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Monte Carlo Optimization of Decentralized
Estimation Networks Over Directed Acyclic
Graphs Under Communication Constraints
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Abstract—Motivated by the vision of sensor networks, we
consider decentralized estimation networks over bandwidth-lim-
ited communication links, and are particularly interested in
the tradeoff between the estimation accuracy and the cost of
communications due to, e.g., energy consumption. We employ
a class of in-network processing strategies that admits directed
acyclic graph representations and yields a tractable Bayesian risk
that comprises the cost of communications and estimation error
penalty. This perspective captures a broad range of possibilities
for processing under network constraints and enables a rigorous
design problem in the form of constrained optimization. A similar
scheme and the structures exhibited by the solutions have been
previously studied in the context of decentralized detection. Under
reasonable assumptions, the optimization can be carried out in a
message passing fashion. We adopt this framework for estimation,
however, the corresponding optimization scheme involves integral
operators that cannot be evaluated exactly in general. We develop
an approximation framework using Monte Carlo methods and
obtain particle representations and approximate computational
schemes for both the in-network processing strategies and their
optimization. The proposed Monte Carlo optimization procedure
operates in a scalable and efficient fashion and, owing to the
nonparametric nature, can produce results for any distributions
provided that samples can be produced from the marginals. In
addition, this approach exhibits graceful degradation of the esti-
mation accuracy asymptotically as the communication becomes
more costly, through a parameterized Bayesian risk.

Index Terms—Communication constrained inference, decentral-
ized estimation, graphical models, in-network processing, message
passing algorithms, Monte Carlo methods, random fields, wireless
sensor networks.
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:

Incoming messages to node from its
parents and outgoing messages
from node to its children .

The sets of all possible incoming mes-
sages to node and all possible outgoing
messages from node .
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Observation of node which is a random
draw from the random variable .

Local rule of node .

Space of rules local to node that are
feasible in the network .

In-network processing strategy as a con-
catenation of all local rules.

Space of all feasible strategies over .

Cost function penalizing the communi-
cation and the pair .

Bayesian risk of given .

Person-by-person (pbp) optimal in-net-
work processing strategy.

Cost function local to node .

Function characterizing the pbp op-
timal local rule.

Incoming message likelihood of node
in the pbp optimal strategy.

Cost-to-go function for node in the pbp
optimal strategy.

Forward likelihood message from node
to node in the pbp optimal strategy.

Backward cost message from node to
node in the pbp optimal strategy.

Total conditional cost local to node in
the pbp optimal strategy.

Estimation cost function local to node .

Communication cost function of node .

Unit conversion constant; estimation
penalty per unit communication cost.

Conditional estimation cost local to node
in the pbp optimal strategy.

Conditional cost due to node ’s
communication rule in the pbp optimal
strategy.

In Algorithm 2 , the value taken by in
the iteration.
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element of the sample set gen-
erated from and element of the
sample set generated from .

In Section IV, -step approximation to

In Algorithm 3, approximate evaluation
of in the iteration.

I. INTRODUCTION

T HE introduction of wireless sensor networks and their en-
visioned applications has nurtured the research on decen-

tralized versions of canonical statistical inference problems in
signal processing including detection, estimation and fusion.
Typically, a large amount of observations induced by multiple
quantities of interest are collected by sensor platforms at dis-
tinct locations and possibly in various modes [1]. While this
spatially distributed nature necessitates some communications,
it is often the case that the components rely on limited energy
stored in batteries [2], and transmitting bits is usually far more
costly than computing them in terms of energy dissipation [3].
There are also resource limitations regarding sensing and com-
putations and, therefore, any feasible processing scheme needs
to take the relevant tradeoffs into account and ensure a collabo-
rative operation of the components [4].
This work is motivated by the interest in designing decen-

tralized processing schemes for estimation subject to a number
of constraints regarding communications. The platforms setup
a connected ad hoc network on which it is possible to establish
links between any two nodes and maintain higher level topolo-
gies yielding multi-tier architectures (see, e.g., [5]–[7]). These
links are of finite capacity constraining the set of feasible sym-
bols that can be transmitted over them and vary in length in the
number of hops. The tradeoff between estimation accuracy and
the cost of these transmissions is of concern to us. One possible
way to abstract the energy cost of communications is to consider
the number of hops and utilize a first order radio model for each
hop, i.e., a model of energy dissipation for transmitting and re-
ceiving bits at meters distance (see e.g., [8]).
The phenomenon to be sensed is modeled by a collection

of spatially correlated random variables. Such random-field
models have been proposed in a variety of contexts including
turbulent flow [9, ch. 12] and geostatistics data [10] such as
temperature measurements over a field [11, ch. 1].
Previous work on decentralized estimation includes the

canonical approach that assumes a star topology and band-
width (BW) limited links in which a fusion center (FC) performs
the estimation task based on messages from a finite alphabet
sent by the so-called peripheral sensors. The transmitted sym-
bols are quantized measurements and the design of quantizers
together with a fusion rule is of concern in order to improve
the estimation accuracy in various settings including Bayesian
(e.g., [12] and [13]), non-Bayesian (e.g., [14]), unknown prior
and/or noise distribution (e.g., [15]–[17]), vector valued pa-
rameter (e.g., [18]) as well as the estimation of a random field
(e.g., [19]–[21]). These treatments are limited in capturing
certain aspects of the problem. First of all, the communication
structures for which results can be produced are restricted to

star topologies. Furthermore, the cost of transmissions from
peripherals to the FC, which possibly varies considering the
multi-hop nature, is not explicitly accounted for. Finally, often,
a common random variable is of concern and estimation is
performed only at the fusion center. This restricts the amount
of collaboration among platforms for online processing of
observations and opens up a possibility for a computational
bottleneck in the case of multiple random variables (or a vector
valued state) which can possibly be distributed over the nodes.
We address these limitations through a class of in-network
processing strategies which capture a much broader range of
communication and computation structures.
The decentralized random field estimation strategy in [19]

utilizes bi-directional communications over a star topology and
narrows the interval of uncertainty regarding the common vari-
able based on reciprocal messaging between the fusion center
and the peripherals. However, the variable representing the de-
cision on the partition selection does not provide conditional in-
dependence for the observations, and consequently exact fusion
of the messages is not tractable and Monte Carlo approxima-
tions are employed. Time-evolving random field estimation/pre-
diction through Kalman–Bucy filtering (KBF) is considered in
[22] and [23]. In particular, [23] addresses decentralized esti-
mation through distributing the realization of the KBF, whereas
[22] considers a center for filtering and communication con-
straints through surrogate communication costs and an estima-
tion penalty. In order to reduce the amount of transmissions to
the FC, model reduction is performed by variable selection at
each step in a combinatorial setting. The problem we consider
differs from this work in that, rather than considering a dynam-
ical problem involving the processing of observations collected
at consecutive time steps due to dynamical state transitions and
modifying the model of the static estimation problem arising at
each time step, we are interested in a static problem and op-
timization of a broader class of strategies such that graceful
degradation is featured addressing the tradeoff.
Graphical models together with message passing algorithms

has proved useful for decentralized statistical inference in
sensor networks (see, e.g., [24] and the references therein).
In this framework, efficient statistical inference is achieved
through message passing algorithms over a graph representation
that reveals the probabilistic model underlying the estimation
problem, which is often distinct from any graph representation
of the available links. After mapping the former onto the latter,
a decentralized inference scheme is obtained which can be
realized provided that the underlying communication network
supports the required messaging. It is often the case that the BW
limitations necessitate approximations of the messages which
consequently degrade the inference performance. Although it
is possible to analyze the effects of these errors to some extent
[25], it is hard to solve the problem of designing in-network
processing schemes while taking into account the available
links and capacities together with the cost of transmission over
them (see, e.g., [26, ch. 5]).
We consider a class of in-network processing strategies that

is composed of local communication and computation rules
and operates over a subset of all available links such that a
directed acyclic topology is rendered through the following:
Treating the set of platforms as the vertex set of a graph, each
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node is associated with a (set of) random variable(s) from
a collection, possibly with the variable(s) of a random field
that model the phenomenon of interest at the location of the
platform. Each link is represented by a directed edge starting
from the source and terminating at the sink node. In addition, a
set of admissible symbols that comply with the link capacity is
associated with each edge. Given a set of links that renders a
directed acyclic graph (DAG), a strategy is achieved by having
all nodes produce outgoing messages to their children and an
estimate of the random variables they are associated with, based
on the incoming messages from their parents as well as the
measurements they receive. Given a prior distribution for the
random field and a tractable cost, this class yields a tractable
Bayesian risk under a number of reasonable assumptions.
Hence a rigorous problem setting for decentralized inference
under communication constraints is obtained in the form of
a constrained optimization problem in which the objective
function is a Bayesian risk that penalizes both estimation
errors and the transmissions, and the feasible set of strategies
is constrained by the corresponding graph representation that
captures the availability and the capacity of the links.
This class of decentralized strategies together with the struc-

tures exhibited by the solution have been recently studied in [27]
(see also [28]) in the context of decentralized detection. After a
TeamDecision Theoretic investigation, an iterative procedure is
obtained which, starting from an initial strategy, converges to a
person-by-person optimal one and can be realized as a message
passing algorithm, provided that certain assumptions hold.
We adopt this framework for decentralized estimation in

which the variables of concern take values from denumerable
sets, and hence yield expressions with integral operators that
cannot be evaluated exactly in general. In order to keep the
fidelity to the problem setting, we introduce an approximation
framework utilizing Monte Carlo (MC) methods such that
the particle representations and approximate computational
schemes for the operators replace the original expressions. As a
result, the iterative solution is transformed to MC optimization
algorithms which also maintain the following benefits of the
original scheme: First, this framework enables us to consider
a broad range of communication and computation structures
for the design of decentralized estimation networks. Second, in
the case that a dual objective is selected as a weighted-sum of
the estimation performance and the cost of communications, a
graceful degradation of the estimation accuracy is achieved as
communication becomes more costly. The resulting Pareto-op-
timal curve enables a quantification of the tradeoff of concern.
Under reasonable assumptions, the optimization procedure
scales with the number of platforms as well as the number
of variables involved and can be realized as message passing
algorithms matching a possible self-organization requirement,
provided that certain assumptions hold. Lastly, since the ap-
proach is Bayesian, it is possible to introduce information on
the process of concern through a prior density function. In
addition, the MC optimization scheme we propose features
scalability with the cardinality of the sample sets required and
can produce results for any set of distributions provided that
independent samples can be generated from the marginals.
In the next section, we define the problem in a constrained

optimization setting, and then we present the Team Decision

Theoretic investigation in Section III. In Section IV, we in-
troduce our MC optimization framework for in-network pro-
cessing strategies over DAGs, and in Section V, we demonstrate
the aforementioned features through examples.1 Finally, we pro-
vide some observations together with possible future directions,
and conclude in Section VI.

II. PROBLEM DEFINITION

We start this section with a number of basic definitions about
our graphical representation of the problem and the variables in-
volved in that representation. Then, in Section II-A, we present
the in-network processing paradigm we consider. This para-
digm operates over DAGs for “network constrained online pro-
cessing” of the set of collected observations and was previously
studied in [28]. Subsequently, in Section II-B, we state the de-
sign problem for the processing strategy taking into account
communication constraints in a constrained optimization set-
ting, which is to be solved offline, i.e., before processing the
observations.
We consider sensor platforms dispersed over a region. A

graph represents an online communication and com-
putation structure where each platform is associated with a node

. An edge corresponds to the finite capacity
communication link from platform to on which can transmit
a symbol without errors from the set of admissible sym-
bols which is finite and the number of elements
is in accordance with the link capacity capturing the bandwidth
constraints.2 A particular example of such a network can be seen
in Fig. 3 given in Section V.
Each sensor platform is associated with a set of possibly mul-

tidimensional variables. For example, in a random field esti-
mation scenario, these variables might be the temperature, hu-
midity or the flow vector at some location, possibly at the posi-
tion of the platform. We denote a concatenation of the variables
associated with node by . Let us denote the denumerable
set from which takes values from by . The random vari-
ables to be estimated is the union of those associated with the
platforms and can be represented with a concatenation

, which takes values from
. Similarly, node might be collecting a number of

possibly multidimensional observations and a concatenation of
these observations is denoted by . The set from which
takes values from is denumerable and denoted by . All ob-
servations collected by the network is given by the vector

which takes values from
.

The statistical model of the variables and the observations is
given by the joint cumulative distribution function
with the density . Note that there are no restric-
tions on the dimensionality of the fields of and , i.e.,

for . Therefore, and can

1The preliminary results of the proposed scheme appear in [29].
2For example, it is possible to represent a link with capacity bits

with such that where indicates no transmis-
sion and enables a message censoring or selective communication scheme. In
[27] (and [28]), a channel model is accommodated to consider communication
link errors. In addition, various transmission schemes such as “broadcast” and
“peer-to-peer” are captured. Our setting falls into “peer-to-peer” type commu-
nication in this perspective. We assume that the links are error-free and do not
employ a channel model.
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accommodate multi-modal variables of multiple dimensions.
Hence, this model enables a broad range of possibilities for
decentralized inference.

A. In-Network Processing Paradigm Over DAGs

Consider a DAG . Let denote the in-
coming messages to node from its parent nodes , given
by . Let denote the set from
which takes values. This set is constructed through
consecutive Cartesian products given by ,

where denotes consecutive Cartesian products.3 The set
of outgoing messages from node to child nodes ,
given by takes values from the
set , which can be defined in a similar way to that for

as . The cardinalities of

and can be found as and
, respectively.

As node measures and receives ;
it evaluates a function, called its local rule, defined
by which produces an esti-
mate as well as outgoing messages .
The design process of the optimal is the topic of
Section II-B. The space of rules local to node is given
by where the super-
script denotes that the definition of the set relies on . Note
that also relies on through the edge set .
A DAG implies a partial ordering and it is possible to ob-

tain a forward and backward partial ordering in accordance with
the reachability relation such that the parentless and the child-
less nodes have the smallest order, respectively. The directed
acyclic nature of leads to causal online processing of the ob-
servations when the nodes execute their local rules in accor-
dance with the forward partial order, i.e., starting from the par-
entless nodes, at each step, nodes with the corresponding order
evaluate their local rules and processing stops after the childless
nodes. The process from node ’s point of view is illustrated in
Fig. 1(a). The aggregation of local rules denoted by is called
a strategy, i.e., , and takes values from the
set of feasible strategies given by . Considering

the space of all possible estimators, i.e., ,
it holds that . The set of all messages in the network
is given by , and takes values from

. The global view of this paradigm is illus-

trated in Fig. 1(b).

B. Design Problem in a Constrained Optimization Setting

It is possible to select a cost for the network described by
any graph such that an estimation error penalty for the pair

and a cost due to the corresponding set of messages in the
network are assigned, i.e., . In addition,
given , the tuple
is a random vector conditionally independent of given ,
denoted by , and the density is

3In other words, e.g., and are syn-

onymous.

Fig. 1. Online processing scheme modeled with a DAG : (a) The
viewpoint of node in which evaluates its local rule based on its measure-
ment as well as on the received messages and produces an inference
on the value of the random variable it is associated with, i.e., , together with
outgoing messages to its children. (b) The global view of the decentralized
strategy over where a random vector takes the value as the outcome of
an experiment and induces observations .

specified by and denoted by . Note that, by con-
struction, considering the causal online processing in the DAG,
it holds that

(1)

Consider a Bayesian risk . The distribution
used in the expectation is specified by as well and the cor-
responding probability density function (pdf) is constructed
using (1) as . Therefore,

for any given strategy , there corresponds a Bayesian
risk and the problem of finding the
best strategy for estimation under communication constraints
described by turns into a constrained optimization problem
given by

(2)

It can be shown that if there exists an optimal strategy, then
there exists an optimal deterministic strategy [30]. Therefore, it
suffices to consider the deterministic local rule spaces for which
case it is convenient to treat as a finite set
of densities parameterized by , i.e.,

(3)

(4)

where is the Dirac’s delta distribution.4 Hence, the local rule
and the density family specify each other
accordingly.

4We denote with the element of its n-tuple argument that takes values
from the set .



5562 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 11, NOVEMBER 2011

Note that, it is possible to express the treatment in [12] and
[13] as well as the bounded parameters estimation setting uti-
lized in [14] and [17] through a noninformative prior within the
framework above.

III. TEAM DECISION THEORETIC INVESTIGATION

Problem (P) in (2) is a typical team decision problem [31]
and such problems are intractable in various settings, including
conventional decentralized detection in which star-topologies
are considered and is finite [30]. Nevertheless, necessary
(but not sufficient) conditions of optimality yield nonlinear
Gauss–Seidel iterations which converge to a person-by-person
optimal strategy. Given an optimal strategy it holds
that for all where de-
notes .5 Equivalently, a relaxation of (P) is to find
a Nash equilibrium where no change in a single local rule
yields a better objective value, i.e., one is interested in finding

such that

(5)

for all . Such a solution is also said to be
person-by-person (pbp) optimal and it is possible to converge to
one starting from an initial strategy by the immediate iterations
given by Algorithm 1.
Considering problem (P) in the detection setting, the pbp op-

timal strategies from the class of concern lie in a finitely parame-
terized subspace of under certain conditions [27] and conse-
quently a tractable iterative optimization algorithm is obtained.
We adopt the elaborate investigation of Kreidl [28, ch. 3] for
decentralized estimation under communication constraints and
obtain a variational form for the pbp optimal local rules. These
rules, unlike the pbp optimal local rules in the detection setting,
are characterized through functions over denumerable domains
and in general, do not yield any finite parameterization.
In principle, the Propositions regarding the pbp optimal es-

timation strategies given in this Section can be obtained from
those in [27] by performing the marginalizations in the vari-
ables and through appropriate integrations under ideal
channels and “peer-to-peer” transmission assumptions. In this
respect, the proofs in this Section follow the same key steps with
their detection counterparts. We also note that integrals over
or should be interpreted in accordance with the dimension-
ality of their domains.
The first condition that leads pbp optimal local rules to ex-

hibit a useful structure is the conditional independence of the
observations:

5Note that, when it is obvious from the context, we abuse the notation and
denote by where is an index set for the collection of variables

.

Assumption 1 (Conditional Independence): The noise pro-
cesses of the sensors are mutually independent and hence given
the state of , the observations are conditionally independent,
i.e., .
Proposition 3.1 (Proposition 3.1 in [28] for Estimation):

Consider (P) under Assumption 1. The pbp optimal rule
given by (5) reduces to

(6)

where

(7)

for all and with nonzero probability, i.e.,
.

Proof: The proof follows the factorization of
after substituting , (1), (3), (4) and As-

sumption 1 together with the fact that if a pbp local rule exists,
then a deterministic pbp local rule exists [30]. See [32] for a
detailed proof.
Regarding Proposition 3.1 (and (6) in particular), it can be

shown that

where and are free variables.6 and in this respect, it is
revealed that the pbp optimal rule involves minimizing the
conditional expected cost given the incoming messages
and the measurement where the underlying distribution is
specified by all the local rules other than the .
Note that in (6), does not depend on the observation and

the likelihood acts as a sufficient statistics. Hence,
provides a useful parameterization for the pbp optimal rule,
which, unlike its appearance as a finite dimensional vector in
the detection setting [27], is a function over a denumerable do-
main. In addition, it is useful to treat the right-hand side (RHS)
of (7) as an operator such that given any set of local rules for
nodes other than the , i.e., , fixed not necessarily at
an optimum, produces , i.e., . Then, the cor-
responding local rule for the node is obtained through (6)
which can also be treated as an operator given , i.e.,

6Note that can be expanded as to ex-
plicitly show the free variables and of the local rule.
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. Therefore, it is possible to obtain an iterative scheme
which, starting from an initial strategy, converges to a pbp op-
timal one, in principle, by replacing the Update step of Algo-
rithm 1 with

(8)

for where denotes the composite operator
(obtained after substituting for all in ). Note
that, as a consequence of the fact that is denumerable, the
fixed point equations corresponding to Al-
gorithm 1 with the aforementioned modification are not practi-
cally solvable in general.
Nevertheless, optimality in a pbp sense has been considered

in the decentralized estimation literature for the canonical star-
topology. For example, Proposition 3.1 applied for quantizer
peripherals and a fusion center setting together with a squared
error cost, i.e., , specializes to the op-
timality conditions presented in [12]. For this case, the struc-
ture of the local rules as given above do not yield closed form
representations in general, although relatively straightforward
numerical computations are involved when the joint density

is Gaussian and is a scalar. The fact that the
fusion rule is not scalable in the number of peripherals raises
the potential issue of computational bottlenecks. This consid-
eration has led to a fusion rule which is linear in the received
symbols [13].

A. Pbp Optimal Strategies Over DAGs: Efficient
Online Strategies

We continue with assumptions under which efficient online
processing becomes possible [27]:
Assumption 2 (Measurement Locality): Every node ob-

serves due to only , i.e., .
Corollary 3.2 (Corollary 3.2 in [28] for Estimation): Under

Assumptions 1 and 2, the pbp optimal rule given by Propo-
sition 3.1 reduces to

(9)

where

(10)

Proof: Substitute in (6) and rearrange
the terms.
Under Assumptions 1 and 2, the local rules evaluate

marginalizations over only the set from which the associated
variable takes values from, i.e., , rather than , and become
independent of the number of nodes. This provides scalability
in the number of nodes (and correspondingly the number of
variables) and hence efficiency for online processing.

B. Pbp Optimal Strategies Over DAGs: Efficient
Offline Optimization

Corollary 3.2 provides an efficient online processing strategy.
However, we do not have such efficiency for specifying the
pbp optimal local rules since given by (10) depends on all
the nodes other than the . Under additional assumptions dis-
cussed below, the offline optimization scales with the number
of nodes:
Assumption 3 (Cost Locality): The Bayesian cost function is

additive over the nodes , i.e.,

(11)

Assumption 4 (Polytree Topology): Graph is a
polytree, i.e., is a directed acyclic graph with an acyclic undi-
rected counterpart.
Proposition 3.3 (Proposition 3.2 in [28] for Estimation):

Consider Problem (P) given in (2) such that and take
values from a denumerable set . Under Assumptions 1–4, (9)
applies with

(12)

where is the incoming message likelihood given
by the forward recursion

if

otherwise

(13)
with forward terms regarding influence of on given
by

(14)

and where is the cost-to-go function which is added
to the local cost and given by the backward recursion

if
otherwise (15)

with backward cost message regarding the influence of
on given by

(16)
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and where is the total conditional cost of node
given by

(17)

Proof (Sketch): First, we recognize that the DAG
structure together with Assumption 2 implies that the set
of incoming messages depends on not all the rules
other than the but only the local rules of the nodes
that are ancestors of node (denoted by ), i.e.,

. Under Assumption
3 the output of the local rule, i.e., , does not affect
the costs of nodes other than the descendants of denoted by

, i.e.,

In other words, optimization of can be performed equiva-
lently with an objective regarding the costs only on node and
its descendants. Under Assumption 4, the operation of rules
local to the ancestors of and descendants of are mutually ex-
clusive and the incoming message likelihoods and the expected
costs yield the structure given by (12). Moreover, Assumption 4
guarantees that there are no parent nodes with common ances-
tors and no child nodes with common descendants yielding the
multiplicative structure in (13)–(14) and the additive structure
of the expected costs in (15)–(17). A detailed proof is provided
in [32, Appendix A].
Considering (13) and (14) we note that is

the likelihood of based on the particular message on the
link from node to , and under Assumption 4,
is the likelihood of for the particular incoming message

vector , i.e., . A similar treatment
of (15) and (16) reveals that terms are
the expected cost if the actual value of the random variable
associated with node takes the value and node sends
the message on the link to its child . Hence, under a
polytree topology, is the total expected cost induced
on the descendants of for transmitting , or cost-to-go
function. This cost is added to the local cost in
(12) which also penalizes the transmission cost. Also consid-
ering (9) and (10), and noting that under these assumptions

, we conclude
that given the measurement and the incoming messages

, node chooses the output with the minimum expected
cost where this cost is the sum of the costs due to the local
rule of node and rules of its descendants, and the underlying
distribution is determined by the rules local to ascendants of
node .
Similar to the treatment regarding Proposition 3.1 to yield the

set of fixed point equations given by (8), it is possible to consider
(13)–(17) as operators for any given (not necessarily optimal)
strategy . Similarly, it is possible to summarize this
treatment by and such that

(18)

(19)

(20)

(21)

where
and . Note that and are
specified by the RHSs of (12) and (15), (13), (14), and finally
(16) and (17), respectively. Consequently, the forward recursion
implied by and with respect to the forward partial-ordering
of together with the backward recursion implied by and
with respect to the backward partial-ordering yields Algorithm 2
after replacing the step of Algorithm 1 as described.
It is possible to perform this algorithm in a message

passing fashion treating each node as an entity which
can perform computations and communications. Each node

starts only with the knowledge of and
and an initial local rule which deter-

mines . In the forward pass, starting
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from the parentless nodes and proceeding in forward partial or-
dering implied by , each node receives from its parents

, computes for its children and trans-
mits them. In the backward pass, starting from the childless
nodes and proceeding in the backward partial-ordering, each
node receives from its children and computes

for its parents which involves updating the
local rule. Note that, in contrast with the online processing
strategy which assumes a polytree topology allowing only
uni-directional links, the message passing interpretation of the
offline strategy optimization requires bi-directional commu-
nications. It is reasonable to assume that both the topology
assumed by the online processing and the links required by the
offline optimization are provided by the underlying network
layer through physically available connections and appropriate
protocols [5]–[7].
In Section III-A, owing to the information structure intro-

duced under Assumptions 1 and 2, an efficient online processing
strategy is achieved. With the addition of Assumptions 3–4, the
optimization of the local rules in a pbp sense admits a message
passing algorithmwhich scales bothwith thenumberofvariables
and the number of platforms. The resulting iterative scheme
given as Algorithm 2 is amenable for network self-organization,
in principle, through its message passing structure [27].
It is often the case that it is hard to achieve consistency in pe-

nalizing the estimation errors and communication costs through
an arbitrary selection of the cost function .
It is possible to select onewhich results in smooth degradation in
the estimation performance as the link utilization is decreased.
Also considering Proposition 3.3, we assume a separable cost
and develop the simplifications this provides.
Assumption 5 (Separable Costs): The global cost

function is separable to functions penalizing
estimation errors and communications. In particular,

where and are
cost functions for estimation errors and communications, re-
spectively. Here, appears as a unit conversion constant and
can be interpreted as the equivalent estimation penalty per
unit communication cost [28]. Hence
where and ,
respectively.7

Note that, Assumption 5, together with Assumption 3 implies
that the local cost functions are separable, i.e.,

(22)

Corollary 3.4: Consider Proposition 3.3, if the local costs are
separable, i.e., Assumption 5 holds in addition to Assumptions
1–4, then the pbp optimal local rule in the variational form given
by (9) is separated into two rules for estimation and communi-
cation as given by

(23)

7Note that convex combinations of dual objectives, i.e.,
, yield Pareto-optimal curves parameterized by . This setting pre-

serves the Pareto-optimal front since and yielding
a graceful degradation of the estimation performance with .

(24)

Moreover, the corresponding density
given by (3) takes the form

(25)

Proof: After substituting the separable local cost in (12)
and (9), the optimization is separated into two problems over
arguments and . This separation also im-
plies that and are conditionally independent denoted by

yielding (25) by definition.
Example 3.5: Consider a separable local cost where the es-

timation penalty is given by as in
the conventional mean-square error (MSE) estimator. We ob-
tain a closed form expression for the estimation rule regarding
the variational form in (23) after differentiating with respect to
and equating the result to zero:

(26)

Note that, since and
the conditional independence relation
holds yielding ,
the denominator in (26) is nothing but

and the estimator is given by

Hence, any selection of the local rules for ancestors affect
the optimal estimation rule for node through the likelihood

. Under this particular choice of the estimation
cost, is treated as another conditionally independent
observation while utilizing the MSE estimator based on the
posterior.
Corollary 3.6: Consider Proposition 3.3, if the local costs are

separable, then given by (17) takes the form

(27)

where is the local expected estimation cost condi-
tioned on and given by

(28)

and is the total expected cost of transmitting the
symbol conditioned on and , including costs in-
duced on the descendants given by the cost-to-go function
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, as well as the transmission cost captured by
, i.e.,

(29)

Moreover, the conditional pdf of the estimations specified by
is given by

(30)
and the conditional probability mass function of the outgoing
messages specified by is given by

(31)
Proof: After substituting the separable local cost for node

given by (22) in (17) and rearranging terms

(32)

is obtained.
Therefore, under Assumptions 1–5, sufficient conditions

of pbp optimality are provided by (12)–(16) together with
(27)–(31) implying an iterative optimization scheme. In prin-
ciple, once the operators implied by these expressions are
utilized in Algorithm 2, it is possible to find a pbp optimal
decentralized estimation strategy starting with an initial one.
Finally, the corresponding Bayesian risk at the step, i.e.,
, which is also required by the step of Algorithm 2

is obtained as

(33)

(34)

IV. MC OPTIMIZATION FRAMEWORK FOR IN-NETWORK
PROCESSING STRATEGIES OVER DAGS

In Sections III-A and III-B we have provided conditions of
optimality in a person-by-person sense rendering Algorithm 2

for the offline optimization of the class of decentralized estima-
tion strategies of concern. Specifically, provided that Assump-
tions 1–4 hold, the operator representations and
given by (18)–(21) summarize the characterization of pbp
optimal rule given by (13)–(17), respectively, applied for local
rules that are not necessarily optimal. If, in addition, Assump-
tion 5 holds, the structures exhibited in Corollaries 3.4 and 3.6
are induced on the operators. However, it is not possible to eval-
uate the RHS of these equations and correspondingly
and exactly, in general, for arbitrary prior marginals ,
observation likelihoods and rules local to nodes other
than , i.e., . A similar problem arises in message passing
algorithms over continuous Markov random fields and has been
the motivation for algorithms relying on particle representations
together with approximate computational schemes, including
nonparametric belief propagation [33], which has been success-
fully applied in a number of contexts including articulated visual
object tracking [34].
In this section, we propose particle based representations to-

gether with approximate computational schemes so that Algo-
rithm 2 can be realized. We exploit the Monte Carlo method
[35], [36] and importance sampling [37], [38] such that inde-
pendent samples generated from only the marginal distributions
of and are required, i.e.,

such that

for (35)

such that

for (36)

for . Although the sizes of these sets might vary for each
, we assume that and for for

simplicity of the discussion throughout.
We employ these sets in a way that the corresponding

proposal densities (for importance sampling) are products of
the corresponding marginals. This approach is advantageous
for a number of reasons: First, we only need to know the
marginal densities local to nodes, which can be computed using
those densities that are already necessary in Algorithm 2, i.e.,

and for all . Therefore, sampling can
be carried out locally. The second advantage is that, it is a rela-
tively straightforward task to generate pseudorandom numbers
from an arbitrary probability density function provided that the
inverse of the corresponding cumulative distribution can be
evaluated (see, e.g., [38, ch. 2]).
We proceed by considering the sufficient condition of

person-by-person optimality for the rule given by Proposi-
tion 3.3. The Monte Carlo optimization algorithm we propose
follows successive approximations to the expressions con-
stituting the pbp optimal local rule (see (9) and (12)). In
Section IV-A we approximate the pbp optimal rule assuming
that the factors in the RHS of (12) are known over their entire
domain sets. In the second step we proceed with approxi-
mating to the incoming message likelihood (Section IV-B). In
Section IV-C, the node-to-node terms, i.e., forward likelihood
messages from the parents and backward cost
messages from the children , are approximated.
Finally, in Section IV-D, all the approximations are utilized
together comprising the proposed algorithm after a treatment
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of the approximations as operators in a similar fashion to our
development in Section III.

A. Approximating the Person-by-Person Optimal Local Rule

Given a pbp optimal strategy , consider the op-
timal local rule given by (9) and (12) in the case that the re-
maining are fixed at the optimum . After substituting
(12) in (9) we obtain

(37)

(38)

for all , , and , where,
unlike the detection problem in [27], is a denumerable set
and the RHS of (38) involves an integral over . It is reason-
able to assume that the observation likelihood and the
cost are known. However, the incoming message
likelihood, i.e., , together with the cost-to-go func-
tion, i.e., , depend on the remaining local rules
(see Section III-B) and do not necessarily admit closed form ex-
pressions for arbitrary .
Suppose that it is possible to evaluate and

over their entire domains. The integral on the RHS
of (38) still prevents to be evaluated exactly, in general.
Nevertheless, an approximation is possible through the classical
Monte Carlo method given independent samples (such as
the set given by (35)) generated from :

(39)

where tilde denotes that is an approximation, i.e.,
over its en-

tire domain. After we substitute in place of in the
variational form of given by (37), we obtain a local rule that
is an approximation to . Let us represent the approximation

to the optimal local rule by where the superscript 1 denotes
that the approximation involves a single MC approximated
function, then for all
and for all with nonzero probability.
Consider Corollary 3.4. The objective of minimiza-

tion in the variational form of the local rule given
by (37) is separable, i.e.,

, under a separable cost
function local to node and yields two separate problems and
corresponding rules for estimation and communication denoted
by and , respectively. Similarly the approximation

given by (39) splits trivially to two approximations, i.e.,

and .
Example 4.1: Consider a separable cost as discussed in

Corollary 3.4 with a quadratic estimation cost as in Example
3.5. Equation (39) substituted in (37) implies that the explicit

solution for the quadratic estimation error given by (26) is
approximated by

(40)

For the case, a similar approximation to the local communica-
tion rule given by (24) can be obtained as

(41)

B. Approximating the Message Likelihood Function

In the previous section, we proposed an approximation to
the optimal rule which requires the incoming message
likelihood and the conditional expected cost

to be known at for ,
for all and for all , respectively. Since
it is not possible to express these functions in closed form for
an arbitrary set of local rules , in this step, we consider
approximate computation of the message likelihood function
given by (13).
Let us consider (13) for the case in which . Suppose

that the forward node-to-node terms, i.e., for

, are known such that we can evaluate them at
where and for all . This assumption is
justified by the fact that if the one-step approximation described
in Section IV-A were to be applied to the rules local to nodes

, then would be utilized.
Next, we note that it is possible to treat the concatenation of

the elements of the parent sample sets, i.e., for , as
a sample set that is drawn from the product of distributions that
generated them. In other words, consider

for , where for . These
elements constitute a sample set , and it holds

that .
This observation enables the Importance Sampling approx-

imation (see, e.g., [38, ch. 3]) for through the importance
sampling density . Then, the importance weights
are given by

with the corresponding approximation

(42)



5568 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 11, NOVEMBER 2011

for and for all .
Let us turn to the computation of the cost-to-go term

and consider (15) for the case in which .
We assume that the node-to-node backward cost terms, i.e., for
all , , are known at for

and for all . Then, the required
values, i.e., for and for all

, can be computed exactly by simply substituting them
in the RHS of (15).
As a result, given evaluations of the node-to-node terms

and at sample points generated from the appro-
priate marginal distributions, node can find the one-step
approximate incoming message likelihood given by (42)

at all possible pairs. In addition, the cost-to-go
function given by (15) can easily be evaluated at all possible

pairs as mentioned before. Note that, these sets of
possible pairs are exactly the sample points employed in the
one-step approximate pbp optimal rule defined
in Section IV-A. Hence, a further approximation to the pbp op-
timal rule is obtained by substituting in place of in the
RHS of the expression for (i.e., (39)) and then substituting
the result in place of in the variational form of the pbp

optimal rule given in (37). Let denote this approximate

rule, then for
all and for all with nonzero probability.

C. Approximating the Node-to-Node Terms

In the previous section, the approximation to the local
rule is introduced under the conditions that for all ,

is known for all and

for . Another requirement is to be able to evaluate
for all and where

. In this Section, we are concerned with approxi-
mating the evaluations of the forward likelihood message
given by (14) and the backward cost message given by
(16) at the sample sets.
First, we consider the parent nodes and consider

evaluation of (14) at the required values of its arguments.
Suppose that is fixed at the optimum, implying also that

is specified through (3) and (4) for all
. The multiple integral term in (14), rewritten here as

for convenience, should be evaluated at for
, for all and for all . Since

there is no closed form solution for arbitrary choice of and
the likelihood , we perform an Importance Sampling
approximation through the importance sampling density .
Utilizing and the importance weights given by

an importance sampling approximation to
for , for all and for all
is given by

(43)

where denotes the Kronecker’s delta. Note that, if As-
sumption 5 holds, the estimation and communication
rules separate and the discussion above applies with

.
Regarding the forward likelihood message given by (14),

having approximated the multiple integral term for , we
similarly assume that is known for , for

such that , and for all .
Together with (43) we obtain

(44)

for and for all . It is possible
to replace the node-to-node terms assumed to be known in (42)
with (44) and obtain a further step in the progressive approxi-
mations to .
The remaining term to consider is the cost-to-go function of

on the branch initiated with its child , i.e., the backward
cost message given by (16). We proceed with
approximating the evaluations of this function at all possible

pairs such that and .
With a similar reasoning, we utilizeMonte Carlo methods on the
RHS of the expression obtained by substituting the total condi-
tional cost local to node given by (17) in the backward cost
message given by (16).
In the Appendix, we approximate the total conditional

cost function evaluated at all possible for

and and obtain .
Given this approximation, we consider the backward cost mes-
sage given by (16) which further requires forward likelihoods
from all parents of node except node and it is reasonable to
assume that for any , is known

at for and for all .
Similarly, we observe that the set which is constituted of el-
ements that are concatenation of elements from the usual
sample sets local to is distributed according to
the product of the corresponding marginals. In other words,
let us define . Then it holds that

and an importance sampling ap-
proximation to (16) is possible through the importance density

. Having computed
and utilizing the usual sample sets local to nodes
together with the importance sampling weights
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we obtain

(45)

for and for all which, after
substituting in place of in the RHS of (15) for
yields , i.e.,

(46)

for and for all .
As a result, after substituting in place of in the

RHS of (42), we obtain a further approximation to given by

(47)

for and for all . This approx-
imation together with given by (46) employed in

yields
for all and for all with

nonzero probability.

D. MC Optimization of In-Network Processing Strategies
Over DAGs

In Sections IV-A–IV-C, we have introduced a Monte Carlo
approximation framework regarding the sufficient conditions
of person-by-person optimality given in Proposition 3.3. Con-
sidering a pbp optimal decentralized estimation strategy con-
strained by a polytree , i.e., , and having fixed at
the optimal rules, i.e., , we have constructed a local

rule for node , denoted by , such that it is an ap-
proximation to the optimal rule given by (37) and (38), fol-
lowing the progression

where is given by (35),

where is given by (42),

(48)

where and are given by (46) and (47), respec-

tively. Hence, in order to obtain we have utilized the pro-
posed particle representations and approximate computational
schemes for all terms that depend on including the forward
message likelihoods and the backward cost messages. Note that,
we have not approximated up to this point and assumed that
it is exactly known.
On the other hand, given and , the approximation

framework is valid for rules local to any node : Owing
to fusing the forward message likelihoods via importance sam-
pling, approximations of the node-to-node terms given by (44)
and (45) utilize the discretization provided by these sets re-
gardless of which node’s local rule is subject to approximation.
Hence, it is possible to treat the RHSs of all expressions within
the framework introduced in Sections IV-A–IV-C, as operators
valid for any strategy including those in the “approxi-
mating” form, e.g., where is given in (48). For the
rest of this paper, an approximation to a function that appears in
the local rules refers to its corresponding approximation in (48)
and we denote these functions without any further superscripts,
e.g., we denote with . Let us summarize the Monte Carlo
framework with

where

and is given by

Note that implies a definition in a similar fashion
to that for . Note also that is not a com-
plete discretization of since is a free variable that can take
values from .
It is immediately possible to employ this framework in Al-

gorithm 2 and achieve a Monte Carlo optimization algorithm
which, starting with initial local rules, iteratively results in a
strategy that corresponds to performing computations to ap-
proximate a person-by-person optimal one. Given by Algorithm
3, this scheme maintains the message passing interpretation ap-
pearing in the step of Algorithm 2.
Starting with and , each

node initially maintains the knowledge of and
. As soon as samples from the marginal distri-

butions, i.e., , together with samples from the marginal
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distributions of the observation processes, i.e., , are gen-
erated for all , and an initial local rule is
selected, the iterative scheme yields a set of local rules such
that each node performs computations corresponding to an
approximation to a person-by-person optimum.
The approximate computation of the expected cost required

in the step of Algorithm 3, i.e., , is performed
through a Monte Carlo approximation to given
by (34) using the usual sample sets, i.e., and , as

(49)

where . If Assumption 5 holds, the ex-

pression above turns to

(50)

and after distributing the multiplication in the RHS of the equa-
tion above and substituting in (33) in place of , we obtain

.
Considering the separable cost function as discussed in

Corollary 3.4 and a quadratic estimation cost as in Example
3.5, the approximate local estimation and communication rules
at the th node have complexities of and
given an observation and incoming message pair
where is as defined in Section II-A. In the offline iter-
ations, after receiving the forward likelihood messages as

arrays from the parents, the likelihood messages to
the child nodes are computed in where

is as defined in Section II-A as well (for a parentless
node, this complexity is of ). After receiving the
backward cost messages from the child nodes as
arrays, the cost messages to the parents are computed in

(for a childless node, this
complexity is of ). Note that the per node
complexity is polynomial in the sizes of the sample sets. Owing
to the message passing nature, a single forward–backward
iteration of the optimization scales with the number of nodes
in the sense that, given nodes, if is the node with highest
computational demand bounded by , then a single
forward–backward iteration is bounded by . Hence,
the computational complexity increases only linearly with the
number of nodes, making the algorithm scalable. We also note
that and grow combinatorially with the number
of parents and number of children of node , respectively.
Therefore, nodes with the highest in-degree and/or out-degree
bound the computational requirements of the iterations.
Note that obtained through Algo-

rithm 2 is nonincreasing, whereas in Algorithm 3,
being a MC approximation to the former, does not necessarily
exhibit this property. Let us define an approximation error
sequence . This sequence will be iden-
tically zero with probability one as . For finite
and , it is possible to smooth the fluctuation of through
filtering and utilize the corresponding termination condition,
e.g., check whether where is the impulse
response of a linear, time invariant filter and denotes convo-
lution. In general, a sequence that is nonincreasing with high
probability can be obtained through an operator (Check step
of Algorithm 3), investigation of which is beyond the scope of
this work.

V. EXAMPLES

In this section, we demonstrate Algorithm 3 introduced in
Section IV in various scenarios including Gaussian priors, non-
Gaussian priors, and large random graphs.

A. A Simple Gaussian Example

We consider a small network example in which a decen-
tralized estimation network composed of four platforms
perform an estimation task. A Gaussian random field
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Fig. 2. (a) The DAG , where and
. (b) The Markov random field (MRF)

subject to estimation by the decentralized estimation network in (a). (c)
Communication rules for node 3: (top to bottom) the initial communication
rule, i.e., and illustrations of the converged com-
munication rule for the Gaussian example for at the end of the
step, specifically, for and

, respectively. (d) Illustrations of the initial and converged estimation
rules for node 4 for the Gaussian example at the end of the step, i.e., and

, respectively. (e) The approximate performance points
converged revealing the tradeoff together with the lower and upper bounds of
the example Gaussian problem: Estimation performance measured in MSE
for the optimum centralized and myopic rules correspond to the lower (blue
dashed line) and the upper bound (red solid line), respectively. The estimation
network in (a) is subject to optimization through Algorithm 3 starting with the
initial rules given by (52) and (53) which achieve (black
). The Pareto-optimal performance curves, achieved for the approximate

pbp optimal strategies while is increased from 0 with steps of 0.001, are
approximated by where is the approximated optimum
strategy for . Results for and 3 bit selective communication schemes are
presented. (f) For the Laplacian example; the converged estimation rule local
to node 4 at the end of the step, i.e., . (g) Approximate
performance points achieved for the Laplacian case for ten sample sets and

.

is of concern and platform is
associated with . In the first scenario, we consider a poly-
tree online processing topology [Fig. 2(a)], a communication
structure not covered by the star-topology paradigms (e.g.,
[13] and [19]), as well as stringent BW constraints such that

. We call this a 1-bit
selective communication scheme and also consider 2-bit and
3-bit schemes to be discussed later in this section. The on-
line processing scheme operates as given in Section II-A:
Since nodes 1 and 2 are parentless, upon measuring and

induced by and , they evaluate their local
rules as and , re-
spectively. Upon receiving these messages and measuring

induced by , node 3 evaluates its local rule
, and similarly node 4 eval-

uates . The strategy is
subject to design, which we perform through Algorithm 3.
In addition, we comply with Assumption 3 and

select separable local costs also enabling Assump-
tion 5 to hold. The cost function local to node is
given by
where the communication cost is additive as

and where
is the cost of transmitting the symbol on

the link selected as

if
otherwise

indicating the link use. Hence, together with define a
selective communication scheme where indicates no
communications and indicates transmission of a one
bit message. The estimation error is penalized by

. Hence the total cost of a strategy is
where is the MSE and is the total link use rate.

The random field of concern is a multivariate Gaussian, i.e.,
, and Markov with respect to the graph pre-

sented in Fig. 2(b). The covariance matrix is given by

(51)

which conforms with the Markov properties of . Although
the communication structure of the decentralized estimation
network is not related with the Markov random field repre-
sentation of and Algorithm 3 would produce results for
any choice, for the sake of simplicity we selected the graph in
Fig. 2(b) as the undirected counterpart of that in Fig. 2(a).
The noise processes for are additive, mutually in-

dependent and given by , so that Assumption
1 holds. In addition, we suppose that Assumption 2 holds and
the observation likelihoods are . Consid-
ering , each sensor has an SNR of 6 dB.
Since separable local cost functions are utilized, the pbp op-

timal rules are also split into estimation and communications
functions given by (23) and (24), respectively. Moreover, owing
to the selection of as the squared error estimation penalty, the
local estimation rules take the form given in (26). We initialize
the local rules, i.e., and for , as follows:
1) Each node applies a myopic inference rule, i.e., per-
forms estimation solely based on its local measurements.
This rule is selected as the MMSE estimation rule, i.e.,

given by

(52)

2) The initial communication rule of node that is not child-
less is a quantization of the observation , i.e.,

(53)

regardless of the incoming messages.
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Considering and pbp optimal strate-
gies achieved by Algorithm 2 , in principle, different values of
would yield different performance points .

Moreover, in this case, after a certain value , the com-
munication cost will dominate such that the decrease in the
decision cost with the contributions of the communicated
symbols will not be enough to decrease and symbol 0 will
be the best choice. Moreover, the individual estimators will be
the myopic rules, since myopic rules with no communications
constitute a pbp optimal strategy. Hence, it is possible to inter-
pret as the maximum price per bit that the system affords to
decrease the expected estimation error. As we increase from
0, we approximate samples from the corresponding Pareto-op-
timal curve which enables us to quantify the tradeoff between
the cost of estimation errors and communication.
We use 2000 and 30 000 samples for each and gen-

erated from and , respectively, and use Algorithm 3
for varying from 0 with 0.001 steps. Example converged local
communication and estimation rules are presented in Fig. 2(c)
and (d) for node 3 and 4, respectively, where and con-
vergence is declared after 4 “offline” iterations. Note that the
initial communication rule shown at the top row of Fig. 2(c)
and the initial estimation rule illustrated by the black dashed
line in Fig. 2(d) are valid for all of the nodes with appropriate
choices of the domain and range labels. The pbp optimal com-
munication rule local to node 3 can be treated as a collection
of threshold rules for each incoming message value [some of
which are illustrated in Fig. 2(c)]. Now, let us turn to the estima-
tion rule in Fig. 2(d). If the message received by node 4 suggests
a high/medium/low value for that is consistent with , then
the pbp estimation rule local to node 4 acts similar to the my-
opic rule [note the asymptotic behavior of for
and , respectively, in comparison with the initial
rule as well as for in Fig. 2(d)], otherwise, the
estimate diverts from the nominal values as implied by the in-
coming message.
The approximate performance points, i.e., pairs

where is the approximate total link use rate and is the
approximate total MSE, of the converged strategies are pre-
sented in Fig. 2(e) (black “ ”s). The upper and lower bounds
are MSEs corresponding to the myopic rule and the centralized
optimal rule, respectively. We repeat the same scenario with
different BW constraints: Specifically, we select cor-
responding to 2- and 3-bit selective communication schemes.
The initial communication rules are appropriately modified
versions of that given by (53) and the approximate performance
points obtained are presented in Fig. 2(e) as well.8 Note that,
for the squared error cost, the optimal centralized rule given
by yields a communication cost of
where is the number of bits used to represent a real number,
i.e., , before transmitting to the fusion center. Let us consider

8For these experiments, we use the condition
in the step of Algorithm 3. The resulting average number of steps

for convergence (within ) are , and for
and 3-bit schemes, respectively. Please note that, for the graph given in

Fig. 2(a), the complexity is determined by node 3 (Section IV-D). The time
constant of forward messaging is fairly small compared to that for the backward
messaging: In the 1-bit setting, node 3 computes the likelihood message to node
4 in 0.7713 sec., whereas the backward messages take approximately 200 sec.
to be computed in a typical run using a 4-core PC with 8 GB of memory and
nonoptimized MATLAB code. Under these conditions, one iteration is typically
completed in approximately 272 sec.

pairs for the 1-bit selective communication scheme,
for (the transmission has no cost). The link use rate is
approximately 1.65 bits, which is far less than the total capacity
of 3 bits for the communication graph given in Fig. 2(a).
This indicates that the information of receiving no messages
is successfully maintained in this perspective. Moreover, the
communication stops for . Similarly, approximate
points for 2-bit and 3-bit schemes [Fig. 2(e)] indicate that, if
is small enough, we can achieve smaller MSE for the same

total communication load as we increase the link capacities.

B. A Simple Heavy Tailed Example

The MC framework applies for arbitrary distributions pro-
vided that samples can be generated from their marginals. This
can be an important advantage in certain problem settings in
which it is not possible to obtain closed form expressions even
for the centralized rule. We consider such a scenario in which
is distributed by a heavy tailed prior , specifically a mul-

tivariate-symmetric Laplacian (MSL) given by

(54)
where is the dimension of , is a covariance matrix, and

is the Bessel function of the second kind of order
(see, e.g., [39]). Let us denote this density by . Un-
like the Gaussian case, uncorrelatedness does not imply inde-
pendence and not being a member of the exponential family,

does not imply a Markov random field. On the other
hand, it is possible to generate samples from an MSL utilizing
samples generated from a multivariate Gaussian of zero mean
and the desired covariance matrix together with samples drawn
from the unit univariate exponential distribution, i.e., given

and , generate samples of by ,
then .
Similar to that in the previous section, we assume the un-

derlying communication structure described by in
Fig. 2(a) together with a 1-bit selective communication scheme
on each link, and similar cost functions, observation likelihoods,
and initial local rules.
The Monte Carlo framework extends trivially for (finite)

Gaussian Mixture Models which can be used to represent arbi-
trary priors. To the best knowledge of the authors, in the case
of a MSL prior, even the centralized paradigm fails to provide
a solution without employing numerical approximations.
For our case, we consider such that

where is given by (51) and we ex-
ploit the fact that the marginal density of is given
by and it is straightforward to generate samples
from these marginals [40]. For the observations, although the
marginal densities yield closed form expressions,9 it is not easy
to sample from this density since it does not yield a cumula-
tive distribution function in closed form. Nevertheless, we can
consider the mixture approximation

9It can be shown that

for where is the error
function.
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Fig. 3. (a) 50 randomly deployed nodes and the polytree generated from a spanning tree of the Gabriel graph of the deployment after randomly selecting six
childless nodes; parentless and childless nodes are shown by red triangles and red squares (e.g., node 10), respectively. (b) Converged estimation rule local to
(childless) node 10 for at the end of six iterations. (c) Approximate performance points of converged strategies for
and ten sample sets. The upper and lower bounds of the problem are the myopic and the centralized MSEs shown by the solid red line and the dashed blue line,
respectively.

where , and generate suf-

ficient number of samples from for each element
of so that the union of these samples are distributed by the
mixture.
We generate 3000 samples from the prior marginals

and 45 000 samples from the aforementioned mixture
densities by generating 15 samples from each component. We
run Algorithm 3 for different choices of and for ten different
sample sets. An example converged estimation rule is illustrated
in Fig. 2(f), which is local to node 3 and obtained for
after three offline iterations. Note that, contrary to that in the
Gaussian example, the initial myopic estimation rule for any
node is not linear [black dashed curve in Fig. 2(f)] and is suc-
cessfully represented within the MC framework. The asymp-
totic behaviors in the case that the measurement and the in-
coming message confirm each other are similar to that in the
Gaussian example.
In Fig. 2(g), approximate performance points for the con-

verged strategies based on the aforementioned ten sample sets
are presented where the upper and lower bounds are the MSEs
corresponding to the myopic and centralized rules, respectively.
10 In particular, for each value of , we generate results based on
the ten sample sets. Collective results from such sample sets for
a particular value of provide a sample-based approximation
of the corresponding performance point on the Pareto-optimal
curve. We observe that these sample-based results form clus-
ters with reasonable variability, indicating their approximation
quality. This level of variability can be expected since heavy
tailed distributions require utilization of larger sample sets. Nev-
ertheless, the framework we propose produces distributed solu-
tions in problem settings which do not admit straightforward
solutions even in the centralized case.

C. An Example With Large Graph

In this section, we consider a relatively large scale problem:
50 platforms are randomly deployed over an area of 100 unit
squares and each location is associated with a scalar
random variable, . We assume that the random field

10Another intricacy for this case is that the evaluation of the myopic and cen-
tralized strategies and the corresponding MSEs require numerical approxima-
tions for which we utilize MC methods as well.

is Gaussian with zero mean, i.e.,
and complies with the Matérn covari-

ance function which is commonly utilized in spatial data mod-
eling [10] and given by

where , is a modified Bessel function of the
second kind of order and , are parameters that deter-
mine the decaying characteristics. Such a random deployment
together with the polytree we generate by randomly selecting
6 childless nodes and employing Kruskal’s algorithm on the
Gabriel graph is given in Fig. 3(a).
Different from the previous scenarios, only the variables

associated with the childless nodes are of concern and only
the childless nodes perform estimation whereas the remaining
operate in a fusion setting such that they merely provide
information to their children based on the incoming mes-
sages from parents and the measurements they make. This
is possible by simply selecting the estimation penalty as

if is childless and zero otherwise.
We consider a 1-bit selective communication scheme on each
link and the communication cost considers the link use rate.
Similar to the previous examples, the initial communication
rules are quantization of the measurements and the childless
nodes are initiated with the corresponding myopic estimation
rules (for , ).
We employ Algorithm 3 for a geometrically increasing se-

quence and for 10 different
sample sets such that and . An ex-
ample converged estimation rule is illustrated in Fig. 3(b). We
consider node 10 in Fig. 3(a); the initial myopic rule is linear
with the observation , however, the converged strategy, as
expected considering the previous examples, exhibits a highly
nonlinear behavior as the incoming messages suggest less likely
(high or low) values for . When no messages is sent, the pbp
optimal rule is similar to a midway between the estimator func-
tions selected when incoming messages imply a high and a low
value for , respectively.
The Monte Carlo estimates of the performances of approx-

imate pbp optimal strategies are shown in Fig. 3(c). Note that
the myopic MSE for each platform is 0.2 yielding a total of 1.2,
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whereas the centralized MSE (blue dashed line) is specified by
the deployment (through ). The MC framework successfully
performs in large graph scenarios and similar to the example in
Section V-B and the results given in Fig. 2(g), the performance
points for different sample sets form clusters around the points
from the Pareto-optimal curve they approximate and capture the
tradeoff between estimation accuracy measured with MSE and
the cost of communications in bits.

VI. CONCLUSION

In this work, we have considered the design of decentral-
ized estimation strategies. Motivated by sensor network appli-
cations, we take the communication constraints into account
including the availability and BW of the links as well as the
cost of transmitting symbols over them. We are particularly
interested in trading off estimation accuracy with the utiliza-
tion of communication resources. We employ a class of online
processing strategies over DAGs which is constituted of local
rules operating in accordance with a (forward) message-passing
structure on a DAG. This class provides a number of bene-
fits compared with the conventional approaches in decentral-
ized estimation including that it covers any association of the
nodes with the variables that make up the global state and it
is valid for any DAG presumably supported by the available set
of links. Another important feature is that, under a Bayesian set-
ting, it yields a rigorous design problem and a tractable offline
strategy optimization procedure in a message passing fashion
provided that some reasonable assumptions hold. This design
setting, different from that in previous work on decentralized
estimation, enables us to explicitly consider the cost of commu-
nications, and for a parametric dual-objective Bayesian risk, a
Pareto-optimal curve is obtained revealing the tradeoff through
the graceful degradation of estimation accuracy as the commu-
nication becomes more costly. It is also possible to model a
broader range of constraints on the communication structure to
be used during online processing. For example, it is possible to
consider extensions of the conventional star-topology since it is
a particular polytree structure. In addition, it is possible tomodel
selective communication schemes through an appropriate selec-
tion of the communication cost(s).
The graphical model perspective for decentralized estimation

in recent work takes the communication constraints into account
to a certain extent, nevertheless a general framework which ex-
plicitly captures the cost of transmissions especially under strin-
gent constraints similar to those of our concern has not been
introduced. The in-network processing strategies over DAGs
have been previously studied for decentralized detection [28]
and hence our first contribution is the extension of these results
for the estimation problem and a rephrasing of the offline opti-
mization procedure which is composed of consecutive forward
and backward message-passings.
However, in contrast with the detection problem, the global

state vector takes values from a Euclidean space in our case,
and consequently the forward and backward messages, i.e., the
likelihoods of the incoming messages conditioned on the local
rules of the ascendants and the expected cost induced on the
descendants, as well as the pbp optimal local rules require the
computation of integral operators which cannot be evaluated
exactly, in general.

We overcome this problem through our second contribution
which is a Monte Carlo framework under which particle rep-
resentations together with approximate computational schemes
are utilized for all expressions involved, including the local
rules. Through this approach, we provide a feasible computa-
tional scheme while we conserve the appealing features of the
original framework which include scalability with the number
of platforms as well as the number of variables involved.
The proposed algorithm also scales with the sample set sizes
and produces results for any set of distributions provided that
samples can be generated from the marginals. We have demon-
strated these features through several examples, including a
Gaussian problem, a non-Gaussian prior problem, and a random
large graph scenario in Section V. The MC optimizations pro-
duce reasonable sets of local rules, and we observe that the
estimation accuracy is traded-off with communication load as
we vary their relative emphases on the total cost. Equivalently,
the performances achieved approximate the corresponding
Pareto-optimal curve.
One possible extension of this work, on which we have

already obtained some preliminary results, is considering
in-network strategies that are composed of two-stage local
rules over undirected graphs (UGs). The family of strategies we
considered also enable investigation of the two-stage strategies
over UGs which render intertwined local star-graphs under
certain assumptions and arguably better match some scenarios
including the estimation of a random field. We have proposed
a similar MC framework for this family yielding a similar
optimization algorithm [41] which, together with the approxi-
mations presented in this work, can also potentially be applied
for hybrid in-network processing strategies employing both
families [42].
There are a number of issues left beyond the scope of this

work. In contrast with the nonapproximated case, the iterative
offline strategy optimization procedure does not yield a mono-
tonically decreasing sequence of Bayesian risks. Investigation
of a robust stopping condition remains as future work. An-
other possible extension is introduction of possible smoothing
approaches through kernel methods. The IS estimate we use
is known to be mildly biased [38, p. 95] and the analysis of
the bias in our work remains an open issue. It might also be
worthwhile to consider the problem of selecting the graph
structure that yields the best pbp optimal strategy given an a
priori distribution.

APPENDIX
APPROXIMATING THE TOTAL CONDITIONAL COST

In this Appendix, we consider the total conditional cost local
to node , i.e., given by (17) (in the context of

Proposition 3.3), and approximate its evaluations at
for all and for all . We assume that
is fixed at the pbp optimal rule , and the density it spec-

ifies, i.e., , is known. After substituting
this density, which is given in (3) and (4) in Section II-B, into
(17), we obtain

(55)



ÜNEY AND ÇETIN: MONTE CARLO OPTIMIZATION OF DECENTRALIZED ESTIMATION NETWORKS 5575

the evaluation of which can be approximated at all

pairs such that and using the Im-
portance Sampling method with the importance density .
Assuming that the cost-to-go function local to node , i.e.,

, is known for all possible pairs and
utilizing together with the importance weights

we obtain the approximation given by

(56)

for and such that

holds.
In addition, if the separable cost assumption (Assumption 5 in

Section III-B) holds, we consider Corollary 3.6 and find Impor-
tance Sampling approximations to the evaluations of the condi-
tional estimation cost local to node given by (28) and the con-
ditional cost due to node ’s communication rule given by (29)
at with a similar reasoning we used above. These
approximations to and are given by

where is given by (43). Note that,
and

hold, and consequently, the approximation to the total
conditional cost is obtained as

.
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