapertures formation and consequently the original
azimuth resolution is degraded by a factor of N/L as follows:

N
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where p; is the subaperture resolution and p, is the resolution
of the original SAR image. However, this loss of resolution
is compensated after the LRSD by combining the spectral
information of all the subapertures followed by an IDFT. The
recovery of original full resolution is a prominent feature of
our proposed framework.

B. LRSD based on subaperture data

Now we turn to the low-rank and sparse decomposition
step. A successful LRSD in this scenario is based on the
fact that the static parts of the scene do not change position
across the subapertures, whereas the moving targets shift their
positions in every subaperture. An LRSD framework for SAR



was proposed in [9]. It exploits the spatially low-rank and
sparse structure of a stationary scene by making overlapping
patches of the SAR image. This LRSD approach produces
good results for a SAR scene with a few sparse objects
and a slowly varying background. However, it is not well
suited for a scene that contains moving targets and where
the background is not necessarily spatially low-rank. Here we
extend the LRSD framework proposed in [9] for the case of
moving targets. Instead of making a patch based data matrix,
we form a subaperture-based matrix as described above to
exploit the sparse nature of the moving targets. In this case,
the background is not strictly required to be spatially low-
rank as we enforce low-rank across the subapertures where
typically fewer changes are induced by the static components
over multiple subaperture data.

The objective of LRSD in this case is to optimize for D,
S, B and ©. Where D is the composite part (B + 5), S
is the sparse component, B is the low-rank or background
component and O is the random phase of the reflectivity field.
The overall optimization problem is formulated as follows:
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where g is the observed data, and H is the forward model
which takes into account the imaging process. A band-limited
Fourier transform was assumed for this purpose. R* is the
matrix operator which reconstructs a 2D matrix from a column
vector. The augmented Lagrangian form of this problem can
be solved using alternating direction method of multipliers
(ADMM) [9]. The subproblem for the phase matrix © can
be solved by a fixed point algorithm as described in [3].

Once the decomposition is successfully achieved, we use
the full aperture data corresponding to the sparse and low-
rank components separately to generate full resolution images
for both components.

IV. EXPERIMENTAL RESULTS

A series of experiments were performed using both syn-
thetic and real SAR data to validate the proposed method. Two
subapertures were used in most of our experiments to make
the simulations results more convenient for demonstration
and limit the number of generated figures. In all of our
experiments, we have added synthetic moving targets to the
SAR scene with a low SCR. All images are presented on a
logarithmic scale for a better dynamic range.

A. Synthetic Scene Experiments

First, we performed some experiments on fully synthetic
scenes where we simulated the background as well as the
moving targets. We constructed a random background and
simulated the moving targets by modulating a quadratic phase
error in the azimuth direction. Fig. 1 reveals the results of
this experiment. Three moving target were placed near the
scene center with a very low SCR of -3.2dB as shown in
Fig. 1(a). The target motion leads to the spreading of their
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Fig. 1. Results of the synthetic scene experiment. (a) Ground truth scene
indicating the locations of three moving targets in a noisy background and
low SCR. (b) Conventionally reconstructed scene with quadratic phase errors
due to the targets’ motions. (c) Focused image produced by the algorithm
in [4] without LRSD (d) First subaperture image with a reduced azimuth
resolution. (e) Second subaperture image with a reduced azimuth resolution.
(f) Sparse image after LRSD, corresponding to the first subaperture. (g)
Full resolution conventional image of the sparse part containing the moving
targets. (h) Focused moving target image after LRSD and the sparsity-
driven focusing. (i) Background image after LRSD and the full resolution
conventional reconstruction.

response along the direction of motion in the conventional
reconstruction, as shown in Fig. 1(b). Fig. 1(c) demonstrates
the output of the sparsity-driven focusing [4] without LRSD.
There were eight spurious points in addition to the three
original moving targets. It follows that the direct application
of sparsity-driven focusing could not perform well under very
low SCR conditions and the LRSD step becomes imperative.

Two subapertures were constructed using square window
functions for the frequency domain filtering to mask half of the
azimuth spectrum at a time followed by a zero-padded IDFT.
Fig. 1(d, e) depict the subaperture images formed this way.
The resolution along the vertical axis (azimuth) was lowered
due to the masked frequency samples. This loss of resolution is
unavoidable at this stage since subaperture images are required
for the LRSD step, but it is recovered later.

A slight shift of the mean position of the moving targets
may be noticed along the vertical axis which is necessary for
the LRSD to detect the moving targets as sparse components.
Our formulation in (12) leads to LRSD of the scene as well as
the corresponding data through subaperture-based processing.
Then one can process the full aperture data for the sparse and
low-rank components separately in various ways. Just as an
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Fig. 2. Results of the real SAR scene experiment. (a) Ground truth scene
indicating the locations of three moving targets in a real SAR background.
Four strong static points were also added near the corners of the scene. (b)
Conventionally reconstructed scene with quadratic phase errors due to the
targets’ motions. (c¢) Focused moving target image after processing by the
proposed framework and subsequent sparsity-driven focusing. (d) Background
image after LRSD and full resolution conventional reconstruction.

example, here we demonstrate the use of [4] to process the
data corresponding to the sparse component which contains
the moving targets. As shown in Fig. 1(h), the image is
well focused without any ghost targets. Two subaperture low-
rank images were also obtained from the LRSD (not shown).
These images were conventionally reconstructed to get the full
resolution background image as shown in Fig. 1(i).

B. Real SAR Scene Experiments

Real SAR scene experiments were performed with the Min-
iSAR data [16] where we have introduced synthetic moving
targets for performance evaluation. Fig. 2 depicts the results
of our real SAR scene experiments. Three moving targets
were added to a 64 x 64 real SAR background where one
of the targets has a bigger signature as compared to the
other two. Furthermore, four static targets were added in the
scene to evaluate the LRSD performance for the strong static
components. Fig. 2(a, b) present the ground truth and the
conventional reconstructions respectively.

Fig. 2(c) shows the moving target image obtained after pro-
cessing by our proposed framework and subsequent sparsity-
driven focusing. It contains the focused moving targets without
any significant background or false targets.

The full resolution background image is shown in Fig. 2(d).
It is worth noting that most of the MiniSAR scene is included
in the low-rank (background) image since its components are
mostly consistent across the subapertures. The four synthetic
static targets also appear in the low-rank image for the same
reason. Another important effect which requires attention is
the leakage of the residual from the moving targets response.

There are two main factors that cause this leakage. The first
factor is that the moving target response (spread function)
has some overlapping components across the subapertures
which do not change significantly. The second factor is the
regularization parameter values used for the LRSD. If we
optimize for a sparser solution, some parts of the moving target
response would be forced to the low-rank part.

V. CONCLUSION

In this paper, a subaperture based approach for moving
target radar imaging was presented which utilizes the LRSD
framework. Moving targets change their position from one
subaperture to the other and consequently they are decom-
posed as the sparse components. Static background on the
other hand is mostly fixed in its location, hence it separates
out as the low-rank part. This work extends the applicability of
sparsity-driven focusing to very low SCR scenarios. Another
contribution is the ability to reconstruct full resolution SAR
images after the LRSD stage. The anisotropic behaviour of
background reflectivity in real SAR scenes can lead to a
leakage of the background components into the sparse image
which motivates future work.
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