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Abstract

It is important for drowsiness detection systems
to identify different levels of drowsiness and respond
appropriately at each level. This study explores how to
discriminate moderate from acute drowsiness by ap-
plying computer vision techniques to the human face.
In our previous study, spontaneous facial expressions
measured through computer vision techniques were
used as an indicator to discriminate alert from acutely
drowsy episodes. In this study we are exploring which
facial muscle movements are predictive of moderate
and acute drowsiness. The effect of temporal dynamics
of action units on prediction performances is explored
by capturing temporal dynamics using an overcomplete
representation of temporal Gabor Filters. In the final
system we perform feature selection to build a classifier
that can discriminate moderate drowsy from acute
drowsy episodes. The system achieves a classification
rate of .96 A’ in discriminating moderately drowsy
versus acutely drowsy episodes. Moreover the study
reveals new information in facial behavior occurring
during different stages of drowsiness.

Keywords-Moderate versus Acute Drowsiness Detec-
tion ;Facial Expression Recognition; Temporal Dynamics

I. Introduction

The computer vision field has advanced to the point

that we are now able to begin to apply automatic

facial expression recognition systems to explore human

facial behavior in the state of drowsiness. Most of

the published research on computer vision approaches

to detection of fatigue has focused on the analysis

of blinks, yawns, and head movements. However the

effect of drowsiness on other facial expressions have

not been studied thoroughly. Gu & Ji presented one of

the first fatigue studies that incorporates certain facial

expressions other than blinks. Their study feeds action

unit information as an input to a dynamic Bayesian

network. The network was trained on subjects posing

a state of fatigue [1]. In our work we mine datasets

of real drowsiness to learn signals of fatigue. In our

previous study we focused on detecting crash episodes

versus alert episodes [2][3]. Yet a safety system would

benefit from detecting finer levels of drowsiness then

alert vs crash. Here we seperate moderate from acute

drowsiness. The objective of this study is to discover

which action units predict moderate and acute drowsi-

ness. In this study, facial motion was analyzed auto-

matically from video by using a fully automated facial

expression analysis system based on Facial Action

Coding System (FACS). We employ an overcomplete

representation of Gabor filters to discriminate moderate

from acute drowsiness.

II. Methods

A. Driving Task

Subjects drove a virtual car simulator on a Win-

dows machine using a steering wheel 1 and an open

1ThrustMaster steering wheel
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source multi-platform video game 2 . The simulator

displayed the driver’s view of a car through a computer

terminal. The windows version of the video game was

maintained such that at random times, a wind effect

was applied that dragged the car to the right or left,

forcing the subject to correct the position of the car.

This type of manipulation had been used in monitoring

the dynamics of alertness in a compensatory tracking

task [4]. Subjects were asked to drive until falling

asleep for a maximum of 4 hours. Driving speed was

held constant. Video of the subjects’ face was recorded

using a DV camera for the entire session. Subjects

drove in dim light from one 60 watt diffuse desk lamp.

During this time subjects fell asleep multiple times thus

crashing their vehicles. Episodes in which the car left

the road (crash) were recorded.

Subject data were partitioned into 2 groups labeled

as “moderately drowsy” (MD) and “acutely drowsy”

(AD). The one minute preceding a sleep episode or

a crash was identified as an acutely drowsy state.

Moderately drowsy episodes were selected from the

first 10 minutes of the driving task. The average time

to initial crash had a mean of 25 minutes over subjects.
3 5 one minute moderately drowsy episodes that are

farthest away from a crash point were selected for each

subject. Subjects had a mean of 46 acutely drowsy

episodes ranging from 3 to 244.

B. Facial Action Coding

The facial action coding system (FACS) [5] is one

of the most widely used methods for coding facial

expressions in the behavioral sciences. The system

describes facial expressions in terms of 46 component

movements, which roughly correspond to the individ-

ual facial muscle movements. An example is shown in

Figure 1. FACS provides an objective and comprehen-

sive way to analyze expressions into elementary com-

ponents, analogous to decomposition of speech into

phonemes. Researchers have been developing methods

for fully automating the facial action coding system

[6][7]. In this paper we apply a computer vision system

trained to automatically detect FACS to data mine

facial behavior under driver fatigue.

C. The Computer Expression Recognition
Toolbox (CERT)

CERT, developed by researchers at Machine Percep-

tion Laboratory UCSD [6], is a user independent fully

automatic system for real time recognition of facial

2Torcs
3In our previous study average time to first crash after an alert

episode was 60 minutes

Figure 1. Example facial action decomposition
from the Facial Action Coding System [5].

actions from the Facial Action Coding System (FACS).

This study uses the output of CERT as an intermediate

representation to study fatigue and drowsiness. The

system automatically detects frontal faces in the video

stream and codes each frame with respect to 20 Action

units.

III. Results

11 subjects who were able to fall asleep and

recorded under dim light conditions were selected for

the analysis. Our initial analysis focused on the predic-

tion power of individual action units in discriminating

moderate versus acute drowsiness.

A. Prediction Power of Individual Action
Units in Discriminating Moderate versus Acute
Drowsiness

Here our goal is to explore the prediction power

of individual action units in discriminating moderate

versus acute drowsy episodes. Each one minute MD

and AD episode is partitioned into 6 non-overlapping

10 second patches. The 10 second patches that contain

face occlusions or false alarms in face detection oc-

curring in more than 30 video frames (1 second) were

eliminated. Subjects had a mean of 27 MD patches

and 177 AD patches. In our first analysis we focus on

discriminating the AD and MD patches by employing

raw action unit output.

Raw Action Unit Output : Averages of raw action

unit outputs were computed over 10 second patches

of individual CERT action unit outputs. The mean

intensity of each of the 20 AU’s comprised the input

to an MLR, which was trained to predict moder-

ately versus acutely drowsy. We tested generalization

to novel subjects with leave-one-out cross validation

training procedure. Performance was first tested for

each AU individually. The performance measure was

Area Under the ROC curve (A’). Individual action

unit discriminability measure is estimated by averaging

over all test subject A’s. Using this method we can

highlight the action units that are informative for a

person independent system. This analysis was repeated
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for all the action units. Table I displays the individual

action unit mean A’ estimates for most informative 5

action units. The 5 most informative units were (1) Eye

Closure (AU45) with an A’ of 0.83 (2) Lip Puckerer

(AU18) with an A’ of 0.82 (3) Head Roll with an

A’ of 0.77 (4) Lid Tightener (AU7) with an ROC of

0.71 (5) Nose Wrinkle (AU9) with an A’ of 0.69.

Previous approaches to drowsiness detection primar-

ily associate drowsiness with blink rate, eye closure,

yawning and head nodding (downward movement).

This study shows that in addition to eye closure, head

roll ( sideways movement), Lid Tightener, Lip Pucker

and Nose Wrinkle are strong predictors of moderate

versus acute drowsiness.

Action Unit A’ Standard Error

AU 45 0.8346 0.0587

AU 18 0.8247 0.0367

Head Roll 0.7761 0.0723

AU 7 0.7175 0.0884

AU 9 0.6951 0.0702

Table I. A’ performance results for the output of the
raw action unit outputs over individual action units.

Temporal Dynamics of Action Units : Averaging

the AU outputs over 10 second segments may lose

important information about dynamics. Consider for

example, the data displayed in Figure 2. The figure

displays the output of AU 45 (eye closure) signal for

an AD and MD patch. In the first signal the subject

closes his eyes towards the end whereas in the second

case the subject is constantly blinking. The averages

of the eye closure signal for these two patches are

equal. Thus the raw action unit output approach (mean

filtering) would not be able to differentiate these two

episodes. However the temporal analysis of action units

can bring additional information that could help to

discriminate these two patches.

Figure 2. This figure displays a case where temporal
dynamics plays an important role in discriminating
two cases.

In order to capture the temporal dynamics, we pass

the AU outputs through a bank of temporal Gabor

Filters. Gabor filters are sine or cos gratings modulated

by a Gaussian. A set of Gabor energy (Magnitude

Gabor), Gabor cosine carrier (Real Gabor) and Gabor

sine (Imaginary Gabor) filters were convolved with

10 second patches of CERT action unit outputs. Here

the real and imaginary Gabor filters are linear filters

whereas the magnitude Gabor filter is a nonlinear

filter, outputting the energy over the temporal signal

consisting of the root sum square of the sine and cosine

filters. The bank of filters consisted of 306 frequency

and bandwidth combinations with 18 frequencies and

17 bandwidths. The Gabor filter frequencies used for

the analysis have the following values : 8.0, 7.0, 6.0,

5.0, 4.0, 3.0, 2.25, 1.6875, 1.2656, 0.9492, 0.7119,

0.5339, 0.4005, 0.3003, 0.2253, 0.1689, 0.01 0. The

bandwidths have the same values excluding zero fre-

quency. For each 10 second AD or MD patch 918

filter outputs were obtained: (306 filters, 18 frequencyx

17 bandwidth) for each of the Magnitude, Real and

Imaginary Gabor filters. Mean filter output over each

10 second clip comprise the input to an MLR classifier

for each action unit. There were 918 features for

each 10 second AU signal. Next we performed feature

selection to find out relevant features for each action

unit.

Feature Selection : The goal for this analysis is

to select relevant features from the 918 Gabor filter

possibilities for an individual action unit. An iterative

feature selection scheme was followed: First the feature

with the best performance was selected and then the

next feature that achieves the best performance com-

bined with the previously chosen feature is selected

and the iteration continues in this fashion. Performance

of a feature set was estimated by generalization to

novel subjects using cross validation. The average of

novel test subject A’s gave the discriminability power

performance for this feature set. We tried 1 to 10

features. The 5 most dicriminant action units found

in the raw action unit analysis were considered for

the evaluation of the performance in the temporal

dynamics approach.

The A’ performance obtained with an L2 regular-

ized MLR model using different number of features

are displayed for eye closure action unit (AU45) in

Figure 3. As the performance saturates with 10 features

we stopped after picking 10 features. The highest

discriminability for eye closure was obtained with

regularization constant 0 and using 10 features. Notice

that the raw AU output was able to obtain an average

A’ of 0.83 for eye closure (AU45) whereas we obtain

0.9, better performance with temporal Gabors.

Figure 4 displays the performances of 5 most pre-

dictive action units with the raw action unit output

(blue) versus the best Gabor model (red) for that action

unit.
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Figure 3. A’ performance for Action Unit 45
(eye closure) with Raw Output (1 feature) and Gabor
Models with features from 1 to 10.

Figure 4. Bar graph displaying the performances
for 5 best performing action units with the raw action
unit output and the best model of Gabor Filter outputs.

IV. Combining Multiple Action Units

The features of best performing fi ve action units in

the single AU Gabor output models were combined

to build a person independent drowsiness detector.

Except Head Roll achieving the best performance with

8 features other four action units had a set of 10

best features resulting in a total of 48 features. An

iterative feature selection procedure was performed.

Up to 10 features with regularization constants were

explored with an L2 regularized MLR model. MLR

model was trained by leaving one subject out at a time.

The results for the selected best feature sets from a

set of 48 possible features was displayed in Figure 5.

The highest discriminability A’ performance of .96 was

obtained for the combined action units with temporal

Gabors with 10 features and regularization constant

0.01. Note that the highest A’ performance of .96 cuts

the error in half when compared with the highest A’

performance of .90 for eye closure action unit (AU 45).

Hence combining other action units helped to build a

more accurate person independent drowsiness detector.

Figure 5. A’ performance for the combined action
units with Raw Output (1 feature) and best Gabor
features from 3 to 10 .

V. Conclusion

In this study we found that temporal analysis with

diction performance for all action units. Here the

ative to our previous study. In our previous study

comparing alert states to acute drowsy, we found that

the Nose Wrinkle (AU9), Eye Closure (AU 45), Eye

Brow Raise (AU2), Chin Raise (AU17), Yawn (AU26),

Head Roll ( Sideways Movement) were some of the

most discriminative action units (Vural et al. 2007).

In the present study comparing moderately drowsy to

acutely drowsy, Eye Closure, Nose Wrinkle and Head

Roll also differentiate. However there were also some

differences : Lip Pucker (AU18), Lid Tightener (AU7)

could differentiate acute versus moderate drowsiness.

Finally this work shows that automated expression

ent levels of drowsiness (alert from acutely drowsy),

but can also make more the operationally relevant

distinction between moderately and acutely drowsy.

Temporal dynamics of facial action carries crucial

information for this distinction.
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