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Abdurrahim Soğanlı · Mustafa Gökhan Uzunbaş · Müjdat Çetin
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Abstract Integration of shape prior information into level
set formulations has led to great improvements in image seg-
mentation in the presence of missing information, occlusion,
and noise. However, most shape-based segmentation tech-
niques incorporate image intensity through simplistic data
terms. A common underlying assumption of such data terms
is that the foreground and the background regions in the
image are homogeneous, i.e., intensities are piecewise con-
stant or piecewise smooth. This situation makes integration of
shape priors inefficient in the presence of intensity inhomo-
geneities. In this paper, we propose a new approach for com-
bining information from shape priors with that from image
intensities. More specifically, our approach uses shape pri-
ors learned by nonparametric density estimation and incor-
porates image intensity distributions learned in a supervised
manner. Such a combination has not been used in previous
work. Sample image patches are used to learn the intensity
distributions, and segmented training shapes are used to learn
the shape priors. We present an active contour algorithm that
takes these learned densities into account for image segmen-
tation. Our experiments on synthetic and real images demon-
strate the robustness of the proposed approach to compli-
cated intensity distributions, and occlusions, as well as the
improvements it provides over existing methods.
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1 Introduction

Image segmentation is one of the oldest and most profound
subjects in computer vision. The goal of segmentation is to
partition an image into regions that might be useful for image
interpretation. While a wide variety of ideas and frameworks
have been explored for image segmentation, of particular
interest in this paper are techniques based on active contours.
Active contour-based segmentation methods can be grouped
into two major categories: edge-based methods and region-
based methods. Edge-based models [1,2] use gradient magni-
tude to identify and separate regions. However, these methods
suffer from noise. Some preprocessing steps can be applied
for denoising, but these operations weaken edges. Region-
based models [3–8] which are preferred in the presence of
noise and low-quality data generally assume intensities in the
regions are piecewise smooth. This approach is succeeded by
several methods such as global [3,6–10] and local [4,5] inten-
sity fitting energy-based methods and information theoretic
methods [6,7] that use histograms and probability distrib-
ution functions of the input image. Local intensity energy-
based models alleviate sensitivity of region-based models to
intensity inhomogeneities by integrating a Gaussian kernel
into the global model that assigns more weight to intensi-
ties near the current estimate of the boundary. Recently, a
new model that integrates a Gaussian mixture model with
a level set method for natural image segmentation has been
proposed [11].

Two other major problems that complicate the segmen-
tation process are occlusion and missing information in the
input image. These problems have motivated researchers to
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Fig. 1 Synthetically constructed aircraft object with 5 different conditions

use shape statistics in the segmentation process [12–14].
In these approaches, prior knowledge of the shape of the
target object is incorporated as a regularization term into
an optimization-based segmentation formulation. In [12–14]
, the shape model is represented in terms of level sets. These
methods assume intensities are piecewise constant and incor-
porate image data into the segmentation formulation accord-
ingly, and they involve statistical constraints to keep the
evolving boundary in the shape space defined by the training
shapes. Earlier work [14] on this problem involves the use
of principal component analysis (PCA) of the signed dis-
tance functions of training shapes in order to capture and
represent shape variability. These techniques provide accu-
rate segmentation in the presence of low SNR and missing
information. However, PCA-based techniques have two dis-
advantages. First, these techniques treat the space of signed
distance functions as a linear vector space, which it is not.
Second, these techniques cannot deal with multimodal shape
densities, which involve multiple shape subclasses within the
overall shape distribution. Nonparametric shape priors are
proposed in order to alleviate some of the problems faced
by PCA-based shape modeling approaches. For example, in
[12], nonparametric kernel density estimate of the shape dis-
tribution is used as the shape prior. In that work, L2 dis-
tance and template overlap ratios are used as metrics for the
Gaussian-type kernel. In these segmentation frameworks, for
the data (region) term, a term based on piecewise constant
[3] or piecewise smooth [15] regions was adopted besides
the shape term. In segmentation scenarios presented in these
works, the shape term regularizes the data term so that the
active contours are evolved to the actual boundary of the tar-
get object when the object of interest is partially occluded
or suffers from noise. However, if the data term falls beyond
a certain limit, the shape term may not be able to drive the
curve to the correct boundary.

Our key observation that has motivated the work pre-
sented in this paper is that powerful shape-driven methods
(such as nonparametric shape priors) have so far been used
together with only simple data terms involving piecewise
constant or piecewise smooth intensity assumptions. There
is a need to combine such shape prior methods with flexi-
ble, learning-based intensity distributions, such as those pro-

posed in [9,10]. In many real-life scenarios, in the presence
of inhomogeneities or characteristic complicated intensity
distributions in the regions, existing segmentation methods
may fail to capture the target object accurately. Performance
of these models can be better explained with Fig. 1. A synthet-
ically constructed aircraft image and different backgrounds
are shown in five sample images.

– a. Foreground and background of the object are homoge-
neous. Segmentation can easily be done by simple edge-
based models. Region-based models can also provide
accurate segmentation results.

– b. Foreground and background of the object are still
homogeneous but there is noise. Edge-based models may
have problems. Segmentation can be done by region
-based models.

– c. Foreground and background of the object are homoge-
neous and noisy, and some part of the object is missing.
Segmentation can be done by shape-based models [12,13].

– d. Foreground is homogeneous, but background of the
object is not homogeneous. There are strong edges in the
background, which are not regional boundaries but inner
edges. Edge-based models and piecewise smoothness-
based region models would fail. Segmentation can be done
by using histogram-based models.

– e. The background is not homogeneous, and some part of
the object is missing. Shape-based models can be used.
However, piecewise smoothness-based data terms com-
monly used in these models cannot prevent leakages and
would prevent the effective exploitation of the shape prior
information.

In this paper, our motivation is to present an approach that
can handle the types of complication represented by the toy
example in Fig. 1e. Classical shape-based models generally
fail to provide successful segmentation when faced by com-
plicated intensity distributions because of the simplistic data
terms they use. The idea for a remedy, which has motivated
the work presented in this paper, could be to combine a data
term based on learned intensity distributions with a pow-
erful and versatile approach for incorporating shape priors.
Here, the data term proposed in [9] would be a promising
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candidate, which is based on the assumption that probabil-
ity densities of the background and the foreground regions
are a priori known. In this work, we propose to combine
such a learning-based data term with a nonparametric shape
model term to extend the previously proposed shape-based
segmentation approach [12] to the case of complicated inten-
sity distributions. We propose an energy functional that incor-
porates these two pieces, and develop an algorithm for mini-
mizing that energy functional for segmentation. We propose
two versions of the data term, one involving learning of both
the foreground and the background intensity distributions,
and the other considering the case in which only information
about the foreground intensities is available. We observe that
the proposed approach can handle both complicated intensity
variabilities and complicated shape variabilities, a capability
that existing methods do not readily exhibit.

This paper is organized as follows. We review the shape-
based model proposed in [12] and the data term proposed in
[3] in Sect. 2. Next, we explain our proposed model and its
extension to color images in Sect. 3. In Sect. 4, we test our
proposed approach on both synthetic images and real-world
color images. In Sect. 5, we summarize and conclude our
paper.

2 Background

The general shape-based segmentation framework that has
been used in [12,13] and that we also consider in our work
is based on minimizing energy functionals of the following
form:

E(C) = − log p(data|C) − log pC (C) (1)

In this formulation, C is the segmentation curve, the first
term is the data term, and the second one is the shape term
capturing statistical prior information about the shape of the
object to be segmented. Specific choices for the harmony
of these two terms determine the accuracy of segmentation.
In this section, we briefly describe the data term used by
the shape-based segmentation methods in [12,13]. This data
term imposes piecewise constant region intensities and is to
be contrasted with the term we will propose in Sect. 3. In this
section, we also briefly review nonparametric shape priors
[12], which is the shape term we use in our work.

2.1 Data term

The region-based data term proposed in [3] is used in several
shape-based methods. Letting I be the grayscale input image,
the energy functional of data term is as follows:

ECV(C) = λ1

∫

inside(C)

(I (x) − min)
2dx

+λ2

∫

outside(C)

(I (x) − mout)
2dx (2)

where λ1, λ2 are constants, min and mout are the mean inten-
sities inside and outside of the current contour, respectively.1

This term can be adopted to color images as proposed in [16].

2.2 Nonparametric shape priors

Shape-based segmentation methods of interest in this work
incorporate shape prior information into a level set-based
energy functional as an additional term. In [12], nonpara-
metric shape prior is introduced to capture complex, poten-
tially multimodal shape prior densities. This goes beyond the
simpler PCA-based methods, which can only capture “uni-
modal” shape variability concentrated around a mean shape.
The training set consists of n segmented unaligned curves
C1, . . . , Cn of the target object. These curves are first aligned
with respect to translation, scaling, and rotation parameters,
so that their remaining variability captures the distribution
of the object shape. Aligned curves, C̃1, . . . , C̃n are used
to learn a shape probability density function. In particular,
Parzen density estimation is used within a level set-based
formulation as follows:

EShape(C) = 1

n

∑
m

k(dL2(φC̃ , φC̃m
), σ ) (3)

where φC̃ and φC̃m
are the signed distance functions of

the current contour and the training shapes, respectively.
Note that signed distance functions for level set formula-
tions encode the distance of any particular point in the image
domain to the segmenting boundary, with negative sign for
points inside the boundary and with positive sign for points
outside the boundary. Through this term, the active contour
is constrained by a shape force governed by the training set.
Energy formulation of the shape-based approach of [12] can
be expressed as:

E(C) = ECV(C) + βEShape(C) (4)

where β is a hyper-parameter that tries to balance data and
shape terms. Segmentation is done through minimization of
this energy functional by gradient descent. This iterative pro-
cedure produces the evolution of the curve from initialization
to final segmentation.

This shape-based model provides accurate segmentation
results in the presence of missing information or occlusions
if the intensity homogeneity assumption of the data term is

1 The subscript “CV” is used to refer to the first letters of the last names
of the authors of [3].
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correct for the input image. However, generally, real-world
complex images are not homogeneous, and intensities are
not slowly varying. Therefore, in the next section, we pro-
pose changing the data term in order to obtain accurate seg-
mentation results in the presence of complicated intensity
distributions.

3 Proposed approach

We consider the problem of segmentation of an object with an
arbitrary intensity distribution and arbitrary shape variability,
possibly in a complex background. We are also interested in
handling occlusions and missing information. Our model is
based on two assumptions to help address this challenging
problem:

1. Example contours of the object to be segmented are
available for a priori learning of the shape distribution.
Note that this assumption is the same with [12] and other
shape-based models.

2. Image patches are available to learn the probability den-
sity functions of foreground and background (or at least
just the foreground) of the target object.

3.1 Foreground and background distributions are known
(Model 1)

By using the second assumption above, we can insert a prob-
ability density function-based data term to the energy func-
tional in (1). In [10] and later in [9], a data term that is suitable
for our objectives was proposed. This term is given by:

EPD(C) = −
∫

outside(C)

log pout(I (x))dx

−
∫

inside(C)

log pin(I (x))dx (5)

In this equation, pin(.) and pout(.) are the intensity probabil-
ity density functions that belong to the foreground and the
background regions in the image, respectively. These prob-
ability density functions can either be estimated based on
foreground and background patches extracted from the test
image (if that is feasible in the particular application of inter-
est), or from offline training samples of the type of image
to be segmented. One can use parametric or nonparametric
density estimation methods for estimating these intensity dis-
tributions. In our work presented here, we use nonparametric
density estimation on patches extracted from the test image
to be segmented. Gradient flow of this data term is given
below:

∂C

∂t
= [log (pout(I (x))) − log (pin(I (x))]N

=
(

log
pout(I (x))

pin(I (x))

)
N (6)

N is inward normal of the segmenting curve. Interpreting
this gradient flow can provide some intuition on the behavior
of this data term. Assume a pixel at location x in the input
image.

– If pin(x) > pout(x), the expression before the normal will
be negative, which will cause the curve to move outward
to include this point in the foreground region.

– If pin(x) < pout(x), the expression before the normal will
be positive, which will cause the curve to move inward to
push this point to the background region.

This model can also be applied on color images by extending
data term as in [16]. For an RGB image, forces from the three
channels can be calculated separately and summed up. More
generally, given a k-channel input image I , the gradient flow
of the data term will be as follows:

∂C

∂t
=

[
k∑

i=1

log (pouti (I (x))) −
k∑

i=1

log (pini (I (x)))

]
N

=
(

k∑
i=1

log pouti (I (x))

log pini (I (x))

)
N (7)

Using this data term based on learning intensity distributions,
our energy functional to be used for segmentation becomes:

E(C) = EPD(C) + βEShape(C) (8)

To obtain an iterative curve evolution algorithm to minimize
(8), we combine the gradient flow in (6) or (7) with the gra-
dient flow expression for nonparametric shape priors, which
can be found in [12].

In this subsection, we assumed the availability of data
for learning both the foreground and the background inten-
sities. However, one might also be interested in segmenting
an object with a particular intensity distribution on a vari-
ety of backgrounds. In that case, one needs an approach that
can exploit the foreground intensity distribution without any
knowledge about the background. We handle that case in the
next subsection.

3.2 Only the foreground distribution is known (Model 2)

We construct a new model in which background probabil-
ity distribution function is unknown. In this case, a simple
idea could be to treat the background as uniformly distrib-
uted. Thus, pout(I (x)) becomes nothing but constant with
following value:
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pout = 1

L
(9)

where L is maximum value of pixel intensities. The gradient
flow of the data term under this intensity model becomes:

∂C

∂t
=

(
log

1/L

pin(I (x))

)
N (10)

This term is a simple comparison between 1
L and pin(I (x)). If

pin(I (x)) is bigger than 1
L , then the contour moves to include

this point in the foreground. This model can produce success-
ful segmentation results under complex and approximately
uniformly distributed backgrounds. The overall gradient flow
is given by the linear combination of the flow in (6) due to
the data term and the flow resulting from the nonparametric
shape priors presented in [12].

The algorithmic structure we use to implement the curve
evolution associated with the gradient flows presented in this
and the previous subsections in combination with the flow
due to the shape term is similar to the structure used in [12].
In particular, we first evolve the curve C using only the data
term until convergence and then switch the shape term. This
prevents unnecessary evaluations of the nonparametric shape
density for the initial and early states of the curve, which are
usually very far away from the actual object shape anyway.
When the shape term is turned on, both the data and the
shape gradient flows act on the curve at each iteration. Before
computing the shape force, the current segmenting curve is
aligned with respect to the training shapes. Once the shape
force is computed, the curve C is updated through the data
and the shape forces. This procedure is repeated until the
curve converges.

4 Experimental results

We now demonstrate segmentation results of our proposed
approach. We first consider segmentation of a synthetically
constructed aircraft image, which is similar to the image in
Fig. 1e. The aligned training shapes used in nonparamet-
ric shape density estimation are shown in Fig. 2. Figure 3
shows the segmentation results on a test image of the air-
craft object not included in the training set of shapes. We
present results of both versions of our approach. The first
version involves learning and using both the foreground and
the background intensity distributions (Model 1). The sec-
ond version learns and uses the foreground intensities, but

assumes a uniform density for the background (Model 2).
We compare our results with those of [12]. Images in the first
column are (a-f-k) initial contours. Second through fourth
columns are intermediate states in the evolution process, and
the fifth column shows the final segmentation results. Up
to the third column, only the data term is activated in each
method. So the effect of the shape term can be observed in
the last two columns. We observe that the method in [8] fails
to segment this image. This is because the simple data term
in [12] is not able to capture the complicated foreground and
background intensity distributions in this scene. As shown in
Fig. 3c, the data term of [12] drives the curve to high-contrast
areas in the scene, which do not correspond to the boundary
of interest here. The shape prior cannot do much more than
trying to fit the best aircraft shape consistent with the train-
ing data as well as with the boundary favored by the data
term. The final result in Fig. 3e looks like an aircraft, but is
a poor segmentation of the object in the scene. The second
row presents the results of our Model 1. We observe that the
result in Fig. 3j is a successful segmentation. The interme-
diate result in Fig. 3h demonstrates the effectiveness of the
data term used in our approach in handling the complicated
intensity distributions in this image. Further steps in the evo-
lution, as shown in Fig. 3i, j, help recover the missing wing
of the aircraft through effective incorporation of shape infor-
mation. The bottom row contains the result of our Model 2.
Despite the lack of prior knowledge about the background,
this approach is still able to produce a reasonable segmen-
tation result. However, as compared to the results of Model
1, Model 2 produces some artifacts. We can make sense of
these artifacts by examining the intensity probability density
functions used by the two models, shown in Fig. 4. In par-
ticular, the characteristic nature of the background intensity
distribution which is not captured effectively by the uniform
distribution is that very dark and very bright intensities are
highly likely in the background region. Since the uniform
distribution does not capture this nature, some of the dark
and bright pixels that are not terribly inconsistent with the
shape prior are put into the foreground region by the approach
based on Model 2.

Next, we present results on real color images. In the
first such example, we consider segmentation of the sun in
the presence of occlusion. In addition to the potential pres-
ence of an occlusions, this problem can also be challenging
because of scattering around the sun. The test image and the
segmentation results are shown in Fig. 5. While one might
argue that the high contrast between the sun and the back-

Fig. 2 Aligned training samples for the aircraft object
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Fig. 3 Segmentation of the aircraft image. First row (a–e) shows the
segmentation result of [12]. Second row (f–j) shows the segmentation
result of proposed model 1, which is based on learning and using the
foreground and the background intensity distributions. Third row (k–o)
shows the result of proposed model 2 in which the background is treated

as uniformly distributed. Leftmost and rightmost columns show the ini-
tial curve and the final segmentation result, respectively, whereas the
middle columns show intermediate states in the curve evolution process
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Fig. 4 Probability density functions of foreground and background of aircraft object used in our segmentation approach. Model 1 (left), Model 2
(right)

ground would enable a simpler segmentation approach to
generate a reasonable result, this, of course, is not valid when
we have complications such as occlusions, as seen in this
example. Prior probability densities are obtained by labeling
small foreground and background regions of the input image
by supervised learning. In Fig. 5, the first three columns show

segmentation results without the shape term, which is added
after the third column. Our proposed Model 1 provides a
reasonably accurate segmentation result. Model 2 leads to
correct localization of the sun but has difficulty recovering
all of the occluded region. The model proposed in [12] fails
to segment the sun. Segmentation result converges to a cir-
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Kim et al.

Proposed Model 1

Proposed Model 2

Fig. 5 Segmentation of a circular object. First row shows the seg-
mentation result of [12]. Second row shows the segmentation result of
proposed model 1. Third row shows the result of proposed model 2.

Leftmost and rightmost columns show the initial curve and the final
segmentation result, respectively, whereas the middle columns show
intermediate states in the curve evolution process

Fig. 6 Training samples for birds

Fig. 7 Pieces involved in the bird image segmentation experiment: 7 foreground training samples, 2 background training samples, input image

cular shape because of the activation of the shape term, but
the resulting boundary does not correspond to the boundary
of the sun.

In the third example, we consider segmentation of images
of birds. Shapes of randomly chosen bird species are used in
learning the shape priors. The shape training samples used in
our experiment are shown in Fig. 6. Although a comprehen-
sive shape prior database would require a significant number
of training samples from different bird species, we use 11
training samples for simplicity and show that even such lim-
ited data could be very valuable when effectively used in the

segmentation process. In this example, prior intensity distri-
butions are not obtained directly from the input image itself.
We use distinct sample background and foreground images.
In particular, we learn the foreground intensity distribution
from 7 different image patches containing birds belonging
to the same species as the bird in the input image and learn
the background intensity distribution from 2 image patches.
Training patches used for learning the foreground and the
background intensity distributions are shown in Fig. 7. Final
estimated foreground and background intensity distributions
are the average distributions of these training patches. One
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Fig. 8 Prior distributions of foreground and background for the three channels

Kim et al.

Proposed Model 1

Proposed Model 2

Fig. 9 Segmentation of a bird. First row shows the segmentation result
of [12]. Second row shows the segmentation result of proposed model
1. Third row shows the result of proposed model 2. Leftmost and right-

most columns show the initial curve and the final segmentation result,
respectively, whereas the middle columns show intermediate states in
the curve evolution process

can also use a weighted average in order to obtain better
estimated distributions for a specific scenario. Note that this
corresponds to a realistic scenario in which we do not have
access to a patch of intensities of the particular object in
the input image to be segmented. The estimated probabil-
ity density functions of the foreground and the background
regions for each of the three color channels are shown in
Fig. 8. In this example, we use an input image containing a
bird inside a birdcage, which causes occlusions as shown in

Fig. 7. Most segmentation algorithms would be challenged
by such occlusions. Segmentation results are shown in Fig. 9.
We observe that the approach in [12] is able to segment only
the homogeneous part of the bird. Although activation of the
shape term forces the contour to approach the shape of a bird,
the piecewise smooth intensity assumption of the data term
imposes a strong preference to exclude both the dark and the
light parts of the bird inside the contour. Model 1 produces
a fairly good result. We observe that the part of the back-
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Proposed Model 2

Proposed Model 1

Kim et al.

Fig. 10 Segmentation of a car. First row shows the segmentation result
of [12]. Second row shows the segmentation result of proposed model
1. Third row shows the result of proposed model 2. Leftmost and right-

most columns show the initial curve and the final segmentation result,
respectively, whereas the middle columns show intermediate states in
the curve evolution process

ground that contains the shadow of the bird is included in
the segmented foreground region. This is most likely caused
by the fact that the darkening of the intensities due to the
shadow makes this region unlikely for the background given
the learned prior distribution. Nevertheless, considering the
challenging nature of this problem, our approach based on
Model 1 produces reasonable segmentation results. Model
2 also produces a satisfactory result in this example despite
some small mismatches around the boundaries. This can be
explained by the mismatch of intensity distributions used in
the model with those observed in the input image. In partic-
ular, a uniform distribution which is significantly different
from the learned distribution shown in Fig. 8 is assumed for
the background. Similarly, the foreground intensity distrib-
ution learned from 7 image patches on the left of Fig. 7 is a
coarse approximation of the actual intensity distribution in
the test image. When both of these distributions are inaccu-
rate, some level of imperfection is expected.

Our final example involves the segmentation of car
images. Cars can have a variety of color distributions. Trans-
parency of the windows cause the background to be visible
through the car. Such complications make the segmentation

of cars a challenge. Exploiting prior intensity distribution
knowledge on foreground and background may lead to bet-
ter segmentation results compared to the piecewise smooth
assumption in such cases. Segmentation results are shown in
Fig. 10. The shape-based model proposed in [12] fails to pro-
duce an accurate segmentation result. The data term used in
[12] assumes that regions are piecewise smooth, which in this
example causes some parts of the car to be treated as back-
ground. The final result approaches the shape of a car, but fails
to localize the actual car in the scene. Our proposed Model 1
provides significantly better segmentation results, although
some parts of the car having a similar intensity distribution
to the background are missed. Our Model 2 segments most
of the car successfully, but the uniform background model
causes some artifacts.

5 Conclusions

In this paper, we have proposed a segmentation approach
that involves learning and exploitation of both the intensity
distributions of the regions in the image and the shape dis-
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tributions of the objects to be segmented. We have learned
the shape distributions by using the recently developed idea
of nonparametric shape priors. The main contribution of our
work is to combine such shape priors with learning-based
intensity models in the segmentation process. We have pro-
posed two models, one involving the learning of both the
foreground and the background intensity distributions, and
the other involving the use of a learning-based foreground
density together with an assumed uniform background den-
sity. We have shown that our approach can provide improve-
ments over existing shape prior-based segmentation meth-
ods, especially when the region intensity distributions are
complicated. We have compared the performance of our two
models on synthetic and real examples, and we have also
shown examples of cases where our approach can fail when
the distributions used in the model are inaccurate. We have
also demonstrated the robustness of our proposed approach
to occlusions. When data to learn the shape and the intensity
distributions are available, the proposed approach has the
potential to solve very challenging segmentation problems.

Acknowledgments This work was partially supported by the Sci-
entific and Technological Research Council of Turkey (TUBITAK)
through a graduate fellowship.

References

1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour mod-
els. Int. J. Comput. Vis. 1(4), 321–331 (1988)

2. Xu, C., Prince, J.: Snakes, shapes, and gradient vector flow. IEEE
Trans. Image Process. 7(3), 359–369 (1998)

3. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans.
Image Process. 10(2), 266–277 (2001)

4. Li, C., Huang, R., Ding, Z., Gatenby, J.C., Metaxas, D.: A level set
method for image segmentation in the presence of intensity inho-
mogeneities with application to MRI. IEEE Trans. Image Process.
20(7), 2007–2016 (2011)

5. Zhang, K., Song, H., Zhang, L.: Active contours driven by local
image fitting energy. Pattern Recognit. 43, 1199–1206 (2010)

6. Kim, J., Fisher, J.W., Yezzi, A., Cetin, M., Willsky, A.S.: A non-
parametric statistical method for image segmentation using infor-
mation theory and curve evolution. IEEE Trans. Image Process. 14,
1486–1502 (2005)

7. Ni, K., Bresson, X., Chan, T., Esedoglu, S.: Local histogram based
segmentation using the Wasserstein distance. Int. J. Comput. Vis.
84, 97–111 (2009)

8. Mumford, M., Shah, J.: Optimal approximation by piecewise
smooth functions and associated variational problems. Commun.
Pure Appl. Math. 42, 577–685 (1989)

9. Paragios, N., Deriche, R.: Geodesic active regions and level set
methods for supervised texture segmentation. Int. J. Comput. Vis.
46(3), 223–247 (2002). and 1996

10. Zhu, S., Yuille, A.: Region competition: unifying snakes, region
growing, and Bayes/MDL for multiband image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 18, 884900 (1996)

11. Xie, Z., Wang, S., Hu, D.: New insight at level set & Gaussian
mixture model for natural image segmentation. Signal Image Video
Process. 7(3), 521–536 (2013)

12. Kim, J., Cetin, M., Willsky, A.S.: Nonparametric shape priors
for active contour-based image segmentation. Signal Process. 87,
3012–3044 (2007)

13. Cremers, D., Soatto, S.: Kernel density estimation and intrinsic
alignment for shape priors in level set segmentation. Int. J. Comput.
Vis. 69(3), 335–351 (2006)

14. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A.,
Grimson, W.E., Willsky, A.: A shape-based approach to the seg-
mentation of medical imagery using level sets. IEEE Trans. Med.
Image Imaging 22(2), 137154 (2003)

15. Cremers, D., Tischhauser, F., Weickert, J., Schnorr, C.: Diffusion
snakes: introducing statistical shape knowledge into the Mumford–
Shah functional. Int. J. Comput. Vis. 50(3), 0920–5691 (2002)

16. Tsai, A., Yezzi Jr, A., Willsky, A.S.: Curve evolution implemen-
tation of the Mumford–Shah functional for image segmentation,
denoising, interpolation, and magnification. IEEE Trans. Image
Process. 10(8), 1169–1186 (2001)

123


	Combining learning-based intensity distributions with nonparametric shape priors for image segmentation
	Abstract 
	1 Introduction
	2 Background
	2.1 Data term
	2.2 Nonparametric shape priors

	3 Proposed approach
	3.1 Foreground and background distributions are known (Model 1)
	3.2 Only the foreground distribution is known (Model 2)

	4 Experimental results
	5 Conclusions
	Acknowledgments
	References


