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ABSTRACT

We consider a decentralized estimation network subject to communi-

cation constraints such that nearby platforms can communicate with

each other through low capacity links rendering an undirected graph.

After transmitting symbols based on its measurement, each node

outputs an estimate for the random variable it is associated with as

a function of both the measurement and incoming messages from

neighbors. We are concerned with the underlying design problem

and handle it through a Bayesian risk that penalizes the cost of com-

munications as well as estimation errors, and constraining the feasi-

ble set of communication and estimation rules local to each node by

the undirected communication graph. We adopt an iterative solution

previously proposed for decentralized detection networks which can

be carried out in a message passing fashion under certain conditions.

For the estimation case, the integral operators involved do not yield

closed form solutions in general so we utilize Monte Carlo methods.

We achieve an iterative algorithm which yields an approximation to

an optimal decentralized estimation strategy in a person by person

sense subject to such constraints. In an example, we present a quan-

tification of the trade-off between the estimation accuracy and cost

of communications using the proposed algorithm.

Index Terms— Decentralized estimation, communication con-

strained inference, random-field estimation, message passing algo-

rithms.
1. INTRODUCTION

Decentralized estimation underlies many envisioned applications of

sensor networks which are networked platforms that have limited ca-

pability of sensing, communication and computation. Possible sce-

narios consider a relatively high volume of data collected at various

locations often in an uncollaborating environment. Therefore, plat-

forms need to communicate through bandwidth (BW) limited links

in order to have the data processed. Besides, the limited energy bud-

get is mostly consumed by the transmissions. Also the processing

is preferred to be done in a collaborative fashion to inhibit possible

computational bottlenecks and decrease BW requirements. Hence,

the issues regarding the achievable estimation accuracy for a given

communications structure and transmission costs together with the

decentralized strategy that exhibits a certain performance arise.

The conventional setting renders a star shaped directed graph,

in which a fusion center is selected to perform the estimation task

depending on the quantized observations collected and transmitted

This work was partially supported by the Scientific and Technological
Research Council of Turkey under grant 105E090, by the European Com-
mission under grant MIRG-CT-2006-041919 and with a Turkish Academy of
Sciences Young Scientist Award. The authors would like to thank O. Patrick
Kreidl for his help and support throughout many discussions.

by the peripheral nodes (see e.g. [1, 2, 3]). The design problem in-

volves choosing the quantization schemes together with a fusion rule

that exhibit a certain performance. Altough BW constraints are con-

sidered, the cost of transmissions which likely vary for each link due

to the multi-hop nature and more general topologies which might

better reflect an ad-hoc setting are not captured under these treat-

ments. Also, in the case of multiple random variables, e.g. as in

a random-field estimation problem, computational bottleneck prob-

lems might occur at the fusion center and the lack of collaboration

among nodes might inhibit the improvement of the performance.

If the underlying network services support a relatively high load,

Graphical Models together with Message Passing Algorithms pro-

vide solutions in accordance with the in-network processing paradigm

[4]. Altough it is possible to analyze the effects of the communica-

tion structure in this framework [5], it not easy to tailor the solution

given the communication constraints.

We consider the estimation of an N -dimensional random vector

by a distributed system which exhibits a communication and compu-

tation structure that better matches the underlying ad-hoc, multi-hop

nature. We are concerned with introducing the cost of communica-

tions, possibly due to energy consumption, as well as the availability

and capacity of links. A collaborative processing is achieved through

distributing the estimation task through random variable-node asso-

ciations. A Bayesian approach in which the costs both due to com-

munications and estimation errors are captured provides a rigorous

problem definition. Such a setting is utilized in [6] for the case in

which the underlying communications render a directed graph. In

this work, we consider bidirectional links rendering an undirected

graph (UG). For detection networks, a similar design problem has

been investigated in [7] (see also [8]) in which rules local to nodes

for communication as well as detection are sought such that a dual

objective Bayesian risk is optimized. The aggregation of local rules

are called a strategy and the set of feasible strategies is constrained

by the UG structure. Under a Team Decision Theoretic treatment an

iterative solution which converges to a person by person (pbp) op-

timal strategy is proposed. We adopt this framework for decentral-

ized estimation (DE) and present the corresponding iterative scheme.

However the resulting expressions contain integral operators which

are impossible to evaluate exactly in practice. In order to keep fi-

delity to the mathematical model, we exploit Monte Carlo (MC) in-

tegration methods and achieve a MC optimization scheme for DE

networks constrained by an UG which is scalable with the number

of nodes and sample sizes. Moreover, results can be produced for

any set of distributions provided that samples can be generated from

them. The resulting strategy corresponds to approximate computa-

tions to the pbp optimal one achieving a reasonable Bayesian risk.



2. THE DESIGN PROBLEM

We consider the estimation counterpart of the decentralized detec-

tion network design problem considered in [7]. Hence, in our setting

the variables to be inferred take values from denumerable sets. We

assume that the links are error-free.

2.1. Online Processing Constrained With an UG

Representing a set of platforms with the index set V = {1, ..., N},

with each j ∈ V a random variable Xj is associated that takes val-

ues from the set Xj which, unlike the detection case, is denumerable.

X = (X1, ..., XN ) is the random field of concern where a realiza-

tion x satisfies x ∈ X with X = X1× ...×XN . Given a set of edges

E ⊂ V×V , the graph G = (V, E) is an UG if it holds that (i, j) ∈ E
implies (j, i) ∈ E . Given G, each edge (i, j) ∈ E corresponds to

a communication link of capacity log2(|Ui→j | − 1) bits such that

Ui→j is the set of admissible symbols with the symbol 0 ∈ Ui→j

indicating no transmission.

Let une(j) , {ui→j |i ∈ ne(j)} denote the incoming mes-

sages to node j from neighbor nodes ne(j), which takes values from

Une(j) = Une1
j
→j × ... × UneD

j
→j . Here ne(j) = {ne1

j , ...,neD
j }.

The outgoing messages from node j to neighbor nodes ne(j) is

given by uj , {uj→i|i ∈ ne(j)} and takes values from Uj which

can be defined similarly with that for Une(j). The overall com-

munication load is u , {ui→j |(i, j) ∈ E} and takes values from

U = U1 × ... × UN .

A causal online processing of measurements {yj |j ∈ V} ∈ Y
where Y = Y1 × ... × YN takes place when each j ∈ V , first

performs its local communication rule µj : Yj → Uj based on only

yj , and as soon as une(j) are collected, proceeds with the local

estimation rule νj : Yj × Une(j) → Xj .

Let γj = (µj , νj) and γ = (γ1, ..., γN ) denote the local rule of

node j and the strategy of the network respectively. Let Mj and Nj

denote the set of all possible communication and estimation rules

respectively local to node j. Then, Γj = Mj ×Nj for γj ∈ Γj and

the set of possible strategies given G is ΓG = Γ1 × ... × ΓN .

2.2. Problem Definition

As (U, X̂) = γ(Y ), the joint process (U, X̂, X) has the joint den-

sity p(u, x̂, x; γ) =
∫

y∈Y
dy p(u, x̂|x, y; γ)p(x, y) where “; γ” de-

notes that the distribution is specified by the processing strategy γ.

Here p(u, x̂|x, y; γ) =
∏N

j=1 p(uj , x̂j |yj , une(j); γj) holds where

p(uj , x̂j |yj , une(j); γj)=p(uj |yj ; µj)p(x̂j |yj , une(j); νj) consider-

ing the causal online processing scheme correponding to G (described

in Sec. 2.1). We note that the conditionals determined by local com-

munication and estimation rules are p(uj |yj ; µj) = δuj ,µj(yj) and

p(x̂j |yj , une(j); νj) = δ(x̂j − νj(yj , une(j))) where δi,j and δ(x)
are the Kronecker’s and Dirac’ s delta respectively.

Since the correspondance of p(u, x̂, x; γ) and γ are set, a cost

function c which penalizes the estimation error of the pair (x,x̂) and

the communication load u, i.e. c : U×X×X →R, yields an ob-

jective value for any strategy γ ∈ ΓG given by the Bayesian risk

J(γ)=E{c(u, x, x̂); γ} where the expectation is over p(u, x̂, x; γ).

Given the constraints modelled with G and c, the best strategy for

estimation is the solution to the optimization problem given by

(P) : min J(γ) , subject to γ ∈ ΓG
(1)

2.3. Team Theoretic Iterative Solution

Team problems are involved in choosing best actions γj ∈Γj for

j =1, ...,N with a single cost J(γ1, ...,γN). Concerned with mini-

mization, when it is hard to find the global optimum, a useful relax-

ation is the Nash equilibrium (γ∗
1 , ..., γ∗

N ) which satisfies

γ∗
j = arg min

γj∈Γj

J(γj , γ
∗
\j) (2)

Algorithm 1 Iterations converging to a pbp optimal strategy.

0) (Initiate) l = 0, choose γ0 ∈ Γ where Γ = Γ1 × ... × ΓN ;

1) (Update) l = l + 1;

For j = 1, ..., N
γl

j = arg minγj∈Γj
J(γl

1, ..., γ
l
j−1, γj , γ

l−1
j+1, ..., γ

l−1
N )

2) (Check) If J(γl−1) − J(γl) < ε stop, else GO TO 1;

for j =1, 2, ..., N where \j ={1, 2, ...,N}\{j}. (γ∗
1, ...,γ

∗
N) is also

called a person by person (pbp) optimal solution [9]. It can easily be

shown that Algorithm 1 converges to a pbp optimal strategy.

Problem (P) is NP-hard in the detection setting [7]. Considering

a pbp optimal solution, provided that some reasonable assumptions

hold, both the implied online processing and the update step of Algo-

rithm 1 scales with the number of nodes. It is also possible to carry

out this step in a message passing fashion. We follow this solution

approach for estimation. These assumptions are

Assumption 1 (Conditional Independence): Noise processes are

mutually independent yielding p(x, y) = p(x)
∏N

i=1 p(yi|x).

Assumption 2 (Measurement Locality): yj is induced only by xj

for all j ∈ V , i.e. p(yj |x) = p(yj |xj).

Assumption 3 (Separable Cost): The Bayesian cost function is

of the form c(u, x̂, x) = cd(x̂, x)+λcc(u, x) where λ is a unit con-

version coefficent which is the estimation error penalty equivalent to

a unit communication cost.

Assumption 4 (Cost Locality): cd and cc are additive over nodes,

i.e. c(u, x̂, x) =
∑

j∈V cd
j (x̂j , xj) + λ

∑

j∈V cc
j(uj , xj).

Proposition (1): For Problem (P), if Assumptions 1-4 hold,

J(γ)=Jd(γ) +λJc(γ) and given a pbp optimal strategy

γ∗ = (γ∗
1 , ...γ∗

N ) and fixing all local rules other than the jth, the

jth optimal rule given by Eq.(2) reduces to local communication

and estimation rules µ∗
j (Yj) and ν∗

j (Yj , Une(j)) given by

arg min
uj∈Uj

∫

Xj

dxjp(xj)p(Yj |xj)[λcc
j(uj , xj) + C∗

j (uj , xj)] (3)

arg min
x̂j∈Xj

∫

Xj

dxjp(xj)p(Yj |xj)P
∗
j (Une(j)|xj)c

d
j (x̂j , xj) (4)

respectively where ∀une(j) ∈ Une(j)

P ∗
j (une(j)|xj)=

∫

Xne(j)

dxne(j)p(xne(j)|xj)
∏

i∈ne(j)

P ∗
i→j(ui→j |xi) (5)

with terms regarding influence of i ∈ ne(j) on j given by

P ∗
i→j(ui→j |xi)=

∑

ui\ui→j
p(ui|xi; µ

∗
i ), ∀ui→j ∈ Ui→j where

p(ui|xi; µ
∗
i )=

∫

Yi
dyip(yi|xi)p(ui|yi; µ

∗
i ). In addition ∀uj ∈Uj

C∗
j (uj , xj) =

∑

i∈ne(j)C
∗
i→j(uj→i, xj) (6)

holds with terms regarding the influence of j on i ∈ ne(j) given by

C∗
i→j(uj→i, xj)=

∫

Xne(i)\j

dxne(i)\j

∫

Xi

dxi p(xne(i)\j , xi|xj) ×

∑

une(i)\j

∏

j ′∈ne(i)\j

P ∗
j ′→i(uj ′→i|xj ′)I∗

i (une(i), xi; γ
∗
i ) (7)

such that

I∗
i (une(i), xi; ν

∗
i )=

∫

Yi

dyi

∫

Xi

dx̂ic
d
i (x̂i, xi)p(x̂i|yi, une(i); ν

∗
i ) ×

p(yi|xi) (8)

Proof: Due to lack of space we skip the proof here but an analogous

version of this proposition has been proved for the detection problem

[8]. The above expressions can be obtained from this version by

replacing summations over Xjs with integrations, changing the order

of operators appropriately and assuming that the links are error-free.

With the proposition above, given a pbp optimal strategy, we

obtain communication and estimation rules local to node j in terms

of the remaining in a variational form. Considering P ∗
i→j(ui→j |xi)



Algorithm 2:Iterations converging to a person by person optimal

decentralized estimation strategy for Problem (P).

0) (Initiate) l = 0, choose γ0 ∈ ΓG;

1) (Update) l = l + 1;

For i = 1, ..., N ,Compute {P l
i→j(ui→j |xj)}j∈ne(i);

For i = 1, ..., N ,Update νl
i , compute{Cl

i→j(uj→i, xj)}j∈ne(i);

For i = 1, ..., N ,Update µl
i;

2) (Check) If J(γl−1) − J(γl) < ε stop, else GO TO (1);

for i ∈ ne(j), P ∗
j (une(j)|xj) is the likelihood of xj given une(i).

Eq.s(6)-(8) reveal that C∗
j (uj , xj) is the total expected cost induced

on the neighbors by uj , i.e. E{c(une(j),x̂ne(j),xne(j))|uj ,xj}. Hence,

we conclude that the jth optimal communication rule selects the

message that results with a minimum contribution to the overall cost

and also noting that p(xj)p(yj |xj)P (une(j)|xj) ∝ p(xj |yj , une(j))
holds under Assumptions 1-4, the optimal estimation rule selects x̂j

that yields minimum expected penalty given yj and une(j).

The right hand sides of Eq.s(5)-(8) can be treated as operators

valid for any set of local rules. Hence it is possible to specify the

update step of Algorithm 1 for Problem (P) and obtain Algorithm 2.

The objective value at lth step is easily found to be

J(γl) =
∑

i∈V

Gd
i (νl

i) + λ
∑

i∈V

Gc
i (µ

l
i) (9)

where Gd
i (νl

i)=
∑

une(i)

∫

Xi
dxip(xi)P

l+1
i (une(i)|xi)Ii(une(i),xi;ν

l
i)

and Gc
i (µ

l
i)=

∑

ui

∫

Xi
dxic

c
i (ui, xi)p(xi)p(ui|xi; µ

l
i) in terms of the

expressions discussed above.

It is possible to carry out the update step of Algorithm 2 in a

message passing fashion where in the first pass each node i sends

P l
i→j to j ∈ ne(i) and upon reception of these terms from all neigh-

bors, updates P l
i (une(i)|xi) and νl

i accordingly. In the second pass

node i sends Cl
i→j to j ∈ ne(i) and as soon as it receives all the cost

messages from neighbors, µl
i is updated.

3. MONTE CARLO APPROXIMATED ITERATIONS

For problem (P), Algorithm 2 yields a pbp optimal solution in prin-

ciple. The operators required in the update step and implied by

Eq.s(5)-(8) as well as the pbp optimal local rules given by Eq.s(3)-

(4) do not have closed form solutions in general for which we pro-

pose particle representations and corresponding approximate com-

putational schemes through MC integration methods presented in

Section 3.1. In Section 3.2 we progressively apply them and ob-

tain an approximation to the local rule described in Proposition (1).

3.1. Monte Carlo Integration

Consider i=
∫

X
dx p(x)f(x), where p(x) is a probability density for

X such that a realization x satistfies x ∈ X . In the conventional

MC method, given M independent samples, i.e. x(m) ∼ p(x) for

m = 1, ..., M , i is estimated with îM= 1
M

∑M

k=1f(x(k)) which ex-

hibits almost sure convergence. If we are able to maintain

x(m)∼g(x) for m = 1, ..., M instead, the Importance Sampling (IS)

method proposes îM= 1
M

∑M

k=1ω(k)f(x(k)) where

ω(k) =p(x(k))/g(x(k)) which also converges to i almost surely if

the support of g is covered by that of f . When a small number of

weights dominate,̂iM =
(

1/
∑M

k=1ω(k)

)

∑M

k=1 ω(k)f(x(k)) is prefer-

able although it is slightly biased for small M [10].

3.2. Iterative MC Optimization Scheme

Considering Proposition (1), we proceed in three steps;

Step 1 We replace the integrals appearing in the local rule expres-

sions given in Eq.s (3) and (4) with conventional MC approxima-

tions, i.e. given x
(m)
j ∼ p(xj) for m = 1, ..., M ,

with (1/M)
∑M

m=1 p(Yj |x
(m)
j )[λcc

j(uj , x
(m)
j ) + C∗

j (uj , x
(m)
j )] and

(1/M)
∑M

m=1 p(Yj |x
(m)
j )P ∗

j (Une(j)|x
(m)
j )cd

j (x̂j , x
(m)
j ) respectively.

Step 2 Both P ∗
j and C∗

j are required to be known ∀une(j) ∈ Une(j)

and ∀uj ∈ Uj respectively for {x(m)
j }M

m=1 in Step 1. Assuming that

{C∗
i→j(uj→i,x

(m)
j )}M

m=1 are known∀i∈ne(j) and ∀uj→i ∈ Uj→i

Eq.(6) directly applies. Given{P ∗
i→j(ui→j , x

(m)
i )}M

m=1∀ui→j ∈Ui→j

where x
(m)
i ∼ p(xi),m =1, ...,M and noting that {x(m)

i }i∈ne(j) ∼
∏

i∈ne(j)p(xi) an IS approximation toP ∗
j (une(j)|x

(m)
j ) given by Eq.(5)

is through weights ω
(m)(m′)
j = p(x

(m′)

ne(j)|x
(m)
j )/

∏

i∈ne(j) p(x
(m′)
i )

P̃ ∗
j (une(j)|x

(m)
j )=

1
M
∑

m′=1

ω
(m)(m′)
j

M
∑

m′=1

ω
(m)(m′)
j

∏

i∈ne(j)

P ∗
i→j(ui→j |x

(m′)
i )

Step 3 In this step we approximate the node to node terms. For

i ∈ ne(j), P ∗
i→j(ui→j , x

(m)
i ) is a marginalization of

p(ui|x
(m)
i ; µ∗

i ). For m = 1, ..., M an IS approximation to this con-

ditional distribution is possible through y
(p)
i ∼ p(yi),

p = 1, ..., P with weights ω
(m)(p)
i = p(y

(p)
i |x(m)

i )/p(y
(p)
i ) as

p̃(ui|x
(m)
i ; µ∗

i )=
1

∑P

p=1ω
(m)(p)
i

P
∑

p=1

ω
(m)(p)
i δ

ui,µ∗
i
(y

(p)
i

)
(10)

Considering the conditionals in Section 2.2, an IS approximation to

I∗
i (une(i), x

(m)
i ; ν∗

i ),∀une(i)∈Une(i)and for m=1, ..., M using the

already generated sample set {y(p)
i }P

p=1 and the IS weights above is

Ĩ∗
i(une(i), x

(m)
i ;ν∗

i)=
1

P
∑

p=1

ω
(m)(p)
i

P
∑

p=1

ω
(m)(p)
i cd

i (ν∗
i (y

(p)
i ,une(i)), x

(m)
i )

Next we consider Eq.(7) for which assuming that ∀j′∈ne(i)\j,

{P ∗
j′→i(uj′→i, xj′

(m))}M
m=1 ∀uj′→i ∈ Uj′→i are given where

x
(m)

j′
∼p(xj′) and noting that x

(m)

ne(i)\j
∼

∏

j′∈ne(i)\j
p(xj′) where

x
(m)

ne(i)\j
,{x(m)

j′
}j′∈ne(i)\j an IS approximation∀uj→i∈Uj→i and for

m = 1, ..., M is

C̃∗
i→j(uj→i, x

(m)
j )=

∑

une(i)\j

1
∑M

m′=1ω
(m)(m′)
i

M
∑

m′=1

ω
(m)(m′)
i ×

∏

j′∈ne(i)\j

P ∗
j′→i(uj′→i|x

(m′)

j′
)Ĩ∗

i (une(i), x
(m′)
i ; ν∗

i )

where ω
(m)(m′)
i =p(x

(m′)

ne(i)\j
, x

(m′)
i |x(m)

j )/p(x
(m′)
i )

∏

j′∈ne(i)\j

p(x
(m′)

j′
).

The above steps render an approximated counterpart of Propo-

sition (1) resulting γ̃∗
j ≈γ∗

j . When applied for all nodes i ∈ V , they

provide computationally feasible approximations for the update step

of Algorithm (2), which in turn implies a MC optimization scheme

yielding γ̃∗ given by Algorithm (3). For checking convergence, an

approximation J̃(γ̃l) ≈ J(γl) is immediate through substituting

G̃d
i (ν̃

l
i)=

∑

une(i),m
P̃ l+1

i (une(i)|x
(m)
i )Ĩl

i(une(i), x
(m)
i ; ν̃l

i) and

G̃c
i (µ̃

l
i)=

∑

ui,m
cc

i (ui, x
(m)
i )p(ui|x

(m)
i ; µ̃l

i) in Eq.(9). Hence, after

selecting an initial strategy and generating {{x(m)
j }M

m=1}
N
j=1 where

x
(m)
j ∼p(xj) and{{y(p)

j }P
p=1}

N
j=1 where y

(p)
j ∼p(yj), Algorithm (3)

approaches an approximately pbp optimal strategy constrained by

the undirected graph G.

4. EXAMPLE

Consider a DE network represented with the UG G = (V, E) in

Figure (1a) with Ui→j = {0, 1, 2} ∀(i, j) ∈ E . For each node i,
cc

i (ui, xi) =
∑

j∈ne(i) c(ui→j) where c(ui→j) = 0 if ui→j = 0



Algorithm 3: Iterative MC algorithm that converges to an

approximate pbp optimal decentralized strategy.

0) (Initiate) l = 0, choose γ0 ∈ ΓG;

1) (Update) l = l + 1;

For i = 1, ..., N ,Compute{{P̃ l
i→j(ui→j |x

(m)
j )}M

m=1}j∈ne(i);

For i = 1, ..., N

Update ν̃l
i , compute{{C̃l

i→j(uj→i, x
(m)
j )}M

m=1}j∈ne(i);

For i = 1, ..., N ,Update µ̃l
i;

2) (Check)If|J̃ (̃γl−2)−J̃ (̃γl−1)|−|J (̃γl−1)−J̃ (̃γl)|>ε GO TO (1);

else γ̃∗ = γ̃l, STOP;

and c(ui→j) = 1 otherwise. Hence Jc is the total expected link use

rate (LUR) in bits. The estimation error penalty is cd
i = (xi − x̂i)

2

and Jd is the total mean squared error (MSE).

Subject to estimation is a multivariate Gaussian random field,

i.e. x ∼ N (0,Cx), which is Markov with respect to the graph in

Figure(1b). We choose Cx accordingly as

Cx =







2 1.125 1.5 1.125
1.125 2 1.5 1.125
1.5 1.5 2 1.5

1.125 1.125 1.5 2






(11)

The jth field of x is associated with platform j and the noise

processes {nj}j∈V are additive, mutually independent and Gaus-

sian, i.e. nj ∼ N (0, σ2
n) where σ2

n = 0.5, yielding an SNR of 6dB

for each sensor. For each platform j, the initial local estimation rule

is the myopic mimimum MSE estimator which is based only on yj ,

i.e. ν0
j (yj , une(j)) =

∫ ∞

−∞
dxj xjp(xj |yj), and the communication

rule is a threshold rule quantizing yj , i.e. µ0
i (yi, une(i)) = 1, 0 and

2 for yi < −2σn, −2σn ≤ yi < 2σn and yi ≥ 2σn respectively.

The performance point (Jc, Jd) of the converged strategy vary

with λ. For λ ≥ λ∗, no transmission with myopic estimation rules

achieve the minimum cost which is also a pbp optimal. Hence, λ∗

admits an interpretation of being the maximum price per bit that the

system affords to decrease the estimation penalty. We approximate

the performance curve of solutions as we increase λ from 0 which

is an approximate quantification for the tradeoff between the cost of

estimation errors and communication.

In Figure (1c) we present these pairs, i.e. (J̃c, J̃d), for dif-

ferent choices of λ and |Ui→j |s. The upper and lower limits are

MSEs corresponding to the myopic rule and the centralized optimal

rule1respectively. (J̃c, J̃d) points for the 1-bit selective communi-

cation scheme reveal that altough the transmission has no cost for

λ = 0, the total link use rate is only slightly higher than 50% of the

total 6 bits indicating that the information from receiving no mes-

sages is successfully utilized. Moreover, the MSE performance is

closer to that of the centralized scheme than the myopic scheme.

The communication stops for λ∗ ≈ 0.3. Approximate performance

points for 2-bits case present the decrease in MSE for the same net-

work load as we increase the link capacities for small values of λ
which is competetive with that of the centralized rule.

5. CONCLUSION

We have considered the design of a decentralized estimation network

constrained with an undirected communication graph in a Bayesian

framework that captures costs due to both estimation errors and trans-

missions. Adopting a recent scheme for detection networks which

proposes a solution utilizing team decision theory we have extended

the set of constraints considered by the conventional approaches for

1For c(x, x̂) = (x− x̂)T (x− x̂), the optimal centralized estimate is the
mean of p(x1, ..., x4|y1, ..., y4) which yields a minimum of Jc =3Q bits
where Q is the number of bits used to quantize yj before transmission.
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Fig. 1. (a) UG topology of the DE network, (b) Markov Random

Field representation of X , (c) Approximate points of the perfor-

mance curves while λ is increased from 0 with 0.001 steps, for the

example scenario.

the decentralized estimation problem. In principle, the solution is

optimal in a person by person sense and achieved iteratively. We

have proposed particle representations and approximate computa-

tional schemes utilizing Monte Carlo methods for the operators we

encounter in the iterative algorithm, which are impossible to evaluate

exactly in practice in general. We maintain scalability with the num-

ber of nodes as well as the size of the sample sets. This efficiency

enables us to approximately quantify the tradeoff between estimation

accuracy and communication cost through the performance curves.
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