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We propose a new methodology for designing decentralized random field estimation schemes that takes 
the tradeoff between the estimation accuracy and the cost of communications into account. We consider 
a sensor network in which nodes perform bandwidth limited two-way communications with other nodes 
located in a certain range. The in-network processing starts with each node measuring its local variable 
and sending messages to its immediate neighbors followed by evaluating its local estimation rule based 
on the received messages and measurements. Local rule design for this two-stage strategy can be cast as 
a constrained optimization problem with a Bayesian risk capturing the cost of transmissions and penalty 
for the estimation errors. A similar problem has been previously studied for decentralized detection. We 
adopt that framework for estimation, however, the corresponding optimization schemes involve integral 
operators that are impossible to evaluate exactly, in general. We employ an approximation framework 
using Monte Carlo methods and obtain an optimization procedure based on particle representations and 
approximate computations. The procedure operates in a message-passing fashion and generates results 
for any distributions if samples can be produced from, e.g., the marginals. We demonstrate graceful 
degradation of the estimation accuracy as communication becomes more costly.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Wireless sensor networks have been a promising technology 
for deploying a large number of sensor platforms over a region to 
gather dense spatial samples of a physical phenomenon [1]. Appli-
cations including environmental monitoring, structural monitoring 
[2] and precision agriculture [3] benefit from wirelessly network-
ing these platforms in an ad-hoc fashion which can also collect 
measurements in possibly multiple modes induced by multiple 
quantities of interest. There are challenges in design because the 
sensor platforms have limited computational and energy resources 
and the links over which they can communicate are bandwidth 
(BW) limited. The dispersed nature of the system necessitates
some communications for processing the measurements, however, 
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the energy cost of transmitting bits is usually greater than that 
for computing them [4]. Therefore, it is crucial for the feasibil-
ity of a sensor network to take the estimation–communication 
trade-offs into account while performing collaborative “online” (or, 
in-network) processing of the measurements in the network [5].

In this context, we are concerned with designing decentralized 
processing schemes for random field estimation under a set of 
communication constraints. In the network structure we consider, 
the platforms perform local communication with their neighbors 
located within a certain range and form a connected ad-hoc net-
work with BW limited links. We are particularly interested in the 
tradeoff between the estimation accuracy and the cost of trans-
missions given the link topology. Transmission costs might include 
the energy cost of communications through, e.g., an energy dissi-
pation model for transmitting and receiving k bits at a distance of 
d meters [6].

Subject to estimation is a set of spatial random variables that 
exhibit a correlation structure. Examples of physical phenomena 
that can be modeled with such random fields include turbulent 
flow (Chp. 12 of [7]) and geostatistical data [8] such as tempera-
ture measurements over a field (Chp. 1 of [9]). There is a variety 
of lines of investigation on random field estimation with sen-
sor networks. In-network processing schemes based on adaptive 
hierarchies (e.g., [10]), a designated fusion center (FC) receiving 
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quantized measurements (e.g., [11]), and iterations involving FC 
feedback [12] have been considered. These treatments cannot pose 
an in-network strategy design problem that explicitly takes the 
tradeoffs into account and are not decentralized in that not all of 
the nodes contribute to the estimation task but only one or more 
FCs. Estimation of dynamic random fields through Kalman–Bucy 
filtering (KBF) is considered in [13] and [14]. In particular, [14] in-
troduces a distributed realization of the KBF, whereas [13] consid-
ers an FC that collects measurements from sensors after finding a 
reduced model whereby a subset of the sensors are queried based 
on a surrogate communication costs and an estimation penalty. 
Our problem setting differs in that we are concerned with com-
pletely decentralized strategies and, on a static problem, consider 
the trade-off between the estimation accuracy and the communi-
cation load of the network.

Decentralized estimation in sensor networks has also been 
studied using probabilistic graphical models (see, e.g., [15] and 
the references therein). In this approach, a probabilistic depen-
dency graph of the random field is mapped onto the communi-
cation topology. The in-network processing strategy then becomes 
a message passing algorithm which communicates probability dis-
tributions. However, model approximations together with message 
coding and censoring to facilitate low-energy digital transmissions 
complicate the performance analysis [16]. As a result, it is not 
straightforward to state a design problem that takes the network 
topology and the communication cost into account using this per-
spective [17].

We consider a class of in-network processing strategies which 
operate over an undirected communication topology and yield a 
rigorous communication constrained design problem through a 
tractable Bayesian risk. In particular, the platforms specify the ver-
tex set and the undirected edges represent bi-directional commu-
nication links with finite alphabets sizes of which are related to 
the BWs. The nodes estimate a (set of) random variable(s) possibly 
related to a random field model based on the platform locations 
through a two-stage procedure: In the first stage, each node makes 
a measurement and produces messages to its neighbors using its 
communication rule. In the second stage nodes estimate their as-
sociated random variable(s), based on both the incoming messages 
and their measurements. The design problem involves finding the 
communication and estimation rules for the nodes and it is in the 
form of a constrained optimization problem in which the objective 
function is a Bayesian risk that penalizes both estimation errors 
and the transmissions, and the feasible set of strategies is con-
strained by the corresponding graph representation that captures 
the availability and the capacity of the links.

A similar problem has been recently studied in the context of 
decentralized detection [18] based upon the results for another 
class of strategies – those over directed acyclic graphs (DAGs) (see 
also [19]). One appealing feature of this approach is that the solu-
tion to the design problem can be realized as a message passing 
algorithm which fits well into the distributed system requirements 
of a sensor network. We have considered the design of decentral-
ized estimation strategies over DAGs in [20], and introduced an 
approximation framework through Monte Carlo (MC) methods in 
order to overcome the difficulties arising from the fact that the 
variables of concern take values from nondenumerable sets in the 
estimation case. This paper differs from recent work taking a simi-
lar distributed inference perspective in that we consider estimation 
problems (rather than detection problems as in [18,19,21]) over 
undirected graphs (UGs) (rather than DAGs as in [20]).

The contribution of this paper is an adoption of the aforemen-
tioned approximation framework for the class of (decentralized) 
two-stage estimation strategies over UGs which we believe is a 
good match for random field estimation scenarios. Doing that, we 
transform a Team Decision Theoretic (TDT) iterative strategy opti-
mization to a computationally feasible MC optimization algorithm 
which employs nonparametric representations of the underlying 
distributions. We also maintain the benefits of the TDT solution 
and, as a result, our approach features the following: First, this 
framework enables us to consider a broad range of communication 
and computation structures for the design of decentralized estima-
tion networks. Second, in the case that a dual objective is selected 
as a weighted-sum of the estimation performance and the cost of 
communications, a graceful degradation of the estimation accuracy 
is achieved as communication becomes more costly. The result-
ing pareto-optimal curve enables a quantification of the tradeoff 
of concern. Under reasonable assumptions, the optimization proce-
dure scales with the number of platforms as well as the number of 
variables involved. Moreover, it can be realized as a message pass-
ing algorithm which is an appropriate computational structure for 
network self-organization. The MC optimization scheme we pro-
pose features scalability with the cardinality of the sample sets 
required and can produce results for any set of distributions pro-
vided that independent samples can be generated from, e.g., the 
marginals.

In Section 2, we introduce the design problem in a constrained 
optimization setting, and then we describe the Team Decision The-
oretic investigation of its solution in Section 3. We present our 
MC optimization framework for two-stage in-network processing 
strategies over UGs in Section 4. Then, we demonstrate the afore-
mentioned features through several examples in Section 5.2 Finally, 
we provide concluding remarks in Section 6.

2. Problem definition

In this section, we start introducing the problem setting with 
some basic definitions. Then, in Section 2.1 we present the two-
stage in-network processing scheme over an undirected communi-
cation topology. In Section 2.2, we state the strategy design prob-
lem as a constrained optimization problem taking into account the 
communication constraints. This problem is to be solved offline, i.e., 
before processing the observations.

We consider N sensor platforms dispersed over a region. 
Each node can establish communication links with some of the 
other nodes within its communication range. These links are bi-
directional and the communications structure can be represented 
by an undirected graph G = (V,E) in which each platform is 
associated with a node v ∈ V . An edge (i, j) ∈ E corresponds 
to a finite capacity one-way link from platform i to j. The bi-
directionality is captured by using a UG representation in which 
(i, j) ∈ E ⇐⇒ ( j, i) ∈ E . A particular example of such a network 
can be seen in Fig. 5(a) in Section 5.3.

On the edge (i, j), node i transmits a symbol ui→ j from the 
set of admissible symbols Ui→ j . For example, in order to model 
a link with capacity log2 dij bits, one can select Ui→ j such that 
|Ui→ j| = dij . In order to represent the “no transmission” event in 
censoring or selective communication schemes, one can insert an 
additional symbol into Ui→ j such as 0. We note that, as both (i, j)
and ( j, i) ∈ E , the variables u j→i and ui→ j are symbols in opposite 
directions over the same link.

Associated with each sensor platform is a set of variables mod-
eling, e.g., the temperature, humidity, or the flow vector at possibly 
the position of the platform. Let us denote a concatenation of vari-
ables associated with node j by X j and the set it takes values from 
by X j . In principle, there is no restriction on the dimensionality 
of X j , i.e., dim(X j) ≥ 1. All random variables to be estimated can 
be represented with a concatenation X = (X1, X2, ..., XN ) which 
takes values from X = X1 × X2 × ... × XN . For example, for real 

2 The preliminary results of the proposed scheme appear in [22].
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valued random variables, X j = R and X = R
N . It is worth remind-

ing that, in the detection setting, X j s are M < ∞ element sets for 
M-ary detection.

Node j collects measurements Y j using its onboard sensors. 
Y j ∈ Y j where Y j is nondenumerable, as well. All observations 
collected by the network is denoted by Y = (Y1, Y2, ..., Y N) and 
resides in Y = Y1 ×Y2 × ... ×YN .

The probabilistic model underlying the estimation problem is 
represented by the random variable pair (X, Y ). It is characterized 
by the joint cumulative distribution function P X,Y (x, y) with the 
density p X,Y (x, y) for a realization (x, y) = (x1, ..., xN , y1, ..., yN ).

2.1. Two-stage in-network processing strategy over undirected graphs

Suppose we are given a UG communication topology G =
(V, E). The neighbors of node j is given by ne( j) � {i | (i, j) ∈
E ∧ ( j, i) ∈ E}. Let us denote the set of outgoing messages from 
node j to its neighbors by −→u j � {u j→i | i ∈ ne( j)}. Then, −→u j
takes values from 

−→U j = ⊗
i∈ne( j) U j→i where ⊗ denotes consecu-

tive Cartesian products.3 Being at the receiving end of the links 
from its neighbors, node j collects the incoming messages denoted 
by ←−u j � {ui→ j | i ∈ ne( j)} and take values from 

←−U j = ⊗
i∈ne( j) Ui→ j . 

The messages across the network are similarly given by u � {ui→ j |
(i, j) ∈ E} and reside in U �

⊗
(i, j)∈E Ui→ j .

At this point, it is worthwhile to point out that we implicitly 
assume the links in G are error free so that the symbols trans-
mitted (or lack thereof) from neighbors are exactly restored at the 
receiving end. This is for the sake of simplicity throughout the arti-
cle and it is indeed possible to accommodate an unreliable channel 
model capturing link errors and packet losses possibly due to noise 
and interference in this network model [18].4

We continue our discussion by specifying a two-stage opera-
tion that ensures a causal online processing without deadlocks: In 
the first stage, having observed y j ∈ Y j , node j evaluates its local 
communication rule defined by μ j : Y j → −→U j and produces out-
going messages to its neighbors.5 After receiving all the messages 
from its neighbors, node j performs the second stage in which it 
evaluates its estimation rule given by ν j : Y j × ←−U j →X j to draw 
an inference on the value X j takes based on the observation y j
and the incoming messages ←−u j from neighboring nodes. Hence, the 
local rule of node j is a pair given by γ j = (μ j, ν j). The objective 
of designing γ j is the topic of Section 2.2.

Based on the previous definitions, the space of all first-stage 
(communication) rules is defined as MG

j � {μ j | μ j :Y j → −→U j}
and the second-stage (estimation) rule space is given by NG

j �
{ν j | ν j : Y j × ←−U j → X j}. Consequently, the space of rules local to 
node j is given by Γ G

j � MG
j × NG

j . The process from node j’s 
point of view is illustrated in Fig. 1(a).

We define strategies over the entire network by aggregating lo-
cal rules: A first-stage communication and second-stage estimation 
strategy pair γ = (μ, ν) is defined as μ = (μ1, μ2, ..., μN ) and 
ν = (ν1, ν2, ..., νN ), respectively. We refer to γ = (γ1, γ2, ..., γN ) as 
a two-stage strategy. The space of two-stage strategies over G is 

3 In other words, e.g., X = X1 ×X2 ×X3 and X = ⊗
i∈{1,2,3} Xi are synony-

mous.
4 In particular, [18] introduces an additional variable z j as the channel output to 

node j. This variable can be treated as a function of the messages sent from the 
neighbors ne( j) and characterised by a conditional distribution p(z j |←−u j). Examples 
in which this distribution is specified for modeling binary erasure channels and 
broadcast channels with interference can be found in [19].

5 Note that a variety of transmission schemes can be represented by μ j such as 
“broadcast” and “peer-to-peer”. In order to model the former, −→U j can be replaced 
with its subset which contains identical messages for all neighbors. Our setting falls 
into the peer-to-peer type communication in this perspective.
Fig. 1. Two-stage in-network online processing strategy over a UG G = (V, E): 
(a) The viewpoint of node j in G which evaluates its first-stage communication 
rule μ j based on its measurement y j . In the second-stage, ν j is evaluated at the 
incoming messages ←−u j and y j and an estimate x̂ j is produced. (b) The global view 
of the two-stage strategy over G where a random vector X takes the value x as the 
outcome of an experiment and induces observations y.

given by Γ G = ⊗
v∈V Γ G

v . It can be seen that Γ G = {γ | γ : Y →
X × U}. Here, γ ∈ Γ G is restricted to the strategies which pro-
duce u ∈ U in accordance with the network G . Consider the set of 
strategies γ : Y → X × U which do not take u into account. For 
example, the centralized estimator which operates over the joint 
posterior is such a strategy. If we denote the set of u unrestricted 
strategies by Γ , then, Γ G ⊂ Γ . The global view of the strategy is 
illustrated in Fig. 1(b).

The networked constrained online processing model above pro-
vides an abstraction of the subtleties related to the physical, net-
work and other lower layers of the communication architecture. 
There has been a considerable amount of work on networking 
sensors including connectivity control [23], Medium Access Con-
trol [24] and multi-hop routing protocols enabling transmission 
between any two nodes (see, e.g., [23,25,26]). Therefore, a higher 
level architecture underpinning the two-stage strategy can be de-
signed using an adequate combination of these results in consider-
ation of the application specific requirements [27,28]. For the cases 
that the transmission errors and packet losses cannot be ignored, 
channel models characterizing these possibilities can be used in 
the online model as discussed previously.

2.2. Design problem in a constrained optimization setting

Given an arbitrary UG G , the selection of a two-stage strat-
egy from Γ G is based on a Bayesian risk function J (γ ) where 
γ = (μ, ν) ∈ Γ G , is constructed as follows: One can select a cost c
such that an estimation error penalty for the pair (x, ̂x) and a cost 
due to the corresponding set of messages in the network u are as-
signed, i.e., c : U ×X ×X →R. For an arbitrary strategy γ ∈ Γ G , 
the corresponding Bayesian risk is given by

J (γ ) � E
{

c(U , X, X̂);γ }
= E

{
E
{

c
(
μ(Y ), X, ν

(
Y ,μ(Y )

))∣∣Y }}
. (1)

Selection of the best two-stage strategy for estimation under 
communication constraints is, hence, equivalent to solving the con-
strained optimization problem given by

(P): min J (γ )

subject to γ ∈ Γ G (2)
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Table 1
Nomenclature for the in-network processing strategy.

G = (V,E) Undirected graph of the set of nodes V and the set of 
bi-directional communication links E .

X j Random variable associated with node j.
Y j Random variable modeling the measurement taken by node j.
(X, Y ) Joint random variable modeling the estimation problem.
x j Realization of X j in the joint event.
y j Measurement taken by node j.
x̂ j Estimated value of x j drawn by node j.
ui→ j Message symbol from node i to j.
Ui→ j Set of admissible symbols from node i to j.
−→u j Vector of messages from node j to its neighbors.
←−u j Vector of messages to node j from its neighbors.
μ j(y j) Communication rule of node j outputting −→u j .
MG

j Space of feasible communication rules for node j.
ν j Estimation rule of node j outputting x̂ j given (y j ,

←−u j).
NG

j Space of feasible estimation rules for node j.
γ j The local rule pair (μ j, ν j) node j.
Γ G

j Space of feasible local rule pairs for node j in G.
γ In-network processing strategy as a concatenation of all local 

rules.
Γ G Space of all feasible strategies over G.
c(u, x, x̂) Cost of the communication vector u and the pair (x, x̂).
J (γ ) Bayesian risk of γ .

The distribution underlying the expectation in (1) is specified 
by γ through the density p(u, ̂x|y; γ ) and the equation

p(u, x̂, x;γ ) =
∫
Y

dyp(u, x̂|y;γ )p(y, x), (3)

which can be shown after realizing that the tuple (U , X̂) = γ (Y )

is a random vector conditionally independent of X given Y (de-
noted by (U , X̂) ⊥⊥ X | Y ) provided that γ = (γ1, ..., γN ) ∈ Γ G is 
known. Then, the density p(u, ̂x|y) is specified by γ and denoted 
by p(u, ̂x|y; γ ).

Let us consider how local communication and computation 
rules take part in this density: Once the local rule pair γ j =
(μ j, ν j) is fixed, the conditional density of the outcomes
p( −→u j, ̂x j |y j, ←−u j; γ j) becomes specified. By the two stage mecha-
nism, this density decomposes further as

p(
−→u j, x̂ j|y j,

←−u j;γ j) = p(
−→u j|y j;μ j)p(x̂ j |y j,

←−u j;ν j).

The distribution p(u, ̂x|y; γ ), then, builds upon the local rule 
pairs following the causal processing provided by γ and the fol-
lowing factorization holds:

p(u, x̂|y;γ ) =
∏
j∈V

p(
−→u j|y j;μ j)p(x̂ j|y j,

←−u j;ν j). (4)

In Problem (P), it can be shown that if there exists an optimal 
strategy, then there exists an optimal deterministic strategy [29]. 
Therefore it suffices to consider the deterministic local rule spaces 
for which case the local first and second stage rules specify the 
densities involved in Eq. (4) as follows:

p(
−→u j|y j;μ j) = δμ j(y j)(

−→u j) (5)

p(x̂ j|y j,
←−u j;ν j) = δ

(
x̂ j − ν j(y j,

←−u j)
)

(6)

where δm(n) is the Kronecker delta and δ is the Dirac delta distri-
bution. After substituting Eqs. (5) and (6) into Eq. (4) and Eq. (3), 
the distribution underlying the Bayesian risk is specified.

We provide a table of symbols introduced in this section in Ta-
ble 1 for helping the reader throughout the rest of the article.
Algorithm 1 Iterations converging to a person-by-person optimal 
strategy.

1: Choose γ 0 = (γ 0
1 , γ 0

2 , ..., γ 0
N ) ∈ Γ G and ε ∈R

+ � Initialize
2: l ← 0
3: repeat
4: l ← l + 1
5: for j = N, N − 1, . . . , 1 do
6: γ l

j = arg min
γ j∈Γ

G
j

J (γ l−1
1 , ..., γ l−1

j−1, γ j , γ l
j+1, ..., γ l

N ) � Update

7: end for
8: until J (γ l−1) − J (γ l) < ε � Check

3. Team decision theoretic formulation

Problem (P) in (2) is a typical team decision problem [30]. 
It is often not possible to find solutions with global optimal-
ity guarantees (see, e.g., [29]). A convenient solution approach 
which has been used in a variety of similar contexts includ-
ing quantizer design for minimum distortion [31,32] and dis-
tributed estimation [33,34] is to use necessary (but not suffi-
cient) conditions of optimality to achieve nonlinear Gauss–Seidel 
iterations converging to a person-by-person (pbp) optimal strat-
egy [29,18]: At the pbp optimal point γ ∗ ∈ Γ G , it holds that 
J (γ ∗

j , γ ∗
\ j) ≤ J (γ j, γ ∗

\ j) for all γ j ∈ Γ G
j where \ j denotes V \ j

and γ ∗
\ j = {γ ∗

1 , γ ∗
2 , ..., γ ∗

j−1, γ
∗
j+1, ..., γ

∗
N }.6 In other words, no im-

provement to J (γ ∗) can be obtained by varying only a single local 
rule γ ∗

j . The strategies that satisfy this equilibrium condition are 
solutions to a relaxation of (P) in which one is interested in find-
ing γ ∗ = (γ ∗

1 , ..., γ ∗
n ) such that

γ ∗
j = arg min

γ j∈Γ j

J
(
γ j, γ

∗
\ j

)
(7)

for all j ∈ {1, 2, ..., N}. The strategy γ ∗ is referred to as a pbp opti-
mal strategy. The iterations given by Algorithm 1 converge to such 
a solution starting with an arbitrary set of local rules.

It is useful to note that the converged strategy depends 
on the initialization, in general. Therefore, it is a good prac-
tice to start the iterations with a reasonable selection of ini-
tial rules and use Algorithm 1 to improve upon them. For 
the example scenarios presented in Section 5, the iterative ap-
proach delivers a consistent performance with different initializa-
tions.

For the detection problem, an extensive study of pbp optimal so-
lutions for a number of strategy classes can be found in [18]. One 
of these classes exhibits directed acyclic communication and com-
putation structures and can equivalently be represented by DAGs 
[19]. It has been shown that in the case of two-stage strategies 
over undirected communication topologies, pbp optimal set of lo-
cal rules lie in a finitely parameterized subspace of Γ G , and hence 
errors involved in their computation is mainly due to finite ma-
chine precision. This is partly because X js of a detection problem, 
contrary to the estimation setting, take values from finite sets. The 
communication and computation structure of a two-stage strategy 
can equivalently be represented through a bipartite graph (Chp. 4 
of [18]). Such graphs are directed and acyclic structures and, hence, 
two-stage rules can be investigated using the results for the de-
tection problem over a DAG (provided that certain assumptions 
hold).

6 When it is clear from the context, we denote {xi | i ∈ I} by xI where I is an 
index set for the collection of variables {x1, x2, ..., xN }.
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Fig. 2. (a) A loopy UG of 4 nodes. (b) The two stage strategy over the UG. (c) The bi-
partite DAG counterpart of the two-stage online processing: Nodes 1–4 correspond 
to platforms 1–4 but only performing the communication rules, whereas nodes 
1′–4′ correspond to platforms 1–4 but only performing the estimation rules.

In our estimation setting over an undirected graph, we follow 
a similar approach and exploit the pbp optimality condition for 
decentralized estimation strategies over DAGs [20].7,8

We start by unwrapping the communication and computation 
structure of two-stage strategies over undirected communication 
topologies onto directed acyclic bipartite graphs. The two-stage 
operation enables us to represent the same platform with two 
nodes of different types. The nodes of the bipartite graph B =
((V, V ′), F) are identified by considering the set of nodes in the 
undirected graph G , i.e., V , and its replicate V ′ � { j′ | j ∈ V} as 
a pair and assigning the communication rules and the estima-
tion rules to V and V ′ , respectively. The edges of the bipartite 
graph connect communication nodes in V to the estimation rules 
of the neighbor nodes in V ′ . In other words, ( j, i′) ∈ F if i ∈ ne( j)
in G . For example, consider the undirected communication topol-
ogy given in Fig. 2(a). The two-stage strategy over this UG is 
explicitly shown in Fig. 2(b). The unwrapped directed acyclic com-
munication and computation structure of the two-stage strategy 
which is a bipartite graph is shown in Fig. 2(c). Nodes 1–4 in V
perform only the communication rules, i.e., μ j s. Likewise, nodes 
1′–4′ in V ′ are associated only with the estimation rules, i.e., ν j s. 
Node j and j′ correspond to the same physical platform but dif-
ferent processing tasks, in this respect.

At this point, it is useful to contrast the two-stage strategy de-
sign problem with that for an FC estimator in a star-topology [33]. 
In the conventional setting, the design goal is to find an estimation 
rule for the FC and quantizers for the peripheral sensors which 
minimize the expected cost of estimation errors. The FC receives 
messages from all of the other sensors, however, communication 
is not penalized. The two-stage strategy we consider decentralizes 
the estimation task in a way that each node can be viewed as a lo-
cal FC with its neighbors as peripherals (e.g., the estimation nodes 
1′–4′ in Fig. 2(c) can be viewed as FCs of their local networks) and 
the communication rules are not restricted to quantizers. These 
star networks are coupled in the two-stage strategy design as all 
the estimation and communication rules that constitute the strat-
egy are considered jointly through the cost function c(x̂, x, u).

Next, we make a set of assumptions:

Assumption 1. The global cost function is the sum of costs due to 
the communication rules and the decision rules, which are in turn 
additive over the nodes:

7 In principle, it is possible to obtain the estimation results presented in this 
section starting from the detection results in [18] and performing the marginal-
izations in the variables X j s and X̂ j s through appropriate integrations (as opposed 
to summations) under error-free and “peer-to-peer” transmission assumptions. In 
part because X j s are nondenumerable, our problem, contrary to the detection set-
ting, does not lead to pbp optimal local rules that can be characterized with a finite 
set of parameters, in general.

8 In the case of a dynamic problem in which p(x) varies over time, the strategies 
can be updated accordingly. Investigation of efficient methods for updating strate-
gies in dynamic problems is left beyond the scope of this work.
c(u, x̂, x) = cd(x̂, x) + λcc(u, x)

cd(x̂, x) =
∑
i∈V

cd
i (x̂i, xi)

cc(u, x) =
∑
i∈V

cc
i (

−→ui, x) (8)

Here, λ appears as a unit conversion constant and can be in-
terpreted as the equivalent estimation penalty per unit commu-
nication cost [18]. Hence J (γ ) = Jd(γ ) + λ J c(γ ) where Jd(γ ) =
E{cd(x̂, x); γ } and J c(γ ) = E{cc(u, x);γ } respectively.9

Assumption 2 (Conditional independence). The noise processes of 
the sensors are mutually independent and hence given the state 
of X , the observations are conditionally independent, i.e., p(x, y) =
p(x) 

∏N
i=1 p(yi |x).

Assumption 3 (Measurement locality). Every node j observes y j
due to only x j , i.e., p(y j |x) = p(y j |x j).

Under these conditions, it is possible to apply Corollary 3.4 in 
[20], which reveals the structure of the pbp optimal local com-
munication and estimation rules in strategies over DAGs, to the 
bipartite representation of the two-stage strategies. Before stat-
ing this result, let us define two-step neighbors of j by ne2( j) �⋃

i∈ne( j) ne(i) \ j.

Proposition 3.1 (Adaptation of Proposition 4.3 in [18] for estimation). 
Suppose that Assumptions 1–3 hold and suppose we are given a pbp op-
timal two-stage strategy γ ∗ = (γ ∗

1 , ..., γ ∗
N ) over an undirected graph. 

If all the local rules other than the jth are fixed at the optimum point, 
the jth optimal rule can be characterized as follows: The communication 
rule (evaluated at stage-one) is given by

μ∗
j (y j) = arg min−→u j∈−−→U j

∫
X j

dx j p(y j|x j)α j
(−→u j, x j;ν∗

ne( j),μ
∗
ne2( j)

)
(9)

for all y j ∈Y j with nonzero probability, where

α j
(−→u j, x j;ν∗

ne( j),μ
∗
ne2( j)

)
∝ p(x j)

[
λcc

j(
−→u j, x j) + C j

(−→u j, x j;ν∗
ne( j),μ

∗
ne2( j)

)]
. (10)

The estimation rule (evaluated at stage-two) is given by

ν∗
j (y j,

←−u j) = arg min
x̂ j∈X j

∫
X j

dx j p(y j|x j)β j
(
x j, x̂ j,

←−u j;μ∗
ne( j)

)
(11)

for all y j ∈Y j and for all ←−u j ∈ ←−U j with nonzero probability where

β j
(
x j, x̂ j,

←−u j;μ∗
ne( j)

) ∝ p(x j)P j
(←−u j

∣∣x j;μ∗
ne( j)

)
cd

j (x̂ j, x j). (12)

The term P j(
←−u j |x j; μ∗

ne( j)) in Eq. (12) is the (incoming) message like-
lihood and given by

P j
(←−u j

∣∣x j;μ∗
ne( j)

) =
∫

Xne( j)

dxne( j) p(xne( j)|x j)

×
∏

i∈ne( j)

Pi→ j
(
ui→ j

∣∣xi;μ∗
ne( j)

)
(13)

with terms capturing the influence of i ∈ ne( j) on j given by

9 Note that convex combinations of dual objectives, i.e., J ′(γ ) = α Jd(γ ) + (1 −
α) Jc(γ ), yield pareto-optimal curves parameterized by α. This setting preserves 
the pareto-optimal front since λ = (1 − α)/α and J (γ ) ∝ J ′(γ ) yielding a grace-
ful degradation of the estimation performance as λ is increased.
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Pi→ j
(
ui→ j

∣∣xi;μ∗
i

) =
∑

−→ui\ui→ j

p
(−→ui

∣∣xi;μ∗
i

)
(14)

for all ui→ j ∈ Ui→ j where

p
(−→ui|xi;μ∗

i

) =
∫
Yi

dyi p(yi |xi)p
(−→ui

∣∣yi;μ∗
i

)
. (15)

The term C j( −→u j, x j; ν∗
ne( j), μ

∗
ne2( j)

) in Eq. (10) is the total expected 
cost and given by

C j
(−→u j, x j;ν∗

ne( j),μ
∗
ne2( j)

) =
∑

i∈ne( j)

Ci→ j
(
u j→i, x j;ν∗

i ,μ∗
ne(i)

)
(16)

for all −→u j ∈ −→U j with terms capturing the influence of j on i ∈ ne( j) given 
by

Ci→ j
(
u j→i, x j;ν∗

i ,μ∗
ne(i)

)

=
∫

Xne(i)\ j

dxne(i)\ j

∫
Xi

dxi p(xne(i)\ j, xi |x j)

×
∑

une(i)\ j

∏
j′∈ne(i)\ j

P j′→i
(
u j′→i

∣∣x j′ ;μ∗
j′
)

Ii
(←−ui, xi;ν∗

i

)
(17)

such that

Ii
(←−ui, xi;ν∗

i

) =
∫
Yi

dyi

∫
Xi

dx̂ic
d
i (x̂i, xi)p

(
x̂i

∣∣yi,
←−ui;ν∗

i

)
p(yi |xi).

(18)

Proof. As discussed at the beginning of this section, two-stage 
strategies over undirected graphs can equivalently be represented 
by strategies over DAGs. Under Assumptions 1–2, Corollary 3.4 in 
[20] is valid over the bipartite directed acyclic model associated 
with the two-stage strategies over the undirected graph G . Con-
sider the bipartite DAG B = ((V, V ′), F) associated with the undi-
rected graph G . Proposition 3.1 is obtained after applying Corol-
lary 3.4 in [20] on B and then refolding it back to G by substituting 
j for all j′ ∈ V ′ . �

Proposition 3.1 provides a variational characterization of the 
jth communication and estimation rules, given a pbp optimal 
two-stage strategy.10 Let us use a simpler notation for the terms 
on the left hand side (LHS) of Eqs. (13) and (16) and de-
note them by P j(

←−u j |x j) and C j( −→u j, x j), respectively. Consider-
ing Eqs. (13) and (14), P j(

←−u j |x j) is a likelihood function for 
x j inducing ←−u j . Eqs. (16)–(18) reveal that C j( −→u j, x j) is the to-
tal expected cost induced on the neighbors by transmitting −→u j , 
i.e., E{cd(x̂ne( j), xne( j))| −→u j, x j; ν∗

ne( j), μ
∗
ne2( j)

}. Since p(x j)p(y j|x j)

× P (
←−u j|x j) ∝ p(x j |y j, ←−u j) holds under Assumptions 2–3, the jth 

optimal communication rule selects the message that results with 
a minimum contribution to the overall cost and the optimal esti-
mation rule selects x̂ j that yields the minimum expected penalty 
given y j and ←−u j . For example, if cd

j (x̂ j, x j) = (x̂ j − x j)
2 as in the 

conventional mean squared error (MSE) estimator, then the esti-
mation rule in Eq. (11) can be expressed in closed form as

x̂ j = ν∗
j (y j,

←−u j) =
∫
X j

dx jx j p(x j)p(y j|x j)P j(
←−u j|x j)∫

X j
dx j p(x j)p(y j|x j)P j(

←−u j|x j)
. (19)

10 The integrals over X j and Y j should be interpreted in accordance with the 
dimensionality of their domains.
Algorithm 2 Iterations converging to a pbp optimal two-stage 
strategy over a UG G .

1: Choose γ 0 = (γ 0
1 , γ 0

2 , . . . , γ 0
N ) ∈ Γ G and ε ∈R

+ � Initialize
2: l ← 0
3: repeat
4: l ← l + 1
5: for i = 1, 2, . . . , N do � (Update Step 1)

Find the node-to-node likelihood messages Pl
i→ j = Pi→ j(ui→ j |xi;μl−1

i ) for 
j ∈ ne(i) using Eqs. (15) and (14).

6: end for
7: for j = 1, 2, . . . , N do � (Update Step 2)

Find the incoming message likelihood P j
l by substituting Pl

i→ j s into 
Eq. (13).

Find the estimation rule νl
j by substituting P j

l in Eqs. (12) and (11).

Find the cost messages Cl
j→i for i ∈ ne( j) by using νl

j and Pl
i→ j in 

Eqs. (18) and (17).
8: end for
9: for j = 1, 2, . . . , N do � (Update Step 3)

Find the communication rule μl
j by substituting Cl

i→ j from i ∈ ne( j) into 
Eqs. (16), (10) and (9).

10: end for
11: until J (γ l−1) − J (γ l) < ε � Check

Since P j(
←−u j |x j) = p(

←−u j |x j; μ∗
ne( j)) is the likelihood of the incoming 

messages and the conditional independence relation ←−U j ⊥⊥ Y j | X j
holds, then

p(x j, y j,
←−u j) = p(x j)p(y j|x j)p(

←−u j|x j)

and the denominator in Eq. (19) is nothing but p(y j, ←−u j) =
p(y j, ←−u j; μ∗

ne( j)). Consequently, the local estimation rule is the ex-
pected value of the posterior given the local measurement and 
incoming messages given by

x̂ j = ν∗
j (y j,

←−u j) =
∫
X j

dx j x j p
(
x j

∣∣y j,
←−u j;μ∗

ne( j)

)
.

Based on Proposition 3.1, it is possible to tailor the Update
step of Algorithm 1 to obtain an iterative scheme for finding a 
pbp optimal two-stage strategy. The treatment of the terms in 
Eqs. (10), (12)–(18) as operators that can act on any set of lo-
cal rules, not necessarily optimal, results with Algorithm 2. Note 
that, these steps can be carried out in a message passing fash-
ion. In the first pass (Update Step 1), all nodes compute and 
send node-to-node likelihood terms to their neighbors. In the sec-
ond pass (Update Step 2), upon reception of these messages, 
all nodes update their (incoming) message likelihoods and estima-
tion rules. Then, they compute and send expected cost messages to 
their neighbors. After receiving cost messages from neighbors, each 
node updates its communication rule (Update Step 3). Owing 
to the message passing structure, the complexity of optimization 
is bounded by the node with the highest degree rather than the 
number of nodes. Such a structure is also advantageous in the case 
of a network self-organization requirement.

Finally, the value of the Bayesian risk function at the lth iter-
ation is easily found in terms of the expressions discussed above 
as

J
(
γ l) =

∑
i∈V

Gd
i

(
νl

i

) + λ
∑
i∈V

Gc
i

(
μl

i

)
, (20)

where the per node costs are given by

Gd
i

(
νl

i

) =
∑
←−ui

∫
Xi

dxi p(xi)Pl+1
i (

←−ui|xi)Ii
(←−ui, xi;νl

i

)
, (21)

Gc
i

(
μl

i

) =
∑
−→ui

∫
Xi

dxic
c
i (

−→ui, xi)p(xi)p
(−→ui|xi;μl

i

)
. (22)
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4. MC optimization framework for two-stage in-network 
processing strategies over UGs

In this section, we develop Monte Carlo (MC) methods to real-
ize Algorithm 2 introduced in Section 3. Algorithm 2 results with 
a pbp optimal processing strategy whose structure is captured 
by the operators in Proposition 3.1. It is not possible to evaluate 
these operators for arbitrary selections of, e.g., priors p(x j)s, like-

lihoods p(y j |x j)s or γ\ j ∈ Γ G
\ j , in general. Instead, we consider a 

fixed set of particles at each node and approximate the aforemen-
tioned operators using MC methods such as Importance Sampling 
(IS) [35,36]. The resulting algorithm which is detailed in this sec-
tion carries out strategy optimization through passing messages 
represented by weighted particles.11

We use IS with independent samples generated from two pro-
posal distributions s j(x j) and q j(y j) over X j and Y j , respectively 
for node j:

S j �
{

x(1)
j , x(2)

j , ..., x
(M j)

j

}
such that x(m)

j ∼ s j(x j)

for m = 1,2, ..., M j, (23)

and,

Q j �
{

y(1)
j , y(2)

j , ..., y
(P j)

j

}
such that y(p)

j ∼ q j(y j)

for p = 1,2, ..., P j. (24)

These proposal distributions can be selected as the local 
marginals p(x j) and p(y j). This sampling strategy has been previ-
ously used in similar message passing algorithms (see, for example, 
[38] and the references therein). Use of heavy tailed distributions 
would improve the small sample size variance of IS [36]. Although 
the sizes of S j and Q j might vary, we assume that M j = M and 
P j = P for j ∈ V for the simplicity of the discussion throughout.

We fix these particle sets in order to reduce the communica-
tion load of the optimization by not having to transmit particles 
at every iteration but transmit them only once and communicate 
the weights for the rest of the iterations. This approach is simi-
lar to that proposed in [38] for particle BP algorithms, and, has 
also been used in [20] for optimizing decentralized strategies over 
DAGs.

Using these sample sets, we make successive approximations to 
the expressions constituting the jth pbp optimal local rule given 
in Proposition 3.1. First, we approximate to the local rule pair in 
Section 4.1. Then, we apply the IS rule to the incoming message 
likelihood (Section 4.2). In Section 4.3, we tackle computations re-
garding the expected cost term. Finally, in Section 4.4, we employ 
all the previous steps simultaneously in Algorithm 2 and obtain a 
Monte Carlo optimization scheme such that the message passing 
structure is preserved.

4.1. Approximating the person-by-person optimal local rule

Let us consider Proposition 3.1 for the variational form of the 
jth communication and estimation rules in the case of an arbi-
trary γ\ j not necessarily optimal. We approximate Eqs. (9) and (11)
since it is often not possible to compute these integrals, exactly, for 
arbitrary selections of the factors that construct α j and β j (given 
in Eqs. (10) and (12), respectively).

We simplify our notation by hiding the dependence of the op-
erators in Proposition 3.1 to the local rules in γ\ j . For example, we 
denote the incoming message likelihood in Eq. (13) and the total 

11 Similar decentralized algorithms based on transmissions of weighted particles 
include particle Belief Propagation algorithms (see, e.g., [37,38]) for estimation.
expected cost in Eq. (16) by P j(
←−u j |x j) and C j( −→u j, x j), respectively, 

where the underlying rules are obvious from the context.
We use the sample set S j in Eq. (23) for finding an IS approxi-

mation to the communication rule in Eq. (9) and obtain

μ j(y j) ≈ arg min−→u j∈−−→U j

1∑M
m′=1 ω

(m′)
j

M∑
m=1

ω
(m)
j p

(
y j

∣∣x(m)
j

)

× [
λcc

j

(−→u j, x(m)
j

) + C j
(−→u j, x(m)

j

)]
, (25)

ωm
j = p

(
x(m)

j

)
/s j

(
x(m)

j

)
, (26)

for all y j ∈Y j with non-zero probability.
For the local estimation rule given in (11), a similar approxima-

tion is given by

ν j(y j,
←−u j) ≈ arg min

x̂ j∈X j

1∑M
m′=1 ω

(m′)
j

M∑
m=1

ωm
j p

(
y j

∣∣x(m)
j

)

× P j
(←−u j

∣∣x(m)
j

)
cd

j

(
x̂ j, x(m)

j

)
, (27)

for all y j ∈ Y j and ←−u j ∈ ←−U j with non-zero probability, using the IS 
weights in Eq. (26).

Example 4.1. Consider the squared error penalty for the estimation 
error, i.e., cd

j (x̂ j, x j) = (x̂ j − x j)
2. Then the pbp optimal estimation 

rule local to node j as given in the variational form by Eq. (27)
yields

ν j(y j,
←−u j) ≈

∑M
m=1 ω

(m)
j x(m)

j p(y j|x(m)
j )P j(

←−u j|x(m)
j )∑M

m=1 ω
(m)
j p(y j|x(m)

j )P j(
←−u j|x(m)

j )
.

4.2. Approximating the message likelihood function

We consider the message likelihood function P j(
←−u j|x j) in the 

right hand side of (27) given by Eq. (13) together with the recur-
sion involving Eqs. (14) and (15). We find an IS approximation for 
evaluations of P j(

←−u j |x j) at x j ∈ S j and ←−u j ∈ ←−U j as follows: We first 
consider p( −→ui |xi; μi) in (15). We use the IS rule with the sample 
set Q j generated from the local proposal density qi(yi):

p̃
(−→ui

∣∣x(m)
i ;μi

)
� 1∑P

p=1 ω
(m)(p)

i

P∑
p=1

ω
(m)(p)

i δ
μi(y(p)

i )
(

−→ui)

ω
(m)(p)

i = p(y(p)

i |x(m)
i )

qi(y(p)

i )
(28)

for −→ui ∈ Ui and x(m)
i ∈ Si .

Note that the node-to-node likelihood Pi→ j in (14) is a 
marginalization of p( −→ui |xi; μi) and can be estimated by substi-
tuting p̃ in (14). Let us denote this term by P̃ i→ j .

Second, we consider P j(
←−u j |x j) in (13) and construct a sample 

set at node j by using the particle sets Si s local to the neigh-
bors. The mth element in this set is a vector obtained by con-
catenating the mth elements from Si s, i.e., we construct Sne( j) �
{x(m)

ne( j)|x(m)
ne( j) = (x(m)

i )i∈ne( j)}. Note that these points are generated 
from the product of proposals, i.e., x(m)

ne( j) ∼ ∏
i∈ne( j) si(xi). We con-

sider using this sample set with the IS method and equivalently 
the proposal density 

∏
i∈ne( j) si(xi). Then, the integral in the RHS 

of Eq. (13) can be approximated with
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P̃ j
(←−u j

∣∣x(m)
j

)
� 1∑M

m′=1 ω
(m)(m′)
j

M∑
m′=1

ω
(m)(m′)
j

×
∏

i∈ne( j)

P̃ i→ j
(
ui→ j

∣∣x(m′)
i

)
,

ω
(m)(m′)
j = p(x(m′)

ne( j)|x(m)
j )∏

i∈ne( j) si(x(m′)
i )

. (29)

We replace the P j term in the RHS of Eq. (27) by P̃ j and ob-
tain an approximately pbp optimal estimation rule through these 
successive IS approximations.

4.3. Approximating the expected cost term

We consider the expected cost term C j in the RHS of the 
communication rule approximation in (25). This term is given by 
Eqs. (16)–(18) and we begin with approximating to the conditional 
estimation risk Ii(

←−ui, xi; νi). After substituting from (6) into (18), 
we obtain

Ii(
←−ui, xi;νi) =

∫
Yi

dyic
d
i

(
νi(yi,

←−ui), xi
)

p(yi |xi).

For the RHS of the expression above, we use qi(xi) as the pro-
posal distribution of the IS rule and utilize the sample set Q i

(Eq. (24)). Then, the conditional expected risk is estimated by

Ĩ i
(←−ui, x(m)

i ;νi
)
� 1∑P

p=1 ω
(m)(p)

i

P∑
p=1

ω
(m)(p)

i cd
i

(
νi

(
y(p)

i ,
←−ui

)
, x(m)

i

)

ω
(m)(p)

i = p(y(p)

i |x(m)
i )

qi(y(p)

i )
(30)

for all ←−ui ∈ ←−U i and x(m)
i ∈ Si .

Now, let us consider the approximate evaluation of the node-
to-node cost messages Ci→ j given by Eq. (17). We employ IS 
for approximately evaluating the RHS of Eq. (17) at all possible 
(u j→i, x

(m)
j ) pairs such that u j→i ∈ U j→i and x(m)

j ∈ S j . Similar to 
the discussion on approximating the message likelihood term, we 
consider a sample set constructed by concatenating the mth ele-
ments from the usual sets local to neighbors of i other than j, i.e.,

Sxne(i)\ j �
{

x(m)
ne(i)\ j

∣∣x(m)
ne(i)\ j = (

x(m)

j′
)

j′∈ne(i)\ j

}
This set can equivalently be treated as points generated from ∏

j′∈ne(i)\ j s j′ (x j′ ). Together with Si , we use the IS approximation

to RHS of Eq. (17) and obtain

C̃i→ j
(
u j→i, x(m)

j

)
�

∑
une(i)\ j

1∑M
m′=1 ω

(m)(m′)
i

M∑
m′=1

ω
(m)(m′)
i

×
∏

j′∈ne(i)\ j

P̃ j′→i
(
u j′→i

∣∣x(m′)
j′

)
Ĩ i
(←−ui, x(m′)

i ;νi
)
,

ω
(m)(m′)
i = p(x(m′)

ne(i)\ j, x(m′)
i |x(m)

j )

p(x(m′)
i )

∏
j′∈ne(i)\ j s j′(x(m′)

j′ )
. (31)

After replacing Ci→ j with C̃i→ j in the total estimation risk in 
Eq. (16) and the approximate local communication rule in Eq. (25), 
a further approximation denoted by μ̃ j is obtained.
Algorithm 3 Iterations converging to an approximate pbp optimal 
two-stage in-network processing strategy over a UG G .

1: Choose γ 0 = (γ 0
1 , γ 0

2 , . . . , γ 0
N ) ∈ Γ G and ε ∈R

+ � Initialize
2: l ← 0
3: repeat
4: l ← l + 1
5: for i = 1, 2, . . . , N do � (Update Step 1)

Find the node-to-node likelihood messages P̃ l
i→ j = P̃ i→ j(ui→ j |xi; μ̃l−1

i ) at 
ui→ j ∈ Ui→ j , xi ∈ Si for j ∈ ne(i) using Eqs. (28) and (14).

6: end for
7: for j = 1, 2, . . . , N do � (Update Step 2)

Find the incoming message likelihood P̃ j
l

by substituting P̃ l
i→ j s into 

Eq. (29).

Find the estimation rule ν̃l
j by substituting P̃ j

l
in Eq. (27).

Find the cost messages C̃ l
j→i at ui→ j ∈ Ui→ j , x j ∈ S j for i ∈ ne( j) by using 

ν̃l
j and P̃ l

i→ j in Eqs. (30) and (31).
8: end for
9: for i = 1, 2, . . . , N do � (Update Step 3)

Find the communication rule μ̃l
j by substituting C̃ l

i→ j s into 
Eqs. (16) and (25)

10: end for
11: until τ ( J̃ (γ̃ l), ̃J (γ̃ l−1), . . . , ̃J (γ̃ 0)) < ε � Check

4.4. MC optimization of two-stage in-network processing strategies 
over UGs

In Sections 4.1–4.3, based on Proposition 3.1, we provided a 
Monte Carlo framework for approximating the jth local rule in the 
pbp optimal form given an arbitrary γ\ j . In particular, we obtained 
(μ̃ j, ν̃ j) using the IS rule with proposal distributions which might 
be selected simply as local marginals.

Once the RHSs of all the expressions in the MC framework are 
considered as operators, we can approximate all local rules in a 
strategy simultaneously and plug them into Algorithm 2. The pro-
cedure we obtain with this approach is given in Algorithm 3. Note 
that, the message passing structure of the computations is main-
tained: Before proceeding with the iterations, the nodes exchange 
Si s with their neighbors. In the first stage of the iterations, the 
IS weights of the node-to-node likelihoods are transmitted to the 
neighbors. It suffices to transmit these sets as arrays of weights 
for each admissible link symbol since Si s are already known to 
neighbors. In the second stage of the iterations, the cost mes-
sages are exchanged, again, as ordered real arrays for each symbol. 
The node-to-node likelihood from node i to j is, then, of length 
Mi |Ui→ j |, whereas that of the cost message is M j |Ui→ j |. In the 
examples we present in Section 5, convergence is achieved after 
only a few iterations.

Finally, the value of the Bayesian risk function corresponding to 
the strategy at the lth iteration, i.e., J (γ l) = Jd(γ

l) +λ J c(γ
l) given 

by Eqs. (20)–(22), can be computed approximately by

J̃
(
γ̃ l) =

∑
i∈V

G̃d
i

(
ν̃l

i

) + λ
∑
i∈V

G̃c
i

(
μ̃l

i

)
(32)

where

G̃d
i

(
ν̃l

i

) =
∑
←−ui ,m

P̃ l+1
i

(←−ui
∣∣x(m)

i

)
Ĩ l
i

(←−ui, x(m)
i ; ν̃l

i

)
, (33)

G̃c
i

(
μ̃l

i

) =
∑
−→ui ,m

cc
i

(−→ui, x(m)
i

)
p̃
(−→ui

∣∣x(m)
i ; μ̃l

i

)
. (34)

In contrary to { J (γ l)}, the sequence of approximated objec-
tives, i.e., { J̃ (γ̃ l)}, is not necessarily non-increasing. Nevertheless, 
note that the error sequence err[l] � J (γ l) − J̃ (γ̃ l) will be identi-
cally zero with probability one as M, P → ∞. Investigation of an 
operator τ (Check step of Algorithm 3) that would yield a non-in-
creasing error sequence with high probability for finite M, P could 
be a topic for future work.
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Fig. 3. (a) Undirected communication topology G considered in the example sce-
nario. (b) Illustration of the corresponding Markov Random Field GX subject to 
estimation by the decentralized estimation network.

5. Examples

In this section, we demonstrate our MC-based decentralized 
estimation framework in various scenarios including Gaussian pri-
ors, non-Gaussian priors, and large random graphs. We use local 
marginals as IS proposal distributions and compare the perfor-
mances of the optimized strategies with those of the centralized 
and the myopic estimators. The centralized estimator provides the 
best accuracy achievable with the communication cost of collect-
ing the network-wide measurements at a designated center. In the 
myopic estimation strategy, all variables are estimated locally us-
ing only the local measurements and no communication resources 
are utilized.

5.1. A simple Gaussian example

We first consider a small network composed of four platforms. 
A Gaussian random field X = (X1, X2, X3, X4) is of concern and 
platform j is associated with X j . We consider two-stage strate-
gies over the undirected graph given in Fig. 3(a). The BW con-
straints are captured by specifying the set of admissible symbols 
Ui→ j = {0, 1, 2} for all (i, j) ∈ E .

The online processing, as described in Section 2.1, starts with 
each node evaluating its communication function on its measure-
ment, i.e., nodes 1–4 simultaneously evaluate

u1→3 = μ1(y1), u2→3 = μ2(y2),

(u3→1, u3→2, u3→4) = μ3(y3), u4→3 = μ4(y4)

respectively. As soon as all the messages from the neighbors are 
received, estimation rules are run, i.e., nodes 1–4 evaluate

x̂1 = ν1(y1, u3→1), x̂2 = ν2(y2, u3→2),

x̂3 = ν3(y3, u1→3, u2→3, u4→3), x̂4 = ν4(y4, u3→4)

respectively. We design the strategy γ = (γ1, ..., γ4) where γ j =
(μ j, ν j) using Algorithm 3.

We select the communication cost local to node j as
cc

j(u j→ne( j), x j) = ∑
k∈ne( j) cc

j→k(u j→k, x j) which satisfies Assump-
tion 1. Here, cc

j→k(u j→k) is the cost of transmitting the symbol 
u j→k on the link ( j, k) ∈ E and given by

cc
j→k(u j→k, x j) =

{
0, if u j→k = 0
1, otherwise.

Hence, U j→k together with cc
j→k defines a selective communi-

cation scheme where u j→k = 0 indicates no communications and 
u j→k �= 0 indicates transmission of a one bit message. We call 
this a 1-bit selective communication scheme and also discuss a 
2-bit scheme later in this section. The estimation error is penal-
ized by cd

j (x j, ̂x j) = (x j − x̂ j)
2. Hence the total cost of a strategy is 

J (γ ) = Jd(γ ) + λ J c(γ ) where Jd is the MSE and J c is the total 
link use rate.

The random field prior is a multivariate Gaussian, i.e., x ∼
N (x; 0, CX ) where N denotes a multivariate Gaussian with mean 
0 and covariance CX . This distribution is Markov with respect to 
the graph GX in Fig. 3(b). The covariance matrix is given by
CX =
⎡
⎢⎣

2 1.125 1.5 1.125
1.125 2 1.5 1.125

1.5 1.5 2 1.5
1.125 1.125 1.5 2

⎤
⎥⎦ . (35)

Note that Algorithm 3 is valid for any arbitrary selection of the 
undirected communication topology that is not necessarily identi-
cal to the Markov random field representation of X . Here, for the 
sake of simplicity we select the UG topology in Fig. 3(a) to have 
the same structure as the MRF in Fig. 3(b).

For the noise processes n j for j ∈ V , Assumptions 2 and 3 hold 
with p(y j|x j) =N (y j; x j, 0.5). Considering CX , each sensor has an 
SNR of 6 dB.

The initial local estimation rule is the myopic minimum 
MSE estimator which is based only on y j , i.e., ν0

j (y j, ←−u j) =∫ ∞
−∞ dx j x j p(x j |y j), and the initial communication rule is a thresh-

old rule quantizing y j given by

μ0
j (y j) =

⎧⎨
⎩

1, y j < −2σn

0, −2σn � y j � 2σn

2, y j > 2σn.

(36)

Suppose that we use Algorithm 2 and achieve the performance 
points ( J c(γ

∗), Jd(γ
∗)) for the converged strategies as we vary λ. 

There exists a λ∗ value such that for λ ≥ λ∗ , the communication 
cost λ J c will increase to a level that prevents the decrease in the 
decision cost Jd achieved by the transmitted information among 
nodes to further cause a decrease in J . In this regime, not send-
ing any messages (selecting the symbol 0) and using the myopic 
estimation rule will be the pbp optimal strategy. Hence, it is pos-
sible to interpret λ∗ as the maximum price per bit that the system 
affords to decrease the expected estimation error. As we use Algo-
rithm 3 and increase λ from 0 we approximate samples from the 
corresponding pareto-optimal curve which enables us to quantify 
the tradeoff between the cost of estimation errors and communi-
cation.

In Fig. 4(a), we present the approximate MSE-total link use 
rate pairs of the converged strategies γ̃ ∗ obtained by using Algo-
rithm 3 for varying λ from 0 with 0.001 steps (black ‘+’s). These 
points demonstrate graceful degradation of the estimation accuracy 
with decreasing communication load in the network. Specifically, 
we generate 2000 and 30 000 samples from p(xi) and p(yi), re-
spectively for obtaining Sxi and S yi . The upper and lower bounds 
are MSEs corresponding to the myopic rule and the centralized 
optimal rule respectively. For the squared error cost, the optimal 
centralized rule given by E{X |Y = y} yields a communication cost 
of J c = 3Q where Q is the number of bits used to represent a 
real number, i.e., y j , before transmitting to the fusion center. Let 
us consider ( J̃ c, J̃d) pairs for the 1-bit selective communication 
scheme, for λ = 0 (the transmission has no cost). The link use 
rate is approximately 3.2 bits, which is far less than the total ca-
pacity of 6 bits for the bi-directional topology given in Fig. 3(a). 
Nevertheless, the MSE achieved by using the strategy designed us-
ing Algorithm 3 is significantly close to that for the centralized 
rule. The communication stops across the network for the strategy 
designed using λ∗ ≈ 0.3 and the nodes proceed with the myopic 
estimators for larger values of λ.

At this point, it is worth mentioning that the converged strate-
gies for different threshold selections in the initial communication 
rule given by Eq. (36) yield the same performance with a slight 
variation due to Monte Carlo approximations. This indicates that 
the proposed scheme performs fairly consistently with different 
initializations, in this example.

We repeat the same scenario with a different BW constraint: 
Specifically, we select Ui→ j s corresponding to a 2-bit selective 
communication scheme. The initial communication rules are ap-
propriately modified versions of that given by Eq. (36) and the ap-
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Fig. 4. The approximate performance points converged revealing the tradeoff together with the lower bounds (blue dashed-lines) and the upper bounds (red dashed-lines) 
of the problems given by the estimation performance measured in MSE for the optimum centralized and the myopic rules respectively. (a) Gaussian UG problem: The 
estimation network in Fig. 3(a) is subject to optimization through Algorithm 3. The initial strategy achieves ( Jc(γ

0), Jd(γ 0)) (black ‘×’). The pareto-optimal performance 
curves, achieved for the approximate pbp optimal strategies while λ is increased from 0 with steps of 0.001, are approximated by {( J̃ c(γ̃

∗
λ ), ̃Jd(γ̃ ∗

λ ))} where γ̃ ∗
λ is the 

approximated optimum strategy for λ. Results for 1 and 2 bit selective communication schemes are presented. (b) Heavy tailed (Laplacian) prior problem with a UG: We 
demonstrate the variation of the approximation over different sample sets for a heavy tailed prior through the performance points achieved using Algorithm 3 with various 
values of λ and 10 sample sets for each λ. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
proximate performance points obtained are presented in Fig. 4(a) 
as well.12 The tradeoff curves show that, as we increase the link 
capacities and for small enough λ values, the pbp optimal strate-
gies for the 2-bit case achieve fair improvements in the estimation 
accuracy for the same total communication load.

5.2. A simple heavy tailed example

In this example, we demonstrate that the MC framework ap-
plies for arbitrary distributions provided that samples can be gen-
erated from their marginals. This can be an important advantage in 
certain problem settings in which it is not possible to obtain closed 
form expressions even for the centralized rule. We consider such 
a scenario in which X is distributed by a heavy tailed prior p(x), 
specifically a multivariate-symmetric Laplacian (MSL) given by

p(x) = 2

(2π)d/2|Cx|1/2

(
xT C−1

x x

2

)1−d/2

K1−d/2
(√

2xT C−1
x x

)
(37)

where d is the dimension of x, Cx is a covariance matrix, and 
Kη(u) is the Bessel function of the second kind of order η (see, 
e.g., [39]). Let us denote this density by SLd(CX ). Unlike the Gaus-
sian case, uncorrelatedness does not imply independence and not 
being a member of the exponential family, SLd(CX ) does not admit 
a Markov random field representation. On the other hand, it is pos-
sible to generate samples from an MSL utilizing samples generated 
from a multivariate Gaussian of zero mean and the desired covari-
ance matrix together with samples drawn from the unit univariate 
exponential distribution, i.e., given x′ ∼ N (x′; 0, CX ) and z ∼ e−z , 
generate samples of X by x = √

zx′ , then x ∼ SLd(Cx).
Similar to that in the previous section, we assume the underly-

ing communication structure described by G = (V, E) in Fig. 3(a) 
together with a 1-bit selective communication scheme, and sim-
ilar cost functions, observation likelihoods, and initial local rules. 
To the best knowledge of the authors, for an MSL prior and Gaus-

12 For these experiments, we use the condition || J̃ (γ̃ l−1) − J̃ (γ̃ l)| − | J̃ (γ̃ l−2) −
J̃ (γ̃ l−1)|| < 1.0e − 2 in the Check step of Algorithm 3. The minimum number of 
iterations for convergence is 3 for both the 1- and 2-bit schemes and the resulting 
averages (standard deviations) are 3.24(0.43) and 3.11(0.31) for the 1- and 2-bit 
schemes, respectively.
sian likelihoods, even the centralized paradigm fails to provide a 
solution without employing numerical approximations.

We consider X = (X1, X2, X3, X4) such that p X (x) = SL4(CX )

where CX is given by Eq. (35) and we exploit the fact that the jth 
marginal density of SLd(CX ) is given by SL1([CX ] j, j). It is straight-
forward to generate samples from these marginals [40]. Sample 
sets from the observation distributions are obtained using the 
scheme in [20].

In this example, we also demonstrate the variation of the re-
sults over different sample sets, so, we generate 10 different sam-
ple sets such that |S j | = 3000 and |Q j | = 45 000. Using these sets, 
we run Algorithm 3 for different choices of λ (as opposed to using 
a single sample set and small increments of λ as in Section 5.1). In 
Fig. 4(b), approximate performance points for the converged strate-
gies are presented. The upper and lower bounds are the MSEs cor-
responding to the myopic and the centralized rules, respectively.13

For each value of λ, collective results based on the 10 sample sets 
provide a sample-based approximation to the performance point 
( Jd(γ

∗), J c(γ
∗)) on the tradeoff curve.14 These sample-based re-

sults form clusters with reasonable variability which can be inter-
preted as an indication of their approximation quality. It is rea-
sonable to expect this level of variability since heavy tailed distri-
butions require utilization of larger sample sets. Nevertheless, the 
proposed MC framework provides distributed solutions in problem 
settings which do not admit straightforward solutions even in the 
centralized case.

5.3. Examples with large graphs

In this section, we demonstrate Algorithm 3 in relatively large 
scale random field estimation problems. Specifically, we consider 
problems set up by randomly deploying 50 platforms over an 
area of 100 unit squares. Each sensor location s j ∈ R

2 is asso-
ciated with a scalar random variable, X j . We assume that the 
random field X = (X1, X2, ..., X50) is Gaussian with zero mean, i.e., 

13 In the MSL prior-Gaussian likelihoods problem, the evaluation of the myopic 
and centralized strategies and the corresponding MSEs require numerical approxi-
mations for which we utilize MC methods as well.
14 Note that, ( Jd(γ ∗), Jc(γ

∗)) is the performance of the pbp optimal strategy γ ∗
for the Bayesian risk corresponding to λ, i.e., J (γ ∗) = Jd(γ ∗) + λ Jc(γ

∗).
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Fig. 5. Set up for experiment involving 50 randomly deployed nodes: (a) Randomly distributed sensor nodes and the UG communication topology obtained by sparsifying the 
Gabriel Graph of the deployment. (b) Matérn covariance function (Eq. (38)) used in the experiments (τ 2 = σ 2 = 0.5, ν = 4, φ = 15). (c) Cx obtained for the deployment in (a) 
with the covariance function in (b). (d) The myopic and centralized-equivalent SNRs of sensors 17–23, and improvements achieved by optimizing the two-stage strategy 
with Algorithm 3 for different values of λ.
x ∼N (x; 0, Cx) and Cx = [Ci, j] is selected as the Matérn covariance 
with nugget effect given by [41]

Ci, j =
{

(σ 2/2(η−1)Γ (η))(2
√

ηh/φ)η2Kη(2
√

ηh/φ), h > 0
τ 2 + σ 2, h = 0

(38)

where h � ‖si − s j‖ is the distance between sensors i and j, Kη

is a modified Bessel function of the second kind of order η, τ 2

is the nugget effect, φ is the effective covariance range and σ 2 is 
referred to as the partial sill.15 The covariance function for the par-
ticular set of parameter values we use in our experiments can be 
seen in Fig. 5(b). The variances of X js are given by the covariance 
function evaluated at h = 0 which is unity. The covariance matrix 
Cx for the deployment in Fig. 5(a) is given in Fig. 5(c). The inverse 
of Cx contains no zeros and, hence, this model cannot be exactly 
represented by a sparse Markov Random Field.

The undirected communication topology in Fig. 5(a) is found 
by sparsifying the Gabriel graph of the deployment. We consider 
a one-bit selective bi-directional communication scheme which 
yields 128 bits total capacity with this UG. We initialize the nodes 
with quantization rules for communications and myopic estima-
tors. We select a communication cost similar to that we have 
used in the previous examples and squared error as the estimation 

15 Various forms of Matérn covariances are commonly used in spatial data model-
ing [8].
cost. We use |S j | = 2000 and |Q j | = 30 000 samples from local 
marginals in Algorithm 3.

The measurement noise for each sensor is Gaussian with vari-
ance σ 2

n j
= 0.25 leading to 6.02 dB signal-to-noise ratio (SNR) 

given by SNR = 10 log10 σ 2
j /σ 2

n j
. The myopic MSE is given by 

MSE = σ 2
j σ

2
n j

/(σ 2
j + σ 2

n j
) which equals to 0.2. In order to demon-

strate the efficacy of the optimized two-stage strategies in compar-
ison with the myopic estimator and the centralized estimator, we 
define an MSE equivalent SNR as SNR = 10 log10(σ

2
j − MSE)/MSE. 

This quantity, in a sense, is the SNR of a sensor which would yield 
the given MSE value when it is used with a myopic estimator. From 
this viewpoint, a two-stage estimation strategy can be viewed as 
being equivalent to replacing each sensor with its SNR-improved 
version in a myopic strategy.

We consider sensors 17–23 in Fig. 5(a). In Fig. 5(d) we present 
the benefits of the two-stage strategies designed using Algorithm 3
in terms of the improvement in the MSE equivalent SNRs for differ-
ent values of λ. The upper bounds are achieved by the centralized 
estimator. Nodes 18–23 have closely located neighbors with highly 
correlated local variables. As λ is decreased, communication is uti-
lized more, and, consequently an improvement as much as more 
than half of the myopic-centralized SNR gap is achieved. Node 17
is more distant to its neighbors and benefits less from the incom-
ing information.

The overall estimation and communication costs of this net-
work are given in Fig. 6(a) for different values of λ and five differ-
ent sample sets for each. Note that, the cost of communication for 
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Fig. 6. Algorithm 3 for five random UGs and for five sample sets for each deployment: (a) Performance points obtained for the UG in Fig. 5(a). (b) Performance points 
obtained for four additional random UGs. The parameter λ is selected as λ = 0.005, 0.05 considering a 1-bit selective communication scheme and squared error estimation 
error penalty for all of the nodes. Note that the myopic MSE (showed by a solid red-line) is the same for all deployments whereas the centralized MSE (the lower bound) 
varies for each deployment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the improvement upon the myopic MSE is on the scale of tens of 
bits which is extremely small as compared to the cost of collecting 
network wide measurements at a designated node for centralized 
estimation. The performance points for different sample sets form 
clusters around the points from the pareto-optimal curve they ap-
proximate in a way similar to the example in Section 5.2 and the 
results given in Fig. 4(b). The variations of the clusters indicate 
a fairly good quality of approximation. We verify the consistency 
of our algorithm in the performance of the designs by using four 
additional deployments. For each deployment, the diagonal of Cx , 
and, hence, the myopic performances are the same with that of 
the other three networks. The MSEs of the centralized rules, on 
the other hand, differ as well as the total network capacities.16

We present the approximate MSE-total link use rate points for 
λ = 0.005 and 0.05 and for 5 different sample sets in Fig. 6(b).17 It 
can be observed that, the converged strategy improves the MSE 
performance in comparison with the myopic rule for all of the 
UGs with a fair amount of variability in the results. This suggests 
that our algorithm performs consistently across a variety of ran-
dom network structures. The gains in the estimation accuracy in 
this example are fairly significant considering that only 1-bit trans-
missions are used. Our experiments also show that λ effectively 
controls the trade-off between estimation accuracy measured with 
MSE and the communications load in bits in large scale problems 
as well.

6. Conclusion

In this work, we have been concerned with the design of de-
centralized random field estimation strategies for sensor network 
applications. We constrain the feasible set of online strategies by 
the availability and BW of the links and use a design objective 
which allows us to trade the (possibly energy) price for commu-
nication off with the estimation accuracy. Person-by-person (pbp) 
optimal solutions to such problems can be found using offline itera-
tive message passing algorithms which fit well into our context. In 
estimation problems, however, the optimization procedure as well 
as the pbp optimal local rules involve integral operators which 
cannot be evaluated exactly, in general. We have introduced a 
Monte Carlo framework which circumvents this problem and leads 

16 The capacities corresponding to the deployment instances UG 1–4 are 132, 130, 
134, and 140 bits, respectively.
17 The number of iterations for convergence has a minimum value of 3, a mean 

value 4, and a standard deviation of 1.1.
to a feasible decentralized optimization scheme while preserving 
the message passing structure. The proposed algorithm features 
scalability with the number of platforms as well as the number of 
variables involved. We have demonstrated these features through 
several examples including a Gaussian problem, a non-Gaussian 
prior problem, and random large graph scenarios. We have pre-
sented trade-off curves relating the MSE of estimation and the 
network wide communication load in bits.

One possible extension of this work is to investigate such 
strategies in settings involving broadcast communications with the 
nearest neighbors, unreliable channels, latency, sparse measure-
ments and estimation of a random field over a grid. Another line 
of investigation would be to consider settings in which the ran-
dom field prior evolves as a Markov process. Different in-network 
processing strategies can also be developed such as the hybrid in-
network processing strategies (see [42] for such a perspective on 
the detection problem) employing both the class of strategies con-
sidered in this paper and strategies over DAGs [20]. It might also 
be worthwhile to consider the problem of selecting the commu-
nication graph structure that yields the best pbp optimal strategy 
given an a priori distribution.
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