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Abstract. Having accurate left ventricle (LV) segmentations across a
cardiac cycle provides useful quantitative (e.g. ejection fraction) and
qualitative information for diagnosis of certain heart conditions. Exist-
ing LV segmentation techniques are founded mostly upon algorithms
for segmenting static images. In order to exploit the dynamic structure
of the heart in a principled manner, we approach the problem of LV
segmentation as a recursive estimation problem. In our framework, LV
boundaries constitute the dynamic system state to be estimated, and a
sequence of observed cardiac images constitute the data. By formulating
the problem as one of state estimation, the segmentation at each partic-
ular time is based not only on the data observed at that instant, but also
on predictions based on past segmentations. This requires a dynamical
system model of the LV, which we propose to learn from training data
through an information-theoretic approach. To incorporate the learned
dynamic model into our segmentation framework and obtain predictions,
we use ideas from particle filtering. Our framework uses a curve evolution
method to combine such predictions with the observed images to esti-
mate the LV boundaries at each time. We demonstrate the effectiveness
of the proposed approach on a large set of cardiac images. We observe
that our approach provides more accurate segmentations than those from
static image segmentation techniques, especially when the observed data
are of limited quality.

1 Introduction

Of the cardiac chambers in the heart, the left ventricle (LV) is quite frequently
analyzed because its proper function, pumping oxygenated blood to the entire
body, is vital for normal activity. One quantitative measure of the health of the
LV is ejection fraction (EF). This statistic measures the percentage volume of
blood transmitted out of the LV in a given cardiac cycle. To compute EF, we need
to have segmentations of the LV at multiple points in a cardiac cycle; namely,
at end diastole (ED) and end systole (ES). In addition, observing how the LV
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evolves throughout an entire cardiac cycle allows physicians to determine the
health of the myocardial muscles. Segmented LV boundaries can also be useful
for further quantitative analysis. For example, past work [7, 18] on extracting the
flow fields of the myocardial wall assumes the availability of LV segmentations
throughout the cardiac cycle.

Automatic segmentation of the left ventricle (LV) in bright blood breath-
hold cardiac magnetic resonance (MR) images is non-trivial because the image
intensities of the cardiac chambers vary due to differences in blood velocity [24].
In particular, blood that flows into the ventricles produces higher intensities in
the acquired image than blood which remains in the ventricles [9]. Locating the
LV endocardium is further complicated by the fact that the right ventricle and
aorta often appear jointly with the LV in many images of the heart. Similarly,
automatic segmentation of low signal-to-noise ratio (SNR) cardiac images (e.g.
body coil MR or ultrasound) is difficult because intensity variations can often
obscure the LV boundary.

Several approaches exist for LV segmentation. Goshtasby and Turner [9], as
well as Weng et al. [27] and Geiger et al. [8], apply intensity thresholding and
then a local maximum gradient search to determine the final segmentation. Such
gradient-based methods rely primarily on local information. When the image
statistics inside an object’s boundary are distinctly different from those outside,
the use of region statistics may be more appropriate, especially if the discontinu-
ity at the boundary is weak or non-uniform. Tsai et al. [26] consider region-based
segmentations of the LV. Chakraborty et al. [3] consider combining both gradi-
ent and region techniques in the segmentation of cardiac structures. Similarly,
Paragios [20] uses gradient and region techniques to segment two cardiac con-
tours, the LV endocardium and epicardium. In all three papers, active contours
(or curve evolution) [2, 4, 13, 15, 16, 19], a technique which involves evolving a
curve to minimize (or maximize) a related objective functional, are used to de-
termine the segmentation. In our work, we also take advantage of region-based
information and curve evolution.

Static segmentation methods are limited by the data available in an individ-
ual frame. During a single cardiac cycle, which lasts approximately 1 second, the
heart contracts from end diastole (ED) to end systole (ES) and expands back
to ED. Over this time, MR systems can acquire approximately 20 images of the
heart. Because adjacent frames are imaged over a short time period (approxi-
mately 50 ms), the LV boundaries exhibit strong temporal correlation. Thus,
previous LV boundaries may provide information regarding the location of the
current LV boundary. Using such information is particularly useful for low SNR
images, where the observation from a single frame alone may not provide enough
information for a good segmentation. There exists some past work which simply
uses the previous frame’s LV boundary as the prediction for the boundary in
the current frame [8, 12]. Meanwhile, Zhou et al. [28] consider LV shape track-
ing by combining predictions, obtained through linear system dynamics assumed
known, with observations. Their technique uses landmark points to represent the
LV boundaries, introducing the issue of correspondence. All uncertainties are as-
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Fig. 1. (a) Segmentation of the fourth frame in the cardiac cycle. (b) Segmentation of
the eighth frame (near end systole) in the cardiac cycle.

sumed to be Gaussian. Senegas et al. [21] use a Bayesian framework for tracking
using a sample-based approach to estimate the densities. They use spherical
harmonics for the shape model, and a simple linear model to approximate the
cardiac dynamics.3 In our work, we use non-linear dynamics in the recursive
estimation of the LV boundary. We represent the LV by level sets to avoid issues
inherent with marker points [23] and apply principal components analysis on the
level sets to determine a basis to represent the shapes. Furthermore, we propose
a method for learning a non-trivial dynamic model of the LV boundaries and
apply this model to obtain predictions. Finally, we compute the maximum a

posteriori (MAP) estimate using curve evolution.

In particular, we propose a principled Bayesian approach for recursively esti-
mating the LV boundaries across a cardiac cycle. In our framework, LV bound-
aries constitute the dynamic system state we estimate, and a cardiac cycle of
mid-ventricular images constitutes the data. From a training set of data, we learn
the dynamics using an information-theoretic criterion [11]. More specifically, this
involves finding a non-parametric density estimate of the current boundary con-
ditioned on previous boundaries. The densities are approximately represented
by using sample-based (i.e. particle filtering [1]) methods.

For the test data, we apply a particle filter to recursively estimate the LV
boundary. Starting with the segmentations at the initial frames, we use the non-
linear dynamic model learned from the training data to predict the boundary
at the next frame. We then incorporate the image observation of this frame to
produce a posterior density estimate of the LV boundary at each frame, which
involves computing the MAP estimate at each frame using curve evolution. This
procedure is then repeated for each subsequent frame. We apply the proposed
algorithm to high and low SNR cardiac data to illustrate that our technique
works in both regimes. We also demonstrate the improvements provided by the
proposed method over results obtained from static LV segmentation methods,
as shown in Figure 1.
3 We thank the reviewer who brought Senegas et al.’s related work to our attention.
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Fig. 2. Block diagram of our technique illustrating both the training and testing phases.
Section data inside each block indicate where we describe the specific actions in text.

2 Framework and Methodology

We formulate the LV segmentation and tracking problem as an estimation of the
posterior distribution at each time t0 based on data from t = 1 to t = t0. First,
let yt be the image data which are measurements of the blood and tissue intensity
field ft. Then, define Xt as the dynamic system state which contains information
about the LV boundary at t. The segmentation problem involves finding the
(ft,Xt) pair which maximizes p(ft,Xt|Yt), where Yt = [y1, y2, . . . , yt]. We then
recursively compute Xt to track the LV boundary across the entire cardiac cycle.

We apply Bayes’ Theorem to the posterior p(ft,Xt|Yt). Assuming that Xt is
a Markov process and observing that p(Yt−1) and p(Yt) do not depend on Xt,

p(ft,Xt|Yt) ∝ p(yt|ft,Xt)p(ft|Xt)p(Xt|Yt−1) (1)

= p(yt|ft,Xt)p(ft|Xt)

∫

Xt−1

p(Xt|Xt−1)

∫

ft−1

p(ft−1,Xt−1|Yt−1)dft−1dXt−1,

where p(yt|ft,Xt) is the likelihood term, p(ft|Xt) is the field prior, and p(Xt|Yt−1)
is the prediction density. From Eqn. (1), we observe the recursive nature of the
problem (i.e. p(ft,Xt|Yt) is written as a function of p(ft−1,Xt−1|Yt−1)).

Given this framework, applying it to the LV tracking problem is not straight-
forward. One of the challenges involves the presence of arbitrary, non-Gaussian
probability densities. In Section 3, we discuss the use of a sample-based approach
to non-parametrically represent the densities in Eqn. (1). In addition, the dy-
namic model of the LV boundaries, hence the forward density p(Xt|Xt−1), needs
to be learned using statistics from the training data. We discuss the procedure for
learning in Section 4. Finally, we explain in Section 5 how we practically compute
the MAP estimate of Xt and use this information to produce a segmentation as
well as an estimate of the posterior p(ft,Xt|Yt). Experimental results are shown
in Section 6, and we summarize the work in Section 7. Figure 2 shows a block
diagram representation of the algorithmic framework we propose.



3 Sample-Based Methods

Because many of the densities in Eqn. (1) have no simple closed-form, we use
sample-based methods, such as particle filters [1, 5, 6, 14], to approximate these
densities. Such methods represent a probability density using a set of weighted
samples drawn from that density. Suppose we have an equally-weighted set of

N samples x
(i)
t−1 that represent p(Xt−1|Yt−1), a term which appears as part of

p(Xt|Yt−1) in the formulation according to

p(Xt|Yt−1) =

∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Yt−1)dXt−1. (2)

From the conditional distribution p(Xt|Xt−1) (assume known for now), we next

obtain M samples x
(i,j)
t|t−1 from p(Xt|Xt−1 = x

(i)
t−1) for each i. Since the sam-

ple points for p(Xt−1|Yt−1) are equally-weighted, p(Xt|Yt−1) can similarly be

approximated by the N × M equally-weighted samples x
(i,j)
t|t−1.

To complete the recursion as shown in Eqn. (1), we make an approxima-
tion for the marginalization of ft−1. In particular, we choose the ft−1 which
maximizes the posterior rather than marginalizing over ft−1. Thus, we have

p(Xt−1|Yt−1) =

∫

ft−1

p(ft−1,Xt−1|Yt−1)dft−1 ≈ max
ft−1

p(ft−1,Xt−1|Yt−1). (3)

In the above discussion, we have described how, given p(ft−1,Xt−1|Yt−1), we
can obtain p(Xt|Yt−1) assuming p(Xt|Xt−1) is known. In the next section, we
explain how we estimate p(Xt|Xt−1) through learning the system dynamics.

4 Learning the Dynamics

A number of approaches can be taken to learn the dynamics of an evolving
system. We can consider purely physics-based models to constrain and explain
the dynamics of a given problem [17, 22]. The drawback is that systems that
accurately model physics may require high dimensional states and/or a com-
plex set of differential equations that model the interaction between adjacent
masses in the system. Alternatively, we may assume a statistical model that
can either be parametric or non-parametric. For the former, the challenge is
to find a parametric model that is well-matched to the problem structure and
captures the statistical variability inherent in the problem. For richer modeling
capacity, one can turn to non-parametric models, which can be computation-
ally difficult. In Section 4.2, we explain our non-parametric, yet computationally
tractable approach to learning the dynamics of LV boundaries. Before discussing
this method, we first provide a description of the system state Xt.

4.1 Implicit Parametric Shape Model and State Representation

The set of LV boundaries have different internal areas and different shapes across
a cardiac cycle and between patients. We want to represent these boundaries in
a simple, low-dimensional, yet accurate, manner. To accomplish this, we use
principal components analysis (PCA) on the shape variability to obtain a basis
for the shapes [16]. We then represent each shape by a linear combination of the



Fig. 3. Illustration of LV shape variability. ±1σ for the first eight primary modes of
variability (left to right). Solid curve represents +1σ while dashed represents −1σ.

basis elements. The tracking problem reduces to learning the time evolution of
the coefficients of the basis elements.

Starting with a training set of manually-segmented and registered data, we
determine the area of each LV. Normalizing with respect to area, we create
signed distance functions whose zero level sets are the shapes [23]. Leveraging
on Leventon’s PCA on shapes [16], we obtain a mean shape ψ̄ and the primary
modes of variability ψi (for i=1,2, . . . , K, where K is the number of shapes in
the dataset) across the entire training set. In effect, we use a single basis to
represent the shapes across the entire cardiac cycle. Figure 3 shows the eight
primary modes of variability from the training set used in the experimental
results presented in Section 6. For a given signed distance function ψ in the
training set, ψ = ψ̄ +

∑K

i=1 αiψi, where αi’s are a set of constants. It is known
that for shapes which do not vary greatly, the primary few modes of variability
can explain the majority of the variability of the data. In our training set, the
first eight modes explain 97% of the variability in our specific training set of
data. Thus, we approximately represent each ψ by the eight element vector
α = [α1;α2; . . . ;α8]

T . By using PCA, a given curve (LV segmentation) can be
approximately represented by a vector containing its area A and α.

Given this representation, we define the state Xt with the notion that the
dynamics are a second-order system. This choice is made because higher-order
systems require a larger state, while first-order systems do not adequately cap-
ture whether we are in the diastolic or systolic phase. Thus, we represent our
state Xt as an eighteen-dimensional vector containing the area of the LV and
the shape variabilities at frames t and t−1, namely Xt = [At;α

T
t ;At−1;α

T
t−1]

T .

4.2 A Maximally-Informative Statistic

We propose learning the dynamics from a training set of data based on a tech-
nique [11] which produces a non-parametric density estimate of p(Xt|Xt−1). This
estimate is obtained by using an information-theoretic criterion to maximize the
predictive power of the observations.

Since the dimensionality of the conditional density may be large, we consider
only the portion of the state Xt−1 that is statistically pertinent to the prediction
of Xt. Thus, we introduce a function h(Xt−1) which seeks to reduce dimensional-
ity yet capture all information in Xt−1 that relates to Xt (achieved exactly only
when I(Xt;Xt−1) = I(Xt;h(Xt−1)), where I(Xt,Xt−1) is the mutual informa-
tion between Xt and Xt−1). We can then create an estimate of p(Xt|h(Xt−1))
as an equally-informative yet simpler representation of p(Xt|Xt−1).

In practice, we constrain h to be linear, which likely precludes it from be-
ing a sufficient statistic. However, we choose the parameters of h such that



I(Xt;h(Xt−1)) is maximized, thus making h maximally-informative within this
class. Details regarding h and the maximization are in [25]. Once the parameters
of h are determined, we obtain a kernel density estimate of p(Xt|h(Xt−1)), where
for kernel size we use the plug-in method of Hall et al. [10].

5 Finding the MAP Estimate by Curve Evolution

Now, we incorporate the data at time t to obtain the posterior p(ft,Xt|Yt).

Given equally-weighted samples x
(i,j)
t|t−1 for p(Xt|Yt−1) as described in Section 3,

one could in principle weight the particles by the likelihood and field priors
to obtain a representation of p(ft,Xt|Yt). Such an approach may work if the
training data are rich. However, when we have a limited amount of training data,
we make the assumption that the posterior distribution of Xt is Gaussian and
determine this distribution by first computing its MAP estimate to determine
the mean parameter (since we do not have a method in place to compute the
posterior covariance, we approximate it to be a diagonal matrix with individual
variances determined empirically from the shape variability in the training data).
Maximizing p(ft,Xt|Yt) to obtain the MAP estimate is equivalent to minimizing

E(ft,Xt) = −log p(yt|ft,Xt) − log p(ft|Xt) − log p(Xt|Yt−1), (4)

which involves a likelihood term p(yt|ft,Xt), the prior on the field p(ft|Xt), and
a prediction term p(Xt|Yt−1). We discuss each term in Eqn. (4) individually.

5.1 Likelihood Term

Because we are interested in locating the boundary, we apply a simple obser-
vation model which assumes that the intensities are piecewise constant, with
a bright intensity representing blood and a darker one representing the my-
ocardium. Intensity variations in the observation, such as those due to differ-
ences in blood velocity [9], are modeled through a multiplicative random field
(other choices of noise models can be handled in our framework, with the result
being a different observation model). Mathematically, the observation model is

yt(z) =

{

f
Rin(Xt)
t · n(z) , z ∈ Rin(Xt)

f
Rout(Xt)
t · n(z) , z ∈ Rout(Xt),

(5)

where f
Rin(Xt)
t and f

Rout(Xt)
t are the constant, but unknown, field intensities

for the blood pool region inside, Rin, and the myocardial region immediately
outside (within five pixels), Rout, of the LV boundary, respectively, and n(z)
is spatially independent, identically distributed lognormal random field with
log n(z) a Gaussian random variable having zero mean and variance σ2

n. Note
that we explicitly indicate the dependence of the regions on Xt. Given the field

intensity f
R(Xt)
t and the observation model of Eqn. (5), log yt(z) is normally

distributed with mean log f
R(Xt)
t and variance σ2

n. Thus,

p(yt|ft,Xt) ∝ (6)

exp( −
∫

z∈Rin(Xt)

(log yt(z) − log f
Rin(Xt)
t )2

2σ2
n

dz −
∫

z∈Rout(Xt)

(log yt(z) − log f
Rout(Xt)
t )2

2σ2
n

dz).



Since we have a second order model, Xt contains LV boundary information at
both t and t−1. For the likelihood term, the regions Rin and Rout are determined
by the boundary information from time t.

5.2 Field Priors

In applications where it is possible to extract prior field information, we incorpo-
rate a field prior into the problem. The mean log intensity inside is approximately
stationary across a cardiac cycle. We compute the mean and variance of the log
intensity inside (u and σ2

u, resp.) and that immediately outside the curve (v and
σ2

v , resp.) from the training data and use this as a field prior to obtain

p(ft|Xt) ∝ exp(− (log fRin

t − u)2

2σ2
u

)exp(− (log fRout

t − v)2

2σ2
v

). (7)

5.3 Prediction Term

Next, we want to provide a model for the prediction term. In Section 3, we

described having equally-weighted samples x
(i,j)
t|t−1 to approximately represent

our prediction term p(Xt|Yt−1). We model this prediction density with a Parzen
density estimate using these sample points. Mathematically,

p(Xt|Yt−1) =
1

MN

∑

(i,j)

k(Xt;x
(i,j)
t|t−1, σ

2) =
1

MN

∑

(i,j)

1√
2πσ

exp(
−d2(Xt, x

(i,j)
t|t−1)

2σ2
),

(8)
where k(X;µ, σ2) represents a Gaussian kernel with mean µ and variance σ2 as
determined from the bandwidth [10], MN is the number of samples, and d(Xt, x)
is a distance measure [25] between Xt and sample x.

5.4 Curve Evolution

Having the likelihood, prediction, and prior as above, and defining F i
t (Xt) =

log f
Rin(Xt)
t and F o

t (Xt) = log f
Rout(Xt)
t , Eqn. (4) becomes

E(ft,Xt) = α(

∫

z∈Rin(Xt)

(log yt(z) − F i
t (Xt))

2

2σ2
n

dz +

∫

z∈Rout(Xt)

(log yt(z) − F o
t (Xt))

2

2σ2
n

dz)

+β(
(F i

t (Xt) − u)2

2σ2
u

+
(F o

t (Xt) − v)2

2σ2
v

)+γ log(
1

MN

∑

(i,j)

1√
2πσ

exp(
−d2(Xt, x

(i,j)
t|t−1)

2σ2
)),

(9)
where α, β, γ are weighting parameters specified based on the quality of data.
For instance, in low SNR images, α is less heavily-weighted relative to β and
γ. Details of the minimization process, which involves coordinate descent and
curve evolution, may be found in [25].

6 Experimental Results

We apply the proposed technique on 2-D mid-ventricular slices of data, although
it is also applicable to 3-D with a corresponding increase in computational com-
plexity. The dataset we use contains twenty frame time sequences of breath-hold
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Fig. 4. (a) Curves representing predictions of the LV segmentation (observed MR image
in background). (b) Segmentation of an MR image by obtaining the MAP estimate of
Xt. (c) Curves representing samples of the posterior density p(ft, Xt|Yt).

cardiac MR images, each representing a single cardiac cycle. We do not consider
arrhythmia because only patients having sustained and hemodynamically-stable
arrhythmia can be practically imaged and analyzed. Such a condition is very
rare. Anonymized data sets of were obtained from the Cardiovascular MR-CT
Program at Massachusetts General Hospital.

6.1 Training

As discussed in Section 4.1, we represent each manually segmented LV from the
training set (a total of 840 frames) by a shape variability vector α and an area A.
We obtain the state Xt for each frame t in the cardiac cycle. Then, we learn the
dynamics of our system by maximizing I(Xt;h(Xt−1)), where we approximate h

by a linear function, and use gradient ascent on the parameters of h to find the
maximum. We obtain a density estimate of p(Xt|h(Xt−1)) for use in test data.

6.2 Testing

We take sequences of twenty frames (ones not included in the training set), each
a single cardiac cycle, as input for testing. For initialization, we assume that a
user provides a segmentation of the first two frames in the sequence. The seg-
mentations can be approximate segmentations using some automated method,
an expert hand-segmentation, or predicted using a segmentation from a neigh-
boring 2-D slice of the same patient at the same time. From these segmentations,
we obtain the initial posterior p(f2,X2|Y2). Using particle filters and curve evo-
lution as described, we recursively estimate the posterior for each frame.

6.3 Results

In Figure 4, we show the segmentation and tracking of the LV based on a test
image sequence. Figure 4(a) shows LV boundaries extracted from samples of



Fig. 5. MAP estimate of segmentations from frame 3 to 20 of a full cardiac cycle.

p(Xt|h(Xt−1)). Due to space constraints, we show two representative frames
from the cardiac cycle. Note that these predictions are obtained based on seg-
mentations from previous frames and on the learned dynamic model, but before
incorporating the data shown in Figure 4(a). Figure 4(b) shows the MAP es-
timate of Xt, which involves incorporating the observed data. This estimate is
obtained by minimizing Eqn. (9) and provides what qualitatively appears to
be a reasonable segmentation of the LV boundary. Quantitatively, we measure
accuracy by computing the symmetric difference between the segmentation and
the manually-segmented truth normalized by the area of the truth. Here, the
average value across the cardiac cycle of test data is 0.04. Finally, Figure 4(c)
shows equally-weighted samples of the posterior density p(Xt|Yt). This example
shows good results, but since the quality of the images are very good, static
segmentation methods yield results similar to those shown in Figure 4(b).

We now consider low SNR images where static segmentation may not pro-
duce reasonable results. To simulate low SNR conditions, we add independent,
lognormal multiplicative noise to MR images to produce a noisy dataset. Using
dynamics trained from the MR image training set and initializing again using
hand-segmentations on the first two frames, we estimate the LV boundaries. Fig-
ure 5 shows segmentations for a full cardiac cycle by taking the MAP estimate
of Xt overlaid on the corresponding noisy MR data. The segmentations appear
to provide accurate localizations of the LV boundaries despite low quality data.

Figure 1 provides a visual comparison between our approach and one us-
ing static segmentation. Only two frames are shown due to space limitations,
but they are representative of the results obtained throughout the cardiac cycle.
Quantitatively across the entire cardiac cycle, the normalized symmetric differ-
ence from our approach is 0.08, while that for static segmentation is 0.17. The
static segmentation method is obtained by replacing the p(Xt|Yt−1) term in our
formulation with a curve length prior and is similar to the region-based segmenta-
tions described in the introduction [3, 20, 26]. In both illustrations, incorporating
dynamics into the segmentation process using the approach we propose results
in better estimates than those using a static segmentation method.



7 Conclusion

We have proposed a principled method to recursively estimate the LV boundary
across a cardiac cycle. In the training phase, we learn the dynamics of the LV
by obtaining a non-parametric density estimate for the system dynamics. From
this, we produce predictions which, used in conjunction with the observations
from a new frame, estimate the LV boundary in this frame. The process is
repeated through a cardiac cycle. This approach uses information from temporal
neighbors to produce better segmentations than using observations at the current
frame alone. We have illustrated this method on high and low SNR images. Our
formulation produces reasonable estimates using either set of measurements.

A number of extensions to this work may be considered. For instance, our
ongoing work considers the generalization to general non-parametric densities for
the posterior when a rich enough training set is available. Also, in the learning
phase, one might be interested in explicitly incorporating physical constraints to
the dynamic system. Adding such constraints may help to eliminate boundary
estimates which are known to be physically impossible. In addition, other forms
of the function h may be considered. More general non-linear functions may yield
a more informative statistic at the cost of greater computational complexity,
while a time-varying one may be more informative if sufficient training data is
available. In this work, we have posed the problem as a forward recursive filter.
Our current work considers improving the estimates by the use of smoothing.
Finally, we note that although we track only 2-D slices of the LV in this paper, a
natural experimental extension involves applying the technique to 3-D LV data.
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