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ABSTRACT

We consider the problem of jointly forming images and characterizing anisotropy from wide-angle synthetic
aperture radar (SAR) measurements. Conventional SAR image formation techniques assume isotropic scatter-
ing, which is not valid with wide-angle apertures. We present a method based on a sparse representation of
aspect-dependent scattering with an overcomplete basis composed of basis vectors with varying levels of angular
persistence. Solved as an inverse problem, the result is a complex-valued, aspect-dependent response for each
spatial location in a scene. Our non-parametric approach does not suffer from reduced cross-range resolution
inherent in subaperture methods and considers all point scatterers in a scene jointly. The choice of the overcom-
plete basis set incorporates prior knowledge of aspect-dependent scattering, but the method is flexible enough to
admit solutions that may not match a family of parametric functions. We enforce sparsity through regularization
based on the ℓk-norm, k < 1. This formulation leads to an optimization problem that is solved through a robust
quasi-Newton method. We also develop a graph-structured interpretation of the overcomplete basis leading to-
wards approximate algorithms using guided depth-first search with appropriate stopping conditions and search
heuristics. We present experimental results on synthetic scenes and the backhoe public release dataset.

Keywords: synthetic aperture radar, wide-angle imaging, anisotropy, sparse signal representation, image for-
mation, inverse problems

1. INTRODUCTION

Wide-angle synthetic aperture radar (SAR) imaging has come to the fore recently due to advances in navigation
and avionics technologies that permit the synthesis of very long apertures. In principle, wide-angle measurements
allow for the formation of images finely resolved in the cross-range direction. However, conventional image
formation techniques are not adequate for dealing with data collected over wide-angle apertures for a number
of reasons. One issue, and the focus of this paper, that arises with wide-angle apertures is that dependence
of scattering behavior on aspect angle, termed anisotropy, becomes prominent because objects are viewed from
different sides rather than from nearly the same point of view. This is in opposition to narrow-angle imaging,
where it is a fairly reasonable assumption that scattering amplitude is constant over the aperture. In conventional
image formation techniques, the failure to model angle dependence results in an averaging over that variable,
leading to inaccurate scattering estimates. In addition, the anisotropy level of scatterers is not characterized.
Yet, anisotropy characterization may be used as a feature for automatic target recognition and for improved
image formation.

The problem of detecting, estimating, and modeling aspect-dependent scattering behavior has received at-
tention lately. Anisotropy characterization methods may be broadly categorized into those that operate in the
phase history domain, employing parameterizations for angle-dependent scattering, and those that operate in
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the image domain. The general parametric approach is to posit a parametric model for angle dependent scat-
tering, often motivated by electromagnetic theory, and estimate the model parameters, leading to a well-defined
estimation problem.1–4 Image-domain methods use a multiaperture approach for characterizing anisotropy.5–11

Subaperture images are formed, either conventionally or using an enhanced image formation technique, from
segments of the measurements divided in aspect angle. The sequence of subaperture images then gives an in-
dication of the persistence of the scatterers in the scene. It should be noted that the subaperture images have
poorer cross-range resolution than an image formed from the full aperture would. Also, subapertures are of fixed
angular extent; consequently, any subaperture analysis is limited in its ability to characterize anisotropy persis-
tence. Parametric methods and image-domain methods have been shown to work well in different situations.
Notably, the parametric models incorporate much prior information about expected scattering behavior. Also,
the estimated parameters have physical significance, e.g. a parameter corresponding to the physical length of the
scattering mechanism. The image-domain methods are robust, easy to reason about conceptually, and can be
applied to already formed images.

The parametric model formulation of the anisotropy characterization problem is of course predicated on
the correct modeling of natural phenomena. However, parametric models often do not hold in wide-angle
imaging scenarios.10 Within the image-domain methods, a subaperture pyramid framework with overlapping
subapertures of various angular extents moves towards allowing a continuum of aspect angle extents, but is still
limited to full-, half-, quarter-, · · · -, apertures.12 Also, in most techniques, the characterization of anisotropy
in different spatial locations (different pixels) is done independently.

In this paper, we consider an inverse problem formulation utilizing an overcomplete basis and sparsifying regu-
larization for joint image formation and anisotropy characterization in wide-angle SAR. Sparsifying regularization
has been applied to inverse problems including acoustic source localization13 and isotropic SAR imaging,14 but
has not previously been applied to the SAR anisotropy characterization problem. While still taking advantage of
prior information, this method is flexible enough to admit solutions that are not from a prespecified parametric
family. It jointly treats spatial locations and suffers no reduction in cross-range resolution. We also develop a
graph-structured interpretation of our overcomplete basis leading towards novel approximate algorithms to solve
the inverse problem. These algorithms, having reduced memory requirements, may well find application in a
wide variety of sparse signal representation settings beyond the specific problem of anisotropy in SAR.

Sec. 2 describes our framework for bringing the SAR image formation and anisotropy characterization applica-
tion together with the inverse problem–sparsity mathematical formalism. Specifically, an overcomplete expansion
of the point-scattering observation model is proposed, along with a discussion on the choice of vectors for the
expansion. In Sec. 3, we build upon the framework of the previous section, describing methods of solving the
inverse problem while imposing sparsity. A quasi-Newton method14 and greedy graph-structured algorithms are
applied to the problem. In Sec. 4, examples with synthetic data, with a scene composed of realistic canonical
scatterers, and a scene containing the backhoe loader of the Backhoe Data Dome15 are given. We provide some
discussion of the results in the concluding section.

2. OVERCOMPLETE BASIS FORMULATION FOR ANISOTROPY
CHARACTERIZATION AND IMAGE FORMATION

In this section, we describe a formulation of the anisotropy characterization problem which differs from the
subaperture and parametric formulations mentioned in Sec. 1. The problem is approached by constructing an
overcomplete basis and appropriately using the phase history measurements. An overcomplete basis, also known
as an overcomplete dictionary, is more than a basis, i.e. a collection containing more vectors than necessary
to span the space and hence, a linearly dependent set. The idea is to expand the aspect-dependent scattering
function s(θ) at each spatial location as a superposition of basis vectors and then determine coefficients for those
vectors. The first part of the section leaves the overcomplete basis fully general; the section concludes with a
consideration of specific basis choices.

2.1. Anisotropy Characterization Inverse Problem

In two-dimensional imaging, the goal is to determine the complex-valued scattering function of a ground patch
s(x, y), where x and y are coordinates with origin at the center of that ground patch in the range and cross-range



directions, respectively. However, due to anisotropy, scattering depends on aspect angle θ, with the scattering
function taking the form s(x, y, θ). In our work, we aim to jointly characterize anisotropy and form images
by determining this function s(x, y, θ). The starting point for our overcomplete expansion is the phase history
observation model for point scattering centers with anisotropy, given below.

r (f, θ) =
P

∑

p=1

s (xp, yp, θ) exp

{

−j
4πf

c
(xp cos θ + yp sin θ)

}

,

where c is the speed of propagation and f is the frequency of the radar measurements. For a single spatial
location p, we expand the aspect-dependent scattering as follows:

s (xp, yp, θ) =
M
∑

m=1

ap,mbm (θ) ,

yielding the following overall M ·P vector basis expansion:

r (f, θ) =
P

∑

p=1

M
∑

m=1

ap,mbm (θ) exp

{

−j
4πf

c
(xp cos θ + yp sin θ)

}

.

Isotropic scattering is a special case of the above expression with M = 1 and b1(θ) constant.

Assuming that the phase history measurements are at K discrete frequencies and N discrete aspect angles,

let us define length N vectors rk = r(fk, θ), bm = bm(θ), and εk,p = exp
{

−j 4πfk

c
(xp cos θ + yp sin θ)

}

. Then,

taking φk,p,m = bmεk,p, the basis expansion may be simply expressed as:

rk =
P

∑

p=1

M
∑

m=1

ap,mφk,p,m, k = 1, . . . , K. (1)

The inverse problem is to determine the M ·P complex-valued coefficients ap,m that satisfy or approximately
satisfy the linear equations (1). We choose the number of basis vectors M such that M > N , making the basis
overcomplete.

Now, let us move to matrix-vector equations to simplify the discussion. The collection of all phase history
measurements can be stacked as the following tall N ·K-vector r.

r =











r1

r2

...
rK











.

The set of all basis vectors at a particular frequency fk and spatial location (xp, yp) can be collected into a
matrix Φk,p =

[

φk,p,1 φk,p,2 · · · φk,p,M

]

. In the same manner, the bm vectors can be concatenated into a

matrix B =
[

b1 b2 · · · bM

]

. These two matrices are related by the expression Φk,p = B •
(

εk,p1
T
M

)

, where
M1 • M2 is the elementwise multiplication of matrices M1 and M2, and 1M is the M -vector of all ones. The
factor B is subject to design in the anisotropy characterization procedure, but εk,p is fundamental to the SAR
phase history measurements. The choice of B is discussed in the second half of this section.

Putting together all frequencies and spatial locations, the overall overcomplete basis Φ is:

Φ =











Φ1,1 Φ1,2 · · · Φ1,P

Φ2,1 Φ2,2 · · · Φ2,P
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Figure 1. Illustration of matrix B for N = 7.

Each column of the matrix Φ is a basis vector of the overcomplete basis.

Defining the length M ·P vector of coefficients as a =
[

a1,1 a1,2 · · · a1,M a2,1 · · · aP,M

]T
, the state-

ment r = Φa in matrix-vector form is completely equivalent to the summation form (1). In this form, it is
readily apparent that there are N·K linear equations with M·P unknowns and M > N . Often in the choice of B,
M ≫ N , so regardless of P and K, M ·P > N ·K and the system is an underdetermined set of linear equations.
Our formulation also readily deals with the noisy case: r = Φa+n, where n is an additive noise term. We delay
discussion of solving this inverse problem for a to Sec. 3.

By forming this Φ matrix, the spatial locations are treated jointly within one system of equations, capturing
the combined influence of multiple scatterers on individual angle-frequency measurements. The first M elements
of a depend on the first spatial location p = 1, elements M + 1 to 2M of a depend on the second position p = 2,
and so on. Thus, by setting up the problem in this manner, it is possible to decompose the phase history data
into contributions from different point scatterers at different locations and in the process, characterize amplitude
and anisotropy for each one. As a notational convenience, we define ap to be the M -vector of coefficients
corresponding to position p and:

Φp =











Φ1,p

Φ2,p

...
ΦK,p











to be the subset of basis vectors corresponding to position p. There is no requirement that all spatial locations
under consideration contain a scatterer. If there is no scatterer at a particular spatial location p, then all of the
elements of ap should come out to be zero. It is thus possible to use a grid of pixels as the set of potential spatial
locations where scatterers might exist. We now discuss the specific choice of basis vectors for the overcomplete
basis Φ.

2.2. Choice of Basis Vectors

The overcomplete basis set is to be chosen such that its cardinality is much greater than the dimension of θ and
linear combinations of very few basis vectors accurately represent plausible angle-dependent scattering behaviors.
In the selection of the overcomplete basis Φ, we are free to choose B; the choice of B is a way to incorporate
prior information about angle-dependent scattering.

Methods employing subaperture analysis and parametric models expect to find contiguous intervals in θ for
which there is non-zero scattering. Similarly here, basis vectors are chosen such that contiguous segments of
anisotropy are represented by a single basis vector. However, our formulation allows the representation of non-
contiguous segments through the combination of multiple basis vectors. The bm are chosen to be pulses with
all possible angular extents and all possible starting angles, in other words all widths and shifts. For example, if
N = 7 and the pulse shape is rectangular, then b1, the isotropic vector, is [1 1 1 1 1 1 1]

T
, b2 = [1 1 1 1 1 1 0]

T
,

b3 = [0 1 1 1 1 1 1]
T
, and the final pulse with the finest anisotropy bM = [0 0 0 0 0 0 1]

T
. The bm have unit

maximum amplitude; solving the inverse problem gives the complex amplitude coefficients a. The full set B for
N = 7 is illustrated in Fig. 1. The dots represent entries that have a non-zero value and spaces without dots
represent zero-valued elements. For this choice of basis vectors, M = 1

2N2 + 1
2N . Various pulse shapes, not just



Figure 2. Graph-structured representation of B.

rectangular pulses, may be seamlessly enlisted in the overcomplete basis, e.g. triangle, raised triangle, windowed
Gaussian, and Hamming pulse shapes.

The collection B described above has a nice, intuitive graph-structured interpretation. The vectors bm can
be arranged as nodes in a graph. The graph is given in Fig. 2 for N = 8, with nodes labeled to the left with
their corresponding b vectors when the pulse shape is rectangular. The labels inside the nodes may be ignored
for now. The graph has N levels, with the root node being the isotropic basis vector; traversing down the graph
corresponds to decreasing angular extent of anisotropy. A graph of this form is referred to as an N -level basis

graph in the remainder of this paper. This structure will be useful in the development of greedy algorithms in
the next section, which discusses methods to solve the inverse problem r = Φa.

3. METHODS OF SOLUTION TO THE INVERSE PROBLEM

From linear algebra, we know that the underdetermined system of linear equations (1) has no unique solution.
Furthermore, the overcomplete basis Φ is designed to allow for the representation of the phase history measure-
ments with few basis vectors. Thus the inverse problem is a sparse signal representation problem – among the
infinite number of solutions, our formulation favors those solutions that are sparse, i.e. those solutions a whose
ℓ0-norm is small.

Finding the solution that minimizes ‖a‖0 is a combinatorial optimization problem, but greedy approaches
such as matching pursuit, and relaxations such as the ℓ1 relaxation matching pursuit have been developed. A
sparsifying regularization approach incorporating a quasi-Newton optimization algorithm, originally developed
for feature-enhanced SAR image formation14 but applicable to a variety of sparse signal representation problems,
is an alternative method. The objective is to find the solution that minimizes the cost function J(a), containing
two terms, a data fidelity term and a sparsifying term. Specifically, the form of the cost function is:

J (a) = ‖r− Φa‖2
2 + α ‖a‖

k

k , k < 1. (2)

The ℓk-norm with k < 1 has a sparsifying effect. The scalar α is a regularization parameter that trades off data
fidelity and sparsity. Details of this robust method may be found in Ref. 14.

In theory, there is no restriction on the size of the problem that the quasi-Newton method can be applied to.
However, the number of columns of Φ, which is O(N2P ) for the overcomplete basis choice discussed in Sec. 2.2,



is restrictive in terms of memory as well as computation for realistic imaging scenarios with hundreds of angle
samples and spatial locations. In this section we develop a greedy algorithm with reduced memory requirements
taking advantage of the graph structure described in Sec. 2.2.

In the N -level basis graph, the nodes represent the basis vectors in the overcomplete basis. The basis is
designed such that a few or often just one basis vector per position p′ is sufficient to represent the aspect-
dependent scattering function s(xp′ , yp′ , θ). Thus, the sparse signal representation problem may be reformulated
as a search for a node or a few nodes on the basis graph. In addition to finding nodes, complex amplitudes
must also be determined. In general, there are P > 1 spatial locations in the problem, and consequently P

coexisting basis graphs. Thus, to solve the problem, there is not just one search to be done, but P simultaneous
searches. To be most effective, these searches should not be performed independently, but rather should interact
and influence each other.

We propose a search strategy akin to guided depth-first search per basis graph, which follows a single path
down from the root looking for the goal. Each step in the search is based on a heuristic. If the bottom of the
graph is reached without finding the goal, then there is back-tracking also based on the heuristic. Nodes in the
basis graph have two children; when progressing downwards during the search, the heuristic is used to determine
whether the next step is the left or right child node. Unlike standard graph search problems, in our problem it
is not obvious when to terminate the search, so we also need to specify stopping conditions.

Our search heuristic and stopping criterion is founded on solving the inverse problem not with the full set of
basis vectors, but with a subset of basis vectors. Let us consider an m-level basis graph, m ≪ N , with its root
at the current node of the search, termed the guiding graph, as this subset of basis vectors. The search process
will move the guiding graph around through the N -level basis graph.

Intuition about the problem suggests that if the basis vector corresponding to true scattering behavior is
not included in the guiding graph when the inverse problem is solved in a sparsity enforcing manner, then the
resulting solution coefficient vector a will have a non-zero coefficient for the basis vector most ‘similar’ to the
truth. In terms of the N -level basis graph, intuition suggests that if the true coefficient is far down in the basis
graph, but the inverse problem is solved with only basis vectors from a guiding graph near the top of the N -level
basis graph, then coefficients in the first m− 1 levels will be zero and coefficients in level m may be non-zero. In
the same vein, if the guiding graph is rooted below the true coefficient, then the root coefficient may be non-zero
and the coefficients in levels two through m will be zero. Again, intuition suggests that if the guiding graph is
such that it contains the true coefficient, then the true coefficient will be non-zero and the rest of the coefficients
zero.

Before arriving at the search procedure and heuristics, let us first confirm the above intuition through exper-
imentation for N = 400, m = 8, and implicitly P = 1. The 400 angle samples are over the interval [−55◦, +55◦],
the number of frequencies K = 3 with values 7.047 GHz, 7.059 GHz, and 7.070 GHz, and the regularization
parameter α = 150. The 8-level guiding graph contains 36 nodes. In the first experiment, with results in Fig. 3,
the guiding graph is fixed with root at the left-most node of level 200 in the basis graph. The true scattering
behavior is varied from isotropic, to anisotropic with medium angular extent, to anisotropic with just one angle
sample non-zero. In terms of the 400-level basis graph, the true coefficient is varied, starting at the root node,
through all nodes along the left edge of the graph, to the left-most node of level 400, as diagrammed in the left
portion of Fig. 3. The large triangle is the 400-level basis graph, the tiny filled triangle is the fixed guiding graph,
and the arrows along the left edge indicate the variation of the true node. In the two plots, the angular extent
of the true scattering behavior is plotted on the horizontal axis. In the top plot, the coefficient magnitudes for
all 36 coefficients associated with the basis vectors in the guiding graph are plotted on the vertical axis, whereas
in the bottom plot, coefficient magnitudes are indicated by shading (white is zero) and each horizontal strip is
for each of the 36 different coefficients. The coefficient values are obtained by solving the inverse problem using
the quasi-Newton method. Most coefficients are zero for all true scattering behaviors in this experiment. Lines
on the plots are labeled in correspondence with node labels in Fig. 2. The figure shows that in agreement with
intuition, in the regime where the guiding graph is below the true coefficient, the root node (node h) is non-zero.
In the regime where the guiding graph covers the true coefficient, the correct node is non-zero. Also in agreement
with intuition, when the guiding graph is above the true coefficient, the node in the last level closest to the truth
(node a) is non-zero and others are zero.
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Figure 3. Coefficient magnitudes in m-level guiding graph as true scattering behavior is varied from isotropic to highly
anisotropic. The m-level guiding graph is fixed with top node having angular extent 55.3◦ and mth row nodes having
angular extent 53.1◦.
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Figure 4. Coefficient magnitudes in m-level guiding graph as center angle of true scattering behavior is varied. The
m-level guiding graph is fixed, covering center angles [−1.0◦, +1.0◦].

The experiment yielding the results of Fig. 4 has the same setup, but the guiding graph is fixed with root at
the center node of level 200 instead of the left-most node. The true node is varied from left to right across the
basis graph at level 210, three levels below the bottom of the guiding graph, effectively changing the center angle
of the anisotropy, but leaving the extent constant. This figure is organized in the same manner as Fig. 3, but the
horizontal axis features the center angle rather than angular extent. From these results, first it is apparent that
only nodes in the last level of the guiding graph are non-zero, reconfirming results from the previous experiment.
Second, it can be seen that when the truth is to the left of the guiding graph, the left-most node of the mth level
(node α) is non-zero. Similarly, when the truth is to the right, the right node (node κ) is non-zero; when the



truth is underneath the 8-level graph, nodes along the last level (nodes β-η) are non-zero.

Intuition along with these experimental validations suggests simple stopping conditions and heuristics. One
stopping criterion is to stop when all of the nodes in level m (nodes α-κ) are zero during the search. A heuristic
for the search is also apparent based on the coefficient values of the m nodes in level m. Due to the structure of
the basis graph, each node has two children, so the heuristic will be used to determine whether the next guiding
graph root will be the left child or the right child of the current guiding graph root node. Based on the second
experiment, one reasonable idea is to take the weighted average of the coefficient magnitudes of the bottom
level — the search can then be guided towards the side the average indicates to be stronger. The basis used
in calculating the given heuristic and stopping criterion has O(1) columns for each spatial location and O(P )
columns for P spatial locations, providing savings in terms of memory.

For the case of a single spatial location, P = 1, the algorithm is as follows. The inverse problem r = Φ(i)â(i)

is solved for each iteration i of the search. Then, â(i) is tested for the stopping condition. If the search is to
continue, the heuristic is calculated to determine which one of two choices Φ(i+1) will be. The initial set of basis
vectors Φ(1) is the set with the largest angular extent located in the top m levels of the N -level basis graph. For
the general case of multiple spatial locations, P searches are performed simultaneously, but not independently.

As in the single position case, r = Φ(i)â(i) is still solved on each iteration, but now individual block matrices Φ
(i)
p

evolve based on their corresponding â
(i)
p . For example, the first spatial location’s coefficients â

(i)
1 may satisfy the

stopping condition, in which case Φ
(i+1)
1 = Φ

(i)
1 . The second spatial location’s coefficients may indicate through

the heuristic that the search should proceed to the left child, so Φ
(i)
2 is updated accordingly, and so on. The

overall search terminates when all of the â
(i)
p satisfy the stopping criterion. The P searches are coupled because

the inverse problem is solved jointly for all spatial locations on every iteration. When there are multiple spatial
locations, contributions from different positions interact. As stated, the algorithm allows for contributions from
more than one basis vector per spatial location in the final solution, but those basis vectors must be within the
span of a guiding graph. The guiding graph may be enlarged to allow for contributions from disparate basis
vectors at additional expense, the extreme being to take the guiding graph as the full basis graph.

A number of variations to the basic algorithm presented above may be made that further reduce memory
or computation. First, the back-tracking component of the algorithm may be removed; if the search terminates
before reaching a leaf, then this does not change anything. Without back-tracking, the search becomes greedier
and takes O(N) iterations, whereas with back-tracking there are O(N2) iterations. The guiding graph need not
be an m-level basis graph; for example, the graph may be thinned and include the top level, bottom level, and a
few intermediate levels rather than all intermediate levels. A further approximation can be introduced into the
search without back-tracking to reduce the average-case dependence of the number of total basis vectors on P .
We can fix the contribution from a spatial location after its coefficients have been found. In the algorithm, this
implies that once the stopping criterion is met and maintained for a few iterations at position p, the observation
data r is updated to be r′ = r−Φpap, and Φp is removed from matrix Φ, thereby reducing the number of columns
in Φ. This list of variations is far from exhaustive. The next section gives examples of using our formulation for
anisotropy characterization.

4. EXAMPLES

In this section, we present three examples of anisotropy characterization; the first uses the quasi-Newton method
on a scene with XPatch data of canonical point scattering, the second uses the graph-structured algorithm on
synthetic data, and the last uses the graph-structured algorithm on the backhoe dataset. The first two examples
are mainly for illustrative purposes.

In this first example, there are four spatial locations (pixels) at (0, 0), (0, 1
2 ), (1

2 , 0), and (1
2 , 1

2 ) meters. We use
measurements at K = 3 frequencies 9 GHz, 9.016 GHz, and 9.032 GHz over the N = 50 angle samples equally
spaced over a 98◦ aperture. Illustrating the fact that all spatial locations need not contain point scattering
centers, in this example, two of the spatial locations have no scatterers. The scattering centers at the other two
spatial locations exhibit realistic, i.e. from XPatch predictions, aspect-dependent scattering behavior. We solve
r = Φa using the pseudo-inverse to obtain the least-squares solution as a baseline for comparison. We also use
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Figure 5. Coefficient vectors a from (a) least-squares solution and (b) sparse solution, with real part ◦ and imaginary
part ×.

the quasi-Newton method with the ℓk-norm having k = 0.1 and the regularization parameter α = 1 to obtain a
solution.

Fig. 5 gives stem plots that show the values of the coefficients in the solution a vectors, the least-squares
solution on the left and the solution with regularization on the right. The stems topped by ◦ give the value of
the real part and the stems topped by ×, the imaginary part. For N = 50, there are M = 1275 basis vectors per
spatial location; the subplots enumerate the corresponding 1275 coefficients from left to right as in Fig. 1. As
expected, the a vector on the right is much sparser due to the ℓ0.1 regularization term. In fact, the coefficients
corresponding to spatial locations without scattering centers are all nearly zero in the sparse solution, whereas
the least-squares solution has many large-valued coefficients.

Now let us inspect what these coefficients map to in terms of estimated s(xp, yp, θ) functions. Fig. 6 shows
the magnitude of the solutions in blue overlaid on the underlying truth in black. The sparse solution is more
accurate in its representation of the underlying truth than the least-squares solution, a consequence of the fact
that basis vectors of contiguous anisotropy are fairly good at sparsely representing realistic aspect-dependence. It
should be noted that the least-squares solution perfectly matches the measurement vector r, whereas the sparse
solution does not, but data fit is not our primary concern. It should also be noted that if we were to perform
image formation without anisotropy characterization, we would have four likely inaccurate pixel values, rather
than four accurate functions of θ.

The first example illustrated the importance of sparsity and gave an indication that contiguous basis vectors
are a reasonable choice. The second example, with 7 scattering centers and N = 1541 angles, shows the operation
of the graph-structured algorithm using synthetic data. The aperture is from −10◦ to +100◦ and the scattering
centers have anisotropy of varying angular extents with a raised triangle pulse shape. Note that in this example,
we use raised triangle pulse shapes for the bm vectors as well. As a preprocessing step, we first locate the
scattering centers by peak extraction on a conventionally formed image. In this example, the extracted scatterer
locations are within 4 mm of the truth, with the main source of error being the discrete grid of pixels in the
conventionally-formed image. The conventional image and the extracted scattering center locations are shown
in Fig. 7c. Then with P = 7 and using measurements at the K = 3 frequencies 7.047 GHz, 7.059 GHz, and 7.070
GHz, we run the graph-structured algorithm without back-tracking and with the search heuristic and stopping
condition discussed in Sec. 3. The guiding graph has 16 levels.

The simultaneous searches are shown in Fig. 7a, where the 1541-level basis graph is indicated by the triangular
outline. The resulting s(xp, yp, θ) estimate magnitudes are shown in Fig. 7b as blue lines overlaid on the black
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Figure 6. Magnitude of characterized anisotropy from (a) least-squares solution and (b) sparse solution, plotted in blue
overlaid on truth.

1 2

3 4

5 6

7

0

1.5

 θ| s
( 

x 1,  
y 1, θ

)|

0

1.5

 θ| s
( 

x 2,  
y 2, θ

)|

0

1.5

 θ| s
( 

x 3,  
y 3, θ

)|

0

1.5

 θ| s
( 

x 4,  
y 4, θ

)|

0

1.5

 θ| s
( 

x 5,  
y 5, θ

)|

0

1.5

 θ| s
( 

x 6,  
y 6, θ

)|

0

1.5

 θ| s
( 

x 7,  
y 7, θ

)|

Cross−range (m)

R
an

ge
 (

m
)

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

(a) (b) (c)

Figure 7. Results of example using graph-structured algorithm: (a) search paths, (b) solution s(xp, yp, θ) overlaid on
truth, and (c) color-coded anisotropy center.
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Figure 8. Results of backhoe example using graph-structured algorithm: (a) color-coded anisotropy center, and (b)
sample characterized anisotropies.

truth. The estimates are nearly indistinguishable from the true anisotropies. The center of the anisotropy
is indicated in Fig. 7c as a color, where dark red corresponds to the center angle closest to −10◦ and blue
corresponds to the center angle closest to 100◦, with the colors cycling red to green to blue. The results are
accurate, but moreover, the search paths are fairly direct and would not require back-tracking even if it were
available. We see that the formulation is not restricted to rectangle-shaped basis vectors — other pulse shapes
may be used as well, as long as they can be used to sparsely represent plausible anisotropy.

The final example, with a dataset from the Backhoe Data Dome,15 uses the same algorithm as the previous
example. The data also has N = 1541 angle samples over an aperture from −10◦ to +100◦. P = 75 spatial
locations are extracted from a composite image of conventionally-formed subaperture images11 and then the
greedy graph-structured algorithm is applied to the data with K = 3 and frequencies 7.047 GHz, 9.994 GHz,
and 12.953 GHz. The solution is displayed in Fig. 8a, also color-coded. The characterized anisotropies of a few
scattering centers are also shown in Fig. 8. The solid line indicates our solution, whereas the asterisks show
subaperture pixel values from conventional imaging with overlapping 20◦ subapertures.11 The vertical axes for
the line and the set of asterisks are scaled differently to allow comparison. For the first two scattering centers, the
subaperture pixel values indicate contiguous extents of anisotropy and our algorithm also detects strong responses
at those angles. However, the type of solution we are able to produce is more detailed in θ, especially because the
results indicate that anisotropy persistence is not matched to subaperture width. In the third scattering center,
the subaperture pixel values indicate two disjoint segments of anisotropy. However, the greedy algorithm may
only use basis vectors that lie within a guiding graph to explain the anisotropy. Nevertheless, our algorithm does
the best it can to produce two peaks via a positive-valued guiding graph root coefficient and negative-valued leaf
coefficient. Multiple candidate search is an approach that would allow for better performance in such instances.

5. CONCLUSION

We have presented a novel approach to SAR image formation. The methodology is general in that it can be
applied to a wide variety of overcomplete basis representations. Here we have focused on its utility in describing
anisotropic scattering behavior of complex reflections in wide-angle SAR data. The primary advantage of the
approach derives from a convenient organization of the basis vectors. The structure allows for a computationally
efficient search for the solution of a large sparse regularized inverse problem by evaluating a subset of basis
vectors at each iteration. The method demonstrated excellent results on synthetic data, but more importantly,
characterized anisotropy to a level of fine detail not possible with subaperture analysis on complex scenes such as



the backhoe dataset. Future work will consider extending the formulation to incorporate another issue that arises
in wide-angle imaging, i.e. that certain scattering mechanisms appear to move or migrate in spatial location as
a function of aspect angle. Also, we may consider extending the cost function (2) to include preferences other
than just sparsity among basis coefficients.
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