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I. Introduction 
 
In this paper we report on one component of the research being performed under a multi-

university research program whose aim is to contribute to the fundamental questions in signal 
processing, fusion, and information science that arise when one considers the fusion of 
information from very large arrays of microsensors.  We begin, however, with a brief 
description of our overall program, which has at its core dealing with four challenges when 
one considers large arrays of individually inexpensive sensors.2  The first of these is 
scalability.  How do we construct sensor fusion algorithms whose complexity scales well 
with network size?  How does the performance of the network scale with its size?  The 
second is dealing with uncertain and complex environments.  One part of the vision for 
sensor networks is that not only will the individual elements be inexpensive but also their 
deployment will be inexpensive and flexible.  For example, deploying large numbers of 
acoustic, seismic, electromagnetic, IR, and other types of sensors for military sensing in 
unknown environments requires that the network deal with uncertainties in the locations and 
calibration of the individual sensors as well as in the environment through which signals 
sensed by those sensors must propagate.  Developing algorithms that are robust and/or adapt 
to these uncertainties is critical for successful operation of such networks.  The third 
challenge is working with limited and dear resources.  In particular, in many cases power 
(for sensing, computation, and communication) may be severely limited, and developing 
methodologies that make judicious use of power is critical. The last challenge is that of 
performance limits and guarantees.  For example, it is important to have bounds on how 
well one can perform under resource constraints in order to determine if algorithms we have 
developed can be meaningfully improved or if they are already approaching the most one 
would expect given the available resources.  In addition, given the uncertainties and 
variability of the environments into which sensor networks will be placed, it is important to 
characterize the robustness of algorithms and their sensitivities to variations in that 
environment.   

 
Our investigation of these challenges are embedded in the three intellectual themes of our 

research.  The first of these, namely, network-constrained fusion, deals with developing 
algorithms and performance analysis methods for fusion given (a) constraints or costs on 
communication of information among the sensors distributed in the network; and (b) a 
statistical model that describes how information from different sensors are related and hence 
how fusion should in principle be performed.  Our second theme, fusion in uncertain 
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environments, deals with relaxing (or, alternatively, providing) the modeling assumptions 
implicit in (b).  The third theme, information theory for wireless networks, deals with 
specifying the constraints and costs associated with (a).  That is, this theme deals with 
information-theoretic constraints and scaling laws in wireless and resource-limited networks.   

 
The specific component of our research that we describe in the following sections 

addresses one of the central problems arising in distributed array processing, namely that of 
source localization.  The approach that we describe here has several motivations, including 
dealing with (i) the presence of multiple sources (with overlapping and possibly broad or 
multiband spectra); (ii) the likely presence of multipath effects (which can be interpreted as 
having highly correlated “sources” coming from multiple paths); (iii) the need for enhanced 
resolution (as compared to that achievable by other methods); and (iv) the need for robustness 
to noise, limitations in data quantity, and possible uncertainties in sensor locations.  The 
method that we describe here involves the idea of imaging an entire “source field,” where we 
introduce a so-called “sparsity prior” in order to guide our solution to focused localization of 
sources.3  The approach that we take here is based on an optimization formulation including 
such a prior as part of the optimization criterion.  In addition, a key component of our method 
involves the use of a singular value decomposition (SVD) of the data matrix—a natural and, 
as we will see very useful—method for accommodating and summarizing information 
contained in multiple data samples from an array.4  

 
We now present a more detailed overview of our approach. Many advanced techniques 

for the localization of point sources achieve superresolution by exploiting the presence of a 
small number of sources. For example, the key component of the MUSIC method is the 
assumption of a small-dimensional signal subspace. We follow a different approach for 
exploiting such structure: we pose source localization as an overcomplete basis representation 
problem, where we impose a penalty on the lack of sparsity of the spatial spectrum. In this 
context, each basis vector corresponds to an array manifold vector for a possible source 
location among a sampling grid of locations.  The representation of the observed sensor data 
in terms of an overcomplete basis is not unique, and additional constraints have to be 
imposed to regain uniqueness. Our main goal is sparsity, so using constraints to minimize 
directly the number of non-zero coefficients (hence the number of sources) would be ideal, 
yet computationally prohibitive.  In order to get around this challenge, we relax the problem 
using an idea similar to that of basis pursuit [2], and form an optimization problem containing 
an l1-norm-based penalty for the spatial spectrum. When we view this optimization problem 
as a maximum a posteriori (MAP) estimation problem, the l1 penalty corresponds to a 
Laplacian prior distribution assumption for the spectrum.  These ideas are explored in more 
detail in Section 2. 

 
In Section 3, we describe the narrowband source localization problem and turn it into a 

form appropriate for the overcomplete basis methodology (see [3] for our broadband 
approach). We then perform an SVD of the data matrix, which provides a useful way of 
handling multiple snapshots. In the SVD domain, we form our optimization functional for 
source localization, consisting of a data fidelity term, as well as the l1-norm-based sparsity 
constraint. In Section 4, we outline a numerical solution of this optimization problem in a 
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cells so that the source of the received energy is distributed among these cells. 
4 While we focus primarily on multiple time samples here, one can also consider multiple frequency bin 
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second-order cone (SOC) programming framework [4] by an interior point implementation 
[5]. Section 5 describes an adaptive grid refinement procedure for alleviating the effects of 
the grid, as well as the outline of a technique for the automatic selection of the regularization 
parameter involved in our method. Our experimental analysis in Section 6 shows that the 
proposed method provides better resolvability of closely-spaced sources, as well as improved 
robustness to low SNR, and the presence of correlated sources, as compared to currently 
available methods. Furthermore, our approach appears to have robustness to limitations in the 
number of time samples. Finally, unlike maximum likelihood (ML) methods, our technique 
does not require an accurate initialization, since the cost function is convex, and the 
optimization procedure is globally convergent [3]. 
 

The basic idea of using a sparse signal representation perspective for source localization 
was contained in our earlier work [6,7], and in [8]. The two main points of emphasis in this 
paper are the SVD-domain formulation, and the adaptation and use of SOC optimization. 

 
 
II. Sparsity and Overcompleteness 

 
We now describe the basic idea of enforcing sparsity in overcomplete basis 

representations, which will be used in Section 3 for the source localization problem. Given a 
signal y ∈  CM, and an overcomplete basis A ∈  CM×N, N > M, we would like to find s ∈  CN 

such that y = As, and s is sparse. Define 
0

0
s  to be the number of non-zero elements of s. We 

would like to find 
0

0
min s subject to y = As. This is a very hard combinatorial problem. It 

can be shown [9,3]5 that under certain conditions on A and s, the optimal value of this 
problem can be found exactly by solving a related problem: 

1
min s subject to y = As. 

 
A natural extension when we allow white Gaussian noise is 

 
nAsy += ,     (1) 

 
which can be solved by ( )

1

2

2
min sAsy λ+− . The parameter λ controls the trade-off 

between the sparsity of the solution and the residual.  This method is called basis pursuit [2], 
(or LASSO in the statistics literature).  
 
 
III. Source Localization Framework 

 
The narrowband source localization problem is: 

 
.,...,1)()()()( Ttttt =+= nxAy θ    (2) 

 
The data, y(t) ∈  CM, are the observations from M sensors, and  x(t) ∈  CK is a vector of 
unknown signals transmitted from K unknown locations θk. A(θ) = [a(θ1),…, a(θK)] is 

                                                 
5 The result in [9] assumes A is composed of two orthogonal bases. In [3], we extend this result to any 
overcomplete basis, and also consider lp-norms, p< 1. 



composed of the steering vectors a(θk). The manifold a(θ) is known as a function of θ. The 
goal is to estimate θ = [θ1,…, θK]. 
 

Note that this problem is different from (1). First, the matrix A(θ) is unknown, and 
second we have multiple time samples, t = 1,..,T.  To address the first point, we introduce a 
grid of possible locations, {β1,…,βN} , and form A= [a(β1),…, a(βN)]. Also, let 
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Then the problem takes the form  
 

)()()( ttt nAsy += .    (3) 
 

The important point is that A is known, and does not depend on the unknown source locations 
θk, as A(θ) did. The source locations are now encoded by the non-zero indices of s(t). In 
effect, we have transformed the problem from finding a point estimate of θ, to estimating the 
spatial spectrum of s(t), which has to exhibit sharp peaks at the correct source locations. 
 

The second issue we raised was that of dealing with multiple time samples. In principle, 
one can use the overcomplete basis methodology to solve a signal representation problem at 
each time instant t. This leads to a significant computational load, and to sensitivity to noise, 
since no advantage is taken of other time samples. Instead, we would like to use all the sensor 
data in synergy. Previously, we presented two approaches to deal with this issue [6,7], which 
required certain assumptions on the source signals. We now present an SVD-based approach, 
which does not impose any restrictions on x(t) . To this end, we view the data y(t) as a cloud 
of T points lying in a K-dimensional subspace. Instead of keeping every time sample, we can 
represent the cloud using its K largest singular vectors (corresponding to the signal subspace). 
 
Let Y= [y(1),…, y(T)], and define S and N similarly.  Then we have Y = AS + N. Take the 
singular value decomposition: Y = UΛV'.6 Let YSV = UΛDK = YVDK, where DK = [IK 0]'. 
Here IK is a K×K identity matrix, and 0 is a K×(T-K) matrix of zeros. Also, let SSV = SVDK, 
and NSV = NVDK, to obtain YSV = ASSV + NSV. Now let us consider each column 
(corresponding to each singular vector) of this equation separately: ySV(k) = AsSV(k) + nSV(k), 
k = 1,..,K.  If K > 1, then we have several subproblems and we can combine them into a single 
one by stacking. Let yb = vec (YSV) (i.e. stack all the columns into a column vector yb).  
Define sb, and nb similarly. Also, let  
 
















=

A
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i.e. Ab is block diagonal with K replicas of A. Finally, we get yb = Absb + nb which is in the 
form of (1). 
 

                                                 
6 This is closely related to the eigen-decomposition of the correlation matrix of the data: R = (1/T) YY', 
whose eigen-decomposition is R = (1/T) UΛV' V Λ'U' = (1/T) UΛ2U'. 



The vector sb has been constructed by stacking sSV(k) for all the signal subspace singular 
vectors, k = 1,..,K. Every spatial index i appears for each of the singular vectors. We want to 
impose sparsity in sb only spatially (in terms of i), and not in terms of the singular vector 
index k. So, we combine the data with respect to the singular vector index using an l2-norm, 

which does not favor sparsity: ( ) ikK

k iib ∀= ∑ =
,))( 2

1
)SV()( 2 (ss l . The sparsity of the 

resulting N×1 vector )( 2l
bs  corresponds to the sparsity of the spatial spectrum. We can find the 

spatial spectrum of sb by minimizing 
 

1

2

2
)(

bbbb
2ssAy lλ+−     (4) 

 
Note that our formulation uses information about the number of sources K.  However, we 

empirically observe that incorrect determination of the number of sources in our framework 
has no catastrophic consequences (such as complete disappearance of some of the sources as 
may happen with MUSIC), since we are not relying on the structural assumptions of the 
orthogonality of the signal and noise subspaces. Underestimating or overestimating K 
manifests itself only in gradual degradation of performance. 
 
 
IV. Numerical Solution of the Optimization Problem 

 
We now present an efficient algorithm for the minimization of the objective function in 

(4). The objective function contains a term ∑ ∑= =
= N

i

K

k ib k
1

2
1

)SV(

1

)( ))(2 (ss l , which is 

neither linear nor quadratic. We turn to second order cone (SOC) programming, which deals 
with the so-called second order cone constraints of the form s : ||s1,…,sn-1||2 ≤ sn, i.e. 

n
n

i i s)s( 21

1
≤∑ −

=
. SOC programming is a suitable framework for optimizing functions which 

contain SOC, convex quadratic, and linear terms. The main reason for considering SOC 
programming instead of generic nonlinear optimization is the availability of efficient interior 
point algorithms for the numerical solution of the former, e.g. [5]. 
 

The generic form of a second order cone problem is: 
 

Kx b,Ax
xc

∈=  andsuch that
'min

    (5) 

where 
LN

N LLK ×××= + ...1R . Here, N
+R is the N-dimensional positive orthant cone, and 

LNLL ,...,1 are second order cones. Now we would like to express our objective function (4), 
in the form of the optimization problem in (5). First, to make the objective function linear, we 
rewrite (4) as 
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The vector )( 2l
bs  is composed of positive real values, hence ( ) )(
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The symbol 1 stands for an N×1 vector of ones.  The constraint  s )(
b
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)SV( ))((s , for i = 1,...,N, and 1'r ≤ q, where we use r = [r1, ...,rN]'. Also, let 

zk= ySV(k) - AsSV(k). Then, we have: 
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The optimization problem in (7) is in the second order cone programming form: we have a 
linear objective function, and a set of quadratic7, linear, and SOC constraints. 
 
 
V. Grid Refinement and Parameter Selection 

 
So far, in our framework, the estimates of the source locations are confined to a grid. We 

cannot make the grid very fine uniformly, since this would increase the computational 
complexity significantly. We explore the idea of adaptively refining the grid in order to 
achieve better accuracy. The idea is a very natural one: instead of having a universally fine 
grid, we make the grid fine only around the regions where sources are present. This requires 
an approximate knowledge of the locations of the sources, which can be obtained by using a 
coarse grid first.  The algorithm is the following: 
 

1. Create a rough grid of potential source locations βi
(0), for i=1,…,N. Set r=0. The 

grid should not be too rough, in order not to introduce substantial bias. A 1° or 2° 
uniform sampling usually suffices,  

2. Form A(r) = A(β(r)), where  β(r) = [β1
(r),…, βN

(r)]. Use our method from Section 3 
to get the estimates of the source locations, )(ˆ r

jθ , j = 1,...,K, and set r =  r+1. 

3. Get a refined grid β(r) around the locations of the peaks, )1(ˆ −r
jθ . We specify how 

this is done below. 
4. Return to step 2 until the grid is fine enough. 

 
Many different ways to refine the grid can be imagined; we choose simple equi-spaced 

grid refinement. Suppose we have a locally uniform grid (piecewise uniform), and at step r 
the spacing of the grid is δr. We pick an interval around the j-th peak of the spectrum which 
includes two grid spacings to either side, i.e. ]2ˆ,2ˆ[ )()(

r
r

jr
r

j δθδθ +− , for j=1,...,K. In the 
intervals around the peaks we select the new grid whose spacing is a fraction of the old one, 
δr+1 = δr /ρ. It is possible to achieve fine grids either by rapidly shrinking δr for a few 
refinement levels, or by shrinking it slowly using more refinement levels. We find that the 
latter approach is more stable numerically, so we typically set ρ = 3, a small number. After a 
few (e.g. 5) iterations of refining the grid, it becomes fine enough that its effects are almost 

                                                 
7 Quadratic constraints can be readily represented in terms of SOC constraints. See [4] for 

details. 



transparent. This idea has been successfully used for some of the experimental analysis we 
present in Section 6. 

 
Another important part of our source localization framework is the choice of the 

regularization parameter λ in (4), which balances the fit of the solution to the data versus the 
sparsity prior. The same question arises in many practical inverse problems, and is still an 
open problem, especially if the objective function is non-quadratic. An old idea under the 
name of discrepancy principle [10] is to select λ to match the residuals of the solution 
obtained using λ, to some known statistics of the noise, when such are available. For 
example, if the variance of the independent identically distributed Gaussian noise is known, 
then one can select λ such that )E( 2

2b
2

2
nsAy bbb ≈− . Searching for a value of λ to 

achieve the equality is rather difficult, and requires solving the problem (4) multiple times for 
different λ's. 
 

Instead, we consider the constrained version of the problem in (4), which can also be 
efficiently solved in the second order cone framework [3]: 
 

γ subject tomin 2

21

)( 2 ≤− bbb sAys l
b    (8) 

 
For this problem the task of choosing the regularization parameter γ properly is considerably 
easier. We choose γ high enough so that the probability that γ2

2b ≥n  is small. The details of 
the procedure can be found in [3].  
 
 
VI. Experimental Results 

 
We consider a uniform linear array of M = 8 sensors separated by half a 

wavelength of the actual narrowband source signals. Two zero-mean narrowband 
signals in the far-field impinge upon this array from distinct directions of arrival 
(DOA). The total number of snapshots is T = 200. In Figure 1, we compare the 
spectrum obtained using our proposed method with those of beamforming, Capon's 
method, and MUSIC. In the top plot, the SNR is 10 dB, and the sources are closely 
spaced (5° separation). Our technique and MUSIC are able to resolve the two sources, 
whereas Capon's method and beamforming merge the two peaks. In the bottom plot, 
we decrease the SNR to 0 dB, in which case only our technique is still able to resolve 
the two sources. In Figure 2, we set the SNR to 20 dB, but we make the sources 
strongly correlated. MUSIC and Capon's method would resolve the signals at this 
SNR were they not correlated, but correlation degrades their performance. Again, 
only our technique is able to resolve the two sources. This illustrates the power of our 
methodology in resolving closely-spaced sources, despite low SNR or correlation 
between the sources, e.g. due to multipath effects. 



 
Fig. 1. Spatial spectra for beamforming, Capon's method, MUSIC, and the proposed method 
(L1-SVD) for uncorrelated sources, DOAs: 65° and 70°. Top: SNR = 10 dB. Bottom:  
SNR = 0 dB. 
 

 
 

Fig. 2. Spectra for correlated sources, SNR = 20dB, DOAs: 63° and 73°. 
 
 



 
 

Fig. 3. Plots of variances of DOA estimates versus SNR, as well as the CRB, for two 
correlated sources. DOAs: 42.83° and 73.33°, variance for the source at 42.83° shown. 
 
 

We next compare the performance of our approach in terms of the variance of the DOA 
estimates to other methods, as well as to the Cramer-Rao bound (CRB). In order to satisfy the 
assumptions of the CRB, we choose an operating point where our method is unbiased (see [3] 
for an analysis of bias). In Figure 3, we present plots of variance versus SNR for a scenario 
including two strongly correlated sources8. The correlation coefficient is 0.99. Each point in 
the plot is the average of 50 trials. Our approach follows the CRB more closely than the other 
methods. This shows the robustness of our method to correlated sources. 
 
 
VII. Conclusion 

 
In this paper we have reported on one component of our research being performed under 

a multi-university research program on data fusion in large arrays of microsensors. In 
particular, we have presented an optimization-based source localization technique which 
enforces spatial sparsity of the sources while representing sensor measurements in an 
overcomplete basis of array manifold samples. The SVD is used to combine multiple data 
samples, and SOC programming is used to solve the resulting optimization problem. 
Explicitly enforcing sparsity leads to very sharp peaks of the spatial spectrum at the locations 
of the sources, which allow closely-spaced sources to be resolved. Additional benefits as 
compared to currently available techniques are better robustness to noise, limited time 
samples, and correlation of the sources, and the lack of need for accurate initialization. We 
have demonstrated the effectiveness of the proposed approach through a number of 
experiments. 

 

                                                 
8 To obtain this plot, we have used the adaptive grid refinement approach from Section 5 to obtain point 
estimates not limited to the initial coarse grid. 



Here we have considered a basic array processing scenario, involving narrowband 
sources in the far-field of the array, and known sensor locations. Various extensions of our 
framework can be found in [3]. The first such extension is the near-field case, which only 
requires changing the manifold matrix used in our approach so that it is parameterized by two 
spatial coordinates, range and DOA, rather than just DOA as in the far-field case. The second 
extension is to the case of multiband and broadband signals. We have developed two versions 
of our technique for this case, the first one involving independent narrowband processing at 
each frequency band, and the second one involving joint processing at all bands. The latter 
approach is especially powerful, since it allows prior information about the temporal 
spectrum of the signals to be incorporated as well. For example, if we know that we are 
looking for harmonics (e.g., due to sources that involve a fundamental band and several 
harmonics at unknown frequencies), we can impose a sparsity prior for the temporal 
spectrum. Note that a similar sparsity constraint could be imposed in the time domain for 
bursty sources (i.e., ones in which signal energy is concentrated in an unknown subset of time 
points). The final extension we would like to mention involves the problem of uncertainties in 
the sensor locations. We have generalized our optimization-based framework to perform joint 
source localization and self-calibration for moderate location uncertainties.  
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