
 

 

 

  

Abstract—The aging population in developed countries has 

shifted considerable research attention to diseases related to 

age. Because age is one of the highest risk factors for 

neurodegenerative diseases, the need for automated brain image 

analysis has significantly increased. Magnetic Resonance 

Imaging (MRI) is a commonly used modality to image brain. 

MRI provides high tissue contrast; hence, the existing brain 

image analysis methods have often preferred the intensity 

information to others, such as texture. Recently, an easy-to-

compute texture descriptor, Local Binary Pattern (LBP), has 

shown promise in various applications outside the medical field. 

In this paper, after extensive experiments, we show that 

rotation-invariant LBP is invariant to some common MRI 

artifacts that makes it possible to use it in various high-level 

brain MR image analysis applications. 

I. INTRODUCTION 

 Automated and robust brain image analysis has a number 

of applications ranging from diagnosis to understanding of 

neurodegenerative diseases. MRI is the preferred modality 

for imaging the brain as it provides excellent intensity 

contrast among tissue types. Partly because of this, the 

literature has mainly concentrated on using MR intensity 

values in the analysis of brain MR images. The structural 

information in the form of texture has been computational to 

extract although texture information can complement MR 

intensity and remedy some of the inherent intensity-related 

problems.  

Recently, an easy-to-compute, robust local texture 

descriptor, Local Binary Pattern (LBP) [1], has been shown 

to be promising in the computer vision field, including 

industrial inspection [2], motion analysis [3], and face 

recognition [4]. However, in medical image processing, its 

application has been mainly limited to endoscopic [5] and 

ultrasound images [6]. In this paper, we show that LBP can 

solve some of the inherent intensity-related MR problems, is 

robust to some geometric deformations, and has potential for 

further applications. 

For instance, in MRI, image intensity smoothly varies 

across an image [7]-[9]. This intensity inhomogeneity, or so-

called bias field, can significantly degrade the performance 

 
* This work has been conducted as part of the IRonDB project MTKI-

CT-2006-042717 under the FP6 Marie Curie Transfer of Knowledge 

Programme. D. Unay is fully supported by MTKI-CT-2006-042717.   

D. Unay, A. Ekin and R. Jasinschi are with the Video Processing and 

Analysis Group, Philips Research Europe, 5656 AE Eindhoven, The 

Netherlands (devrim.unay@philips.com, ahmet.ekin@philips.com, 

radu.jasinschi@philips.com) 

M. Cetin and A. Ercil are with the Faculty of Engineering and Natural 

Sciences, Sabanci University, 34956, Tuzla-Istanbul, Turkey 

(mcetin@sabanciuniv.edu, aytulercil@sabanciuniv.edu) 

of automatic segmentation techniques.  Because the bias 

field is locally smooth, we argue that it should not change the 

local structure.  

Furthermore, in MR acquisition inter- and intra-patient 

misalignment of the images is a known problem, which can 

be severe in patients with neurodegenerative diseases, (e.g. 

those with Parkinson’s). This misalignment problem may 

limit the application of automated tools on MR images of 

such data.  In this case, rotation invariant descriptors may 

prevent some of those limitations. 

In this paper, after rigorously testing LBP and its variants 

on a large set of real MR brain data affected by various 

forms of bias fields, we show that LBP is robust to bias field 

and rotation. This paper is organized as follows: Section II 

introduces a theoretical framework for LBP. Section III 

describes the applications of LBP to MR brain image 

analysis. Section IV explains the experimental data and 

subsequently details the two experiments performed in this 

study. Finally, Section V concludes this paper. 

II. LOCAL BINARY PATTERNS 

LBP is a grayscale invariant local texture operator with 

powerful discrimination and low computational complexity. 

An LBP operator thresholds a neighborhood by the gray 

value of its center (
cg ) and represents the result as a binary 

code that describes the local texture pattern. The operator 

(
RPLBP ,
) is derived based on a symmetric neighbor set of P 

members ( )1,,0 −= Ppg p L  within a circular radius of R.  
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Fig. 1 illustrates the computation of 
1,8LBP  for a single 

pixel in a rectangular 3x3 neighborhood.  

In the general definition, LBP is defined in a circular 
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Fig. 1.  Example of computing 
1,8LBP : a pixel neighborhood (left), 

its thresholded version (middle), and the corresponding binary LBP 

pattern with the computed LBP code (right). 

 



 

 

 

symmetric neighborhood which requires interpolation of 

intensity values for exact computation. In order to keep 

computation simple, in this study we decided to use the three 

rectangular neighborhoods as shown in Fig. 2. 

A. Rotation Invariant Patterns 

The 
RPLBP ,
 operator can produce 2

P
 different output values 

from the P neighbor pixels. As 
0g  is always assigned to be 

the gray value of neighbor to the right of
cg , rotation will 

result in a different 
RPLBP ,
 value for the same binary 

pattern. One way to eliminate the effect of rotation is to 

perform a bitwise shift operation on the binary pattern P-1 

times and assign the LBP value that is the smallest, which is 

now referred to as ri

RPLBP ,
 (Fig. 3). 

B. “Uniform” Patterns 

A binary pattern is called “uniform” if it contains at most 

2 spatial transitions (bitwise 0/1 changes) [1]. Based on this 

uniformity concept, a new LBP value ( 2

,

riu

RPLBP ) can be 

computed by summing the bit values of a rotation invariant 

binary pattern if it is uniform, or a miscellaneous label P+1 

can be assigned if it is nonuniform (Fig. 4). 

In this study, robustness of simple (
RPLBP ,
), rotation 

invariant ( ri

RPLBP ,
), and rotation invariant and uniform 

( 2

,

riu

RPLBP ) LBP features at three different rectangular 

neighborhoods (Fig. 2) are tested relative to bias field and 

rotation. 

III. APPLICATIONS OF LBP TO MR BRAIN IMAGE ANALYSIS 

In MRI patient is subjected to different magnetic fields at 

specific orientations. The protons (hydrogen atoms) in the 

patient’s body respond to these fields by differential decay 

and recovery signals, which are acquired by the MR machine 

and then converted to high contrast images. Due to factors 

like poor radio-frequency gradient uniformity, static field 

inhomogeneity, radio-frequency penetration, gradient-driven 

eddy currents, and patient anatomy and position, pixel 

intensities in MR images smoothly vary. This variation, 

known as intensity inhomogeneity/nonuniformity or bias 

field, has little impact on visual diagnosis, but its impact on 

the performance of automatic segmentation methods can be 

catastrophic due to increased overlaps between intensities of 

different tissues. 

Furthermore, acquisition times of MRI are generally in the 

order of 10-20 minutes, during which patients (especially 

those with Parkinson’s disease) tend to move that results in 

spatially misaligned images. A common solution for this 

problem is registration, which may not be favored in some 

applications due to its computational expense and 

complexity. Hence, textural descriptors for MR images that 

are consistent in varying intensities as well as geometric 

transformations like rotation will be very valuable.  

IV. RESULTS 

A. Experimental Data 

The database used in this study consists of dual (T2 and 

Proton Density) MR scans from 549 subjects, which are 

acquired on a Philips Intera 1.5T whole body scanner at 

Leiden University Medical Center. We used dual-spin echo 

weighted images (TR/TE1/TE2: 3000/27/120 ms, FLIP: 90) 

with 220mm FOV, 3mm slice thickness, no slice gap and 

256x256 matrix.  

 In order to test robustness of LBP with respect to intensity 

variations, three simulated bias fields from the BrainWeb 

MR simulator [10] are used (Fig. 5). These bias fields 

provide smooth variations of intensity across the image. 

Furthermore, we applied linear transformation to obtain a 

new bias field of each with 10%, 20%, 30% and 40% 

   
     A           B        C 

Fig. 5.  Examples of simulated bias fields used in this study, where 

intensity variations are exaggerated for visual purposes. 
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1,8LBP        
2,16LBP          

3,24LBP  

Fig. 2.  The rectangular neighborhoods of LBP used in this study. 

Gray-shaded rectangles refer to the pixels belonging to the 

corresponding neighborhood. 
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Fig. 3.  Example of computing rotation invariant LBP. 
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Fig. 4.  Example of computing rotation invariant and uniform LBP. 

 



 

 

 

intensity variations. Based on the conventional assumption 

that the bias field in MR images is multiplicative [7]-[9], we 

degraded the original images by multiplying them with the 

resulting bias fields. 

B. Evaluation Method 

The degree of dissimilarity between the LBP values of the 

original and the degraded (by the bias field and rotation) 

images is computed on the corresponding normalized LBP 

histograms using the Bhattacharyya distance (3) and the 

histogram intersection (4): 
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where p and q are the two histograms with L-bins. The 

dissimilarity scores for both measures fall in the range of 

[0,1], where 0 means that the two images are perfectly 

similar. Please note that as we observed similar results with 

both measures for all the tests, the following sections provide 

the results based on only Bhattacharyya measure. 

C. Robustness to Bias Field 

We first tested the consistency of LBP relative to the bias 

field, where several LBP operators are applied on the 

original images as well as on those degraded by the bias 

fields. Table I displays dissimilarity scores of this test for all 

the bias fields and several LBP features, while Fig.6 shows 

the result of 
1,8LBP . We observe a steady increase in 

dissimilarity values with the bias field strength. Bias field B 

provides the highest dissimilarity score for all strengths, 

because it has larger spatial variation. All the dissimilarity 

values are below 0.04%, which shows that the LBP features 

are robust to the bias fields. 

D. Robustness to Rotation 

In order to test the robustness of LBP features relative to 

rotation, we have rotated the original images by 15°, 30°, 
45°, and 60° at clockwise and counterclockwise directions 
using three different interpolation methods: nearest neighbor, 

bilinear, and bicubic (presented from the simplest to the most 

complex, respectively). Fig. 7 displays examples of some of 

the rotated images.  

 

Table II displays the average dissimilarity scores of this 

test for all the LBP features when the images are rotated by 

various angles in both clockwise and counterclockwise 

directions using three interpolation methods. We generally 

observe that dissimilarity values decrease when 1) the 

complexity of the interpolation method increases, 2) the 

rotation invariancy and the uniformity is introduced to LBP, 

and 3) the radius of the LBP operator is increased. The 

former observation is coherent with the fact that the 

complexity of the interpolation method is directly related to 

the quality of the resulting rotated image. The second 

observation is understandable when we consider that the 

rotation invariant and “uniform” LBP patterns correspond to 

the primitive microfeatures in the image [1]. Finally, the 

third observation is meaningful in the sense that as the 

neighborhood gets bigger, the effect of degradation caused 

by rotation gets weaker due to the increased radius as well as 

 
Fig. 6.  Robustness of LBP8,1 relative to varying bias field strength. 

    
 

Fig. 7.  Examples of T2 (1st and 3rd from the left) and Proton Density (2nd 

and 4th from the left) images rotated by 15°, 30°, 45° and 60°, respectively 
using bicubic interpolation. 

TABLE I 

EFFECT OF BIAS FIELD ON VARIOUS LBP FEATURES 

Values in the table are the dissimilarity scores (10-4). 

TABLE II 

EFFECT OF ROTATION ON VARIOUS LBP FEATURES 

Values in the table are the dissimilarity scores (10-2). 



 

 

 

higher number of neighbors present. 

Fig. 8 and 9 display the effect of the interpolation method 

and the LBP feature type relative to rotation, respectively. 

These two figures visually support the observations we made 

previously: dissimilarity increases with the rotation angle, 

the complexity of the interpolation method has inverse 

relation with the dissimilarity, and rotation invariant and 

uniform LBP features ( 2

1,8

riuLBP ) are the most robust to 

rotation, while simple LBP features (
1,8LBP ) are the least. 

E. Computational Expense of LBP 

We measured the average process time of computing LBP 

in the range of 60 (
1,8LBP ) - 1100 ( 2

3,24

ruiLBP ) ms per slice on 

an Intel Pentium processor (2.8 GHz) with 1G memory. 

However, the computation time can be considerably reduced 

using look-up tables (for rotation invariant and uniform LBP 

codes: the main bottlenecks of the current implementation 

that is in C) and optimized software. 

V. CONCLUSIONS  

MRI provides high tissue contrast, which makes MR the 

preferred modality to image brain. The existing brain image 

analysis methods often focus on the intensity information 

only. LBP is a computationally efficient, gray-scale and 

rotation invariant texture operator that can provide 

complementary information for brain image analysis.  

In MRI, some common artifacts, like intensity variation 

across the image and spatial misalignment of images, can 

pose great difficulties for automatic analysis methods. 

Hence, LBP that is invariant to gray-scale and rotation may 

be a robust choice for MR brain image analysis.  

Therefore, in this study we tested the robustness of LBP to 

MR bias field as well as rotation. Results showed that LBP is 

robust to bias field even at 40% intensity variations. 

Secondly, original images are rotated by up to 60° in both 
clockwise and counterclockwise directions using three 

different interpolation methods. LBP was again found to be 

robust to rotation. 

Results of this study lead to the fact that LBP, which is 

computationally simple and robust to bias field and rotation, 

can be a promising texture descriptor in various MR brain 

image analysis applications, like image normalization, tissue 

segmentation and abnormality detection.  
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Fig. 8.  Robustness of LBP8,1 relative to different interpolation 

methods for rotation. 

 
Fig. 9.  Robustness of different LBP8,1 features relative to rotation by 

bicubic interpolation. 


