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ABSTRACT

We consider a decentralized estimation network subject to communi-
cation constraints such that nearby platforms can communicate with
each other through low capacity links rendering an undirected graph.
After transmitting symbols based on its measurement, each node
outputs an estimate for the random variable it is associated with as
a function of both the measurement and incoming messages from
neighbors. We are concerned with the underlying design problem
and handle it through a Bayesian risk that penalizes the cost of com-
munications as well as estimation errors, and constraining the feasi-
ble set of communication and estimation rules local to each node by
the undirected communication graph. We adopt an iterative solution
previously proposed for decentralized detection networks which can
be carried out in a message passing fashion under certain conditions.
For the estimation case, the integral operators involved do not yield
closed form solutions in general so we utilize Monte Carlo methods.
We achieve an iterative algorithm which yields an approximation to
an optimal decentralized estimation strategy in a person by person
sense subject to such constraints. In an example, we present a quan-
tification of the trade-off between the estimation accuracy and cost
of communications using the proposed algorithm.

Index Terms— Decentralized estimation, communication con-
strained inference, random-field estimation, message passing algo-

rithms.
1. INTRODUCTION

Decentralized estimation underlies many envisioned applications of
sensor networks which are networked platforms that have limited ca-
pability of sensing, communication and computation. Possible sce-
narios consider a relatively high volume of data collected at various
locations often in an uncollaborating environment. Therefore, plat-
forms need to communicate through bandwidth (BW) limited links
in order to have the data processed. Besides, the limited energy bud-
get is mostly consumed by the transmissions. Also the processing
is preferred to be done in a collaborative fashion to inhibit possible
computational bottlenecks and decrease BW requirements. Hence,
the issues regarding the achievable estimation accuracy for a given
communications structure and transmission costs together with the
decentralized strategy that exhibits a certain performance arise.

The conventional setting renders a star shaped directed graph,
in which a fusion center is selected to perform the estimation task
depending on the quantized observations collected and transmitted
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by the peripheral nodes (see e.g. [1, 2, 3]). The design problem in-
volves choosing the quantization schemes together with a fusion rule
that exhibit a certain performance. Altough BW constraints are con-
sidered, the cost of transmissions which likely vary for each link due
to the multi-hop nature and more general topologies which might
better reflect an ad-hoc setting are not captured under these treat-
ments. Also, in the case of multiple random variables, e.g. as in
a random-field estimation problem, computational bottleneck prob-
lems might occur at the fusion center and the lack of collaboration
among nodes might inhibit the improvement of the performance.

If the underlying network services support a relatively high load,
Graphical Models together with Message Passing Algorithms pro-
vide solutions in accordance with the in-network processing paradigm
[4]. Altough it is possible to analyze the effects of the communica-
tion structure in this framework [5], it not easy to tailor the solution
given the communication constraints.

We consider the estimation of an N-dimensional random vector
by a distributed system which exhibits a communication and compu-
tation structure that better matches the underlying ad-hoc, multi-hop
nature. We are concerned with introducing the cost of communica-
tions, possibly due to energy consumption, as well as the availability
and capacity of links. A collaborative processing is achieved through
distributing the estimation task through random variable-node asso-
ciations. A Bayesian approach in which the costs both due to com-
munications and estimation errors are captured provides a rigorous
problem definition. Such a setting is utilized in [6] for the case in
which the underlying communications render a directed graph. In
this work, we consider bidirectional links rendering an undirected
graph (UG). For detection networks, a similar design problem has
been investigated in [7] (see also [8]) in which rules local to nodes
for communication as well as detection are sought such that a dual
objective Bayesian risk is optimized. The aggregation of local rules
are called a strategy and the set of feasible strategies is constrained
by the UG structure. Under a Team Decision Theoretic treatment an
iterative solution which converges to a person by person (pbp) op-
timal strategy is proposed. We adopt this framework for decentral-
ized estimation (DE) and present the corresponding iterative scheme.
However the resulting expressions contain integral operators which
are impossible to evaluate exactly in practice. In order to keep fi-
delity to the mathematical model, we exploit Monte Carlo (MC) in-
tegration methods and achieve a MC optimization scheme for DE
networks constrained by an UG which is scalable with the number
of nodes and sample sizes. Moreover, results can be produced for
any set of distributions provided that samples can be generated from
them. The resulting strategy corresponds to approximate computa-
tions to the pbp optimal one achieving a reasonable Bayesian risk.



2. THE DESIGN PROBLEM

We consider the estimation counterpart of the decentralized detec-
tion network design problem considered in [7]. Hence, in our setting
the variables to be inferred take values from denumerable sets. We
assume that the links are error-free.

2.1. Online Processing Constrained With an UG

Representing a set of platforms with the index set V = {1, ..., N},
with each 7 € V a random variable X; is associated that takes val-
ues from the set X; which, unlike the detection case, is denumerable.
X = (Xi,..., Xn) is the random field of concern where a realiza-
tion x satisfies z € X with X = A x ... Xx X'n. Given a set of edges
E CVxV, thegraph G = (V, ) is an UG if it holds that (¢, j) € €
implies (j,7) € £. Given G, each edge (i,7) € & corresponds to
a communication link of capacity log, (|i—;| — 1) bits such that
U;—.; is the set of admissible symbols with the symbol 0 € U;—.;
indicating no transmission.

Let tne(j) = {ui—jli € ne(j)} denote the incoming mes-
sages to node j from neighbor nodes ne(j), which takes values from
Une(j) = Z/{ne}_v- X .. X une]D—»j' Here ne(j) = {ne}, ...,neP}.
The outgoing messages from node j to neighbor nodes me(j) is
given by u; 2 {u;_;|i € ne(j)} and takes values from {; which
can be defined similarly with that for U,,c(;). The overall com-
munication load is u £ {u;—;|(i,§) € £} and takes values from
L{:Z/ll X ... XUN.

A causal online processing of measurements {y;|j € V} € Y
where ) = )i X ... X Vn takes place when each j € V), first
performs its local communication rule y; : J; — U; based on only
y; » and as soon as u,(;) are collected, proceeds with the local
estimation rule v; : V; X Une(j) — Xj.

Letvy; = (uj,v;) and v = (71, ..., 7~ ) denote the local rule of
node j and the strategy of the network respectively. Let M; and N}
denote the set of all possible communication and estimation rules
respectively local to node j. Then, I'; = M; x N forvy; € T'j and
the set of possible strategies given G is e = 't x ... xI'n.

2.2. Problem Definition

As (U, X) = ~(Y), the joint process (U, X, X) has the joint den-
sity p(u, @,25) = [, oy, dy p(u, &|z, y;7)p(z, y) where ;77 de-
notes that the distribution is specified by the processing strategy +.
Here p(u, &lz,y;7) = [1°, (), &;19;, tne(s); 1) holds where
Py, &5 |Y5, tne(i); 75) =P(ws1Y55 13)P(E5 Y55 tnes); ;) consider-
ing the causal online processing scheme correponding to G (described
in Sec. 2.1). We note that the conditionals determined by local com-
munication and estimation rules are p(u;|y;; /) = Ou;,u;(y;) @nd
P(&51Y5, Une(i); Vi) = (&5 — v; (Y, Une(s))) Where 0; ; and 6()
are the Kronecker’s and Dirac’ s delta respectively.

Since the correspondance of p(u, &, x;7) and - are set, a cost
function ¢ which penalizes the estimation error of the pair (z,Z) and
the communication load u, i.e. ¢:U XX xX —R, yields an ob-
jective value for any strategy v € I'Y given by the Bayesian risk
J(v)=E{c(u, z, ); vy} where the expectation is over p(u, Z, ;).
Given the constraints modelled with G and ¢, the best strategy for
estimation is the solution to the optimization problem given by

(P) :min J(v) , subjectto ~ € I'Y )
2.3. Team Theoretic Iterative Solution

Team problems are involved in choosing best actions v; €1'; for
j=1,...,N with a single cost J(y1, ...,yn). Concerned with mini-
mization, when it is hard to find the global optimum, a useful relax-
ation is the Nash equilibrium (~7, ..., v5/) which satisfies

v = arg min J(3;,7\) )

Algorithm 1 Iterations converging to a pbp optimal strategy.
0) (Initiate) | = 0, choose ’yo cI'wherel' =11 x ... x I'n;
1) (Update) l =1+ 1;
Forj=1,..,N
1 _ . ! 1 -1 -1
Y; = argmilly;er; J(’Vla o Y=Y Vir1 o IN )
2) (Check) If J(v' ™) — J(7') < e stop, else GO TO I;

for j=1,2,..., N where \j={1,2,...,N}\{j}. (71, -..,7¥) is also
called a person by person (pbp) optimal solution [9]. It can easily be
shown that Algorithm 1 converges to a pbp optimal strategy.

Problem (P) is NP-hard in the detection setting [7]. Considering
a pbp optimal solution, provided that some reasonable assumptions
hold, both the implied online processing and the update step of Algo-
rithm 1 scales with the number of nodes. It is also possible to carry
out this step in a message passing fashion. We follow this solution
approach for estimation. These assumptions are

Assumption 1 (Conditional Independence): Noise processes are
mutually independent yielding p(z,y) = p(x) vazl p(ys|z).

Assumption 2 (Measurement Locality): y; is induced only by z;
forall j € V,ie. p(y;j|z) = p(y;lz;)-

Assumption 3 (Separable Cost): The Bayesian cost function is
of the form c(u, &, z) = c*(Z, z) + Ac(u, =) where X is a unit con-
version coefficent which is the estimation error penalty equivalent to
a unit communication cost.

Assumption 4 (Cost Locality): ¢® and ¢° are additive over nodes,
ie. C(ua z, 33) = Zjev C;'l(‘%h 1:]') +A Zjev C;(ujv xj)‘

Proposition (1): For Problem (P), if Assumptions 1-4 hold,
J(v)=Ja(y) +AJe(y) and given a pbp optimal strategy
v = (7%,...7%) and fixing all local rules other than the j*", the
4" optimal rule given by Eq.(2) reduces to local communication
and estimation rules 11} (Y;) and v} (Y, Upe(jy) given by

arg mig'/dl“jp(xj)P(E'|9Uj)[/\c§(u9w«’Ej) +C5 (uz,25)]  (3)
J

uj€U; ) x

TjEX;

ar&min/dffjp(fvj)P(Yj|$1)Pf(Une<j)\xj)cg(f?jyffj) C))
X

respectively where Yupe(;) € Une(y)

P]*(une(j)|x]):/ dxne(])p(xne(])|xj) H Pz:](uz—>]|xz) (5)
ne(s) i€ne(g)
with terms regarding influence of i € ne(j) on j given by
P (i |20) =32 vy (Wil @is 1), Vi € Uiy where
p(uilzi; 17)= [y, dyip(yilz:)p(uilyi; p7). In addition Vu; €U;
C5 (5,25) = Y iene( O (Ui, 5) (6)

holds with terms regarding the influence of j on i € ne(j) given by

Cfﬁj(ug'%wj):/ dl’ne(i)\j/ dzi p(Tne(iy\j, TilTs) X
Xne(i)\j Xi
Z H P;’Hi(uj’—vi|xj’)I;(une(i)vmi;’y;) @)
Une(i)\jJ ' Ene(i)\j
such that
I (Uneqiy, Ti; Vf):/dyi/dficg(i?u Ta)P(&4|Ys, Une(i); Vi) X
Vi X p(yilzi)  (®)
Proof: Due to lack of space we skip the proof here but an analogous
version of this proposition has been proved for the detection problem
[8]. The above expressions can be obtained from this version by
replacing summations over X;s with integrations, changing the order
of operators appropriately and assuming that the links are error-free.
With the proposition above, given a pbp optimal strategy, we
obtain communication and estimation rules local to node j in terms
of the remaining in a variational form. Considering P;", ; (u; . j|x:)



Algorithm 2:/terations converging to a person by person optimal
decentralized estimation strategy for Problem (P).

0) (Initiate) | = 0, choose ’yo er’;

1) (Update) l =1+ 1;

Fori=1,...,N,Compute { P|_ ;(wi—;|7;)}jenec(i);
Fori = 1,..., N,Update v., compute{C!_ ; (uj—i, ;) }jcne(iy;
Fori=1,..., N,Update ,ui

2) (Check) If J(v'™) — J(7') < e stop, else GO TO (1);
for i € ne(j), P; (une¢jy|x;) is the likelihood of x5 given wye(;).
Eq.s(6)-(8) reveal that C (u;, ;) is the total expected cost induced

on the neighbors by u;, i.e. E{cne(j),Lne(s)sTne(s)) |ts,25}. Hence,

we conclude that the j*" optimal communication rule selects the
message that results with a minimum contribution to the overall cost
and also noting that p(x;)p(y;|2;) P(tune(jy|z5) o< p(@;]15, Une(s))
holds under Assumptions 1-4, the optimal estimation rule selects & ;
that yields minimum expected penalty given y; and Upe(;)-

The right hand sides of Eq.s(5)-(8) can be treated as operators
valid for any set of local rules. Hence it is possible to specify the
update step of Algorithm 1 for Problem (P) and obtain Algorithm 2.

The objective value at [*" step is easily found to be
D= Gl + XD Giw) ©)
i€V i€V

where G¢(1/}) = ., S(L)fxdmbp 23) P (e (i) | 00) Ti (e i)y i301 )
and GS () =3", fx dasc§ (ui, ©:)p(x:)p(wil@s; k) in terms of the
expressions discussed above.

It is possible to carry out the update step of Algorithm 2 in a
message passing fashion where in the first pass each node ¢ sends
Pl .. jtog € ne( ) and upon receptlon of these terms from all neigh-
bors, updates P} (une(;)|z:) and v} accordingly. In the second pass
node i sends C?_, ; jtog € ne( ) and as soon as it receives all the cost
messages from neighbors, b is updated.

3. MONTE CARLO APPROXIMATED ITERATIONS

For problem (P), Algorithm 2 yields a pbp optimal solution in prin-
ciple. The operators required in the update step and implied by
Eq.s(5)-(8) as well as the pbp optimal local rules given by Eq.s(3)-
(4) do not have closed form solutions in general for which we pro-
pose particle representations and corresponding approximate com-
putational schemes through MC integration methods presented in
Section 3.1. In Section 3.2 we progressively apply them and ob-
tain an approximation to the local rule described in Proposition (1).

3.1. Monte Carlo Integration

Consider i=[,,dx p(z) f(x), where p(x) is a probability density for
X such that a realization x satistfies € X. In the conventional
MC method, given M independent samples, i.e. =™ ~ p(z) for
m=1,..., M, i is estimated with zM:ﬁZﬁilf(x(k)) which ex-
hibits almost sure convergence. If we are able to maintain
™ ~g(x) form = 1, ..., M instead, the Importance Sampling (IS)
method proposes EM:ﬁ Zﬁilw(m f(z*)
wry =p(x™)/g(z®) which also converges to i almost surely if
the support of g is covered by that of f. When a small number of
weights dominate,iy; = (1/Z£ilw(k))2£{:1 w(k>f(x(k)) is prefer-
able although it is slightly biased for small M [10].

3.2. Iterative MC Optimization Scheme

where

Considering Proposition (1), we proceed in three steps;
Step 1 We replace the integrals appearing in the local rule expres-
sions given in Eq.s (3) and (4) with conventional MC approxima-

tions, i.e. given m;m)f\/p(l'j) for m=1,..,M,

with (1/M) 3250, p(Yila ™A (ug, 25™) + C; (ug, 25™)] and
(1/M)Zm 1 p(Y; |;r(m)) P} (Upegs) \xm))c] (5, ; (™) respectively.
Step 2 Both P} and C are requlred to be known Vune(J) € Une(j)
and Yu; € U; respectively for {m
(O (ujmisl™ ) Yoz

Eq.(6) directly applies. leen{ e Wiy, x(m)) 1VuZHJ €U
(m)

1 in Step 1. Assuming that

1 are knoanz ene( ) and Vuj—; € Uj—s

where z\™ ~ p(x;),m ..,M and noting that {1: }ZgnE(J) ~

[Licnesyp(@i) anIs approx1mat10n to P} (une<] \x ) given by Eq.(5)

is through weights w< m(m) ( nem| )/ Hie”e(]-) P(mz('m ))

~ m) 1 m)(m * m’

P (uneqylaf™)= 57— >l TP (mslal™)
,Z_f’§m)<m Jmi=t o iene()

Step 3 In this step we approximate the node to node terms. For

i € ne(j), Pi:j(ui%j,atl(-m)) is a marginalization  of
(m)

p(us|x;"”; i ). Form =1,..., M an IS approximation to this con-
ditional  distribution is  possible  through y(p) ~ p(yi),
p = 1,..., P with weights w(m)(p) = p(ylm |13(m))/p( (p)) as
(m) (M@
pluslz;™ ;s i) = S (m)(p)z 8y, (10
p= 1@

Considering the conditionals in Secnon 2.2, an IS approximation to
I (Une(i)s m§m>; V), Vne(i) EUne(syand form=1, ..., M using the
already generated sample set {ygp ) }5:1 and the IS weights above is
P
T * 1
Ii(une(i)7 JJEm)QVi) =5
=
p=1
Next we consider Eq.(7) for which assuming that Vj'€ne(i)\j,
{P *Hi(ujlﬂi,xj/(m)) M Vuj_,; € Uj_,; are given where
(er)Np(x] ) and noting that xffszz)\] ~ILeney;p(@;7) where
xéz)i)\j—{xj/ >}j/€ne(i)\]~ anIS appr0x1mat10nVujﬁi €U;_,; and for
m=1,..,Mis
Ak (m) (m)(M)
CHJ(UJ—W% )= Z M (m)(m') Z
M(,)\]E r—1%; m’ 1
HP i’ —i ug *?Z‘x -/ ) (une(z)’ (m );Vi*)
j’€ne(i)\j
=p (L 1) (™) TT plag™).

j'€ne(i)\j
The above steps render an approximated counterpart of Propo-

sition (1) resulting¥; ~=~;. When applied for all nodes i € V, they
provide computationally feasible approximations for the update step
of Algorithm (2), which in turn implies a MC optimization scheme
yielding 4™ given by Algorlthm (3). For checking convergence, an
approximation J (%) ~ J(4') is immediate through substituting

G;i( i)_zu"eo m P'H—l(unP( )‘[IJ )Il(une( )7 (m)7 Df) and

é?(*l,):zu S (u“m(m)) (u |x<m),/11) in Eq.(9). Hence, after
(m)}

(m)(p)d( (y(p)u ()) (m))
i rdne

where w<m)< R

selecting an initial strategy and generatmg {{:c

g, )Np(g;]-) and{{y](-p)}pzl}j:l where yj Np(y]), Algorithm (3)
approaches an approximately pbp optimal strategy constrained by
the undirected graph G.

1}J 1 where

4. EXAMPLE

Consider a DE network represented with the UG G = (V,€) in
Figure (1a) with U;—,; = {0,1,2} V(i,j) € €. For each node i,
¢ (i, i) =37 peiy C(uimj) wWhere c(ui—;) = 0if ui; =0



Algorithm 3: Iterative MC algorithm that converges to an
approximate pbp optimal decentralized strategy.
0) (Initiate) | = 0, choose ° € ro;
1) (Update)l =1+ 1;

Fori=1, ...,N,Compute{{ﬁilﬁj(uiﬂﬂx DM, jene(s)s
Fori=1,..,.N

Update 7., compute{{CzH] (ujﬁl, )}m 1}jene(i):
Fori=1,...,N,Update ji;

2) (Check)If| JG' )= TG M= |JG' )= JGF)| > GO TO (1);
else ¥* = 5, STOP;
and c(u;—;) = 1 otherwise. Hence J. is the total expected link use
rate (LUR) in bits. The estimation error penalty is ¢! = (z; — &;)>
and Jg is the total mean squared error (MSE).
Subject to estimation is a multivariate Gaussian random field,
ie. x ~ N(0,C,.), which is Markov with respect to the graph in
Figure(1b). We choose C, accordingly as
2 1.125 1.5 1.125

1.125 2 1.5 1.125 an
1.5 1.5 2 1.5

1.125 1.125 1.5 2

The j'* field of x is associated with platform j and the noise
processes {n;}jev are additive, mutually independent and Gaus-
sian, i.e. nj ~ N(0,02) where o2 = 0.5, yielding an SNR of 6dB
for each sensor. For each platform j, the initial local estimation rule
is the myopic mimimum MSE estimator which is based only on y;,
ie. V5 (Yj, Une(j)) = [ da; z;p(z;|y;), and the communication

rule is a threshold rule quantizing y;, i.e. p; (yi, Une(i)) = 1,0 and
2 fory; < —20p, =20, < y; < 20, and y; > 20, respectively.

The performance point (J¢, Jq) of the converged strategy vary
with A. For A > A", no transmission with myopic estimation rules
achieve the minimum cost which is also a pbp optimal. Hence, \*
admits an interpretation of being the maximum price per bit that the
system affords to decrease the estimation penalty. We approximate
the performance curve of solutions as we increase A from 0 which
is an approximate quantification for the tradeoff between the cost of
estimation errors and communication. o

In Figure (Ic) we present these pairs, i.e. (Je, Jq), for dif-
ferent choices of A and |U/;—;|s. The upper and lower limits are
MSEs corresponding to the myopic rule and the centralized optimal
rule'respectively. (JC7 Jd) points for the 1-bit selective communi-
cation scheme reveal that altough the transmission has no cost for
A = 0, the total link use rate is only slightly higher than 50% of the
total 6 bits indicating that the information from receiving no mes-
sages is successfully utilized. Moreover, the MSE performance is
closer to that of the centralized scheme than the myopic scheme.
The communication stops for A* ~ 0.3. Approximate performance
points for 2-bits case present the decrease in MSE for the same net-
work load as we increase the link capacities for small values of A
which is competetive with that of the centralized rule.

C, =

5. CONCLUSION

We have considered the design of a decentralized estimation network
constrained with an undirected communication graph in a Bayesian
framework that captures costs due to both estimation errors and trans-
missions. Adopting a recent scheme for detection networks which
proposes a solution utilizing team decision theory we have extended
the set of constraints considered by the conventional approaches for

For ¢(x, &) = (x — &)T (x — &), the optimal centralized estimate is the
mean of p(x1, ..., z4|y1, ..., ya) which yields a minimum of J.=3Q bits
where () is the number of bits used to quantize y; before transmission.

(b) @ ©

0051152253354455556
J

c
Fig. 1. (a) UG topology of the DE network, (b) Markov Random
Field representation of X, (c) Approximate points of the perfor-
mance curves while A is increased from 0 with 0.001 steps, for the
example scenario.

the decentralized estimation problem. In principle, the solution is
optimal in a person by person sense and achieved iteratively. We
have proposed particle representations and approximate computa-
tional schemes utilizing Monte Carlo methods for the operators we
encounter in the iterative algorithm, which are impossible to evaluate
exactly in practice in general. We maintain scalability with the num-
ber of nodes as well as the size of the sample sets. This efficiency
enables us to approximately quantify the tradeoff between estimation
accuracy and communication cost through the performance curves.
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