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Abstract: We propose a sparse signal 
representation-based method for complex-
valued imaging. Many coherent imaging 
systems such as synthetic aperture radar (SAR) 
have an inherent random phase, complex-
valued nature. On the other hand sparse signal 
representation, which has mostly been 
exploited in real-valued problems, has many 
capabilities such as superresolution and feature 
enhancement for various reconstruction and 
recognition tasks. For complex-valued 
problems, the key challenge is how to choose 
the dictionary and the representation scheme 
for effective sparse representation. We propose 
a mathematical framework and an associated 
optimization algorithm for a sparse signal 
representation-based imaging method that can 
deal with these issues. Simulation results show 
that this method offers improved results 
compared to existing powerful imaging 
techniques. 
Index Terms: sparse signal representation, complex-
valued imaging, image reconstruction, coherent 
imaging, synthetic aperture radar. 

 
1. INTRODUCTION 

This paper presents a new image reconstruction 
technique based on sparse signal representation 
that can be used for complex-valued imaging 
systems. Many coherent imaging systems such as 
synthetic aperture radar (SAR), holography, 
magnetic resonance imaging, laser imaging, sonar 
imaging, and so on, have an inherent complex-
valued nature [1]. Also, phase of the imaged field 
might be random and spatially uncorrelated in 
some applications such as SAR [2]. 
In these systems, straightforward application of 
image reconstruction techniques developed 

originally for incoherent real-valued imaging 
systems will not produce high quality images. One 
of these techniques that have mostly been 
exploited in real-valued problems is sparse signal 
representation, which has many capabilities such 
as superresolution and feature enhancement for 
various reconstruction and recognition tasks.  
Recent work on feature-enhanced complex-valued 
imaging [3] has ties to sparse representation. In 
particular, one interpretation of this technique 
involves sparse representation with some fixed, 
specific dictionaries. Our work generalizes that 
work to sparse representation with arbitrary 
overcomplete dictionaries. 
The key challenge for exploiting sparse 
representation in complex-valued problems is how 
to choose the dictionary and the representation 
scheme for effective sparse representation. 
In the next sections we present a mathematical 
framework that deals with these issues. As 
presented in Section 2, we have used a general 
linear observation model, and applied sparse 
representation on the magnitude of the complex-
valued scattered field. This then turns the image 
reconstruction problem into a joint optimization 
problem over the magnitude and the phase of the 
underlying field reflectivities. We present an 
iterative algorithm to solve this joint optimization 
problem. In the end of Section 2, a discussion on 
dictionary selection is presented. In Section 3 our 
experimental results are presented to show the 
effectiveness of this new method. 
 

2. SPARSE REPRESENTATION FOR 
COMPLEX-VALUED PROBLEMS 

This section contains a description of our sparse 
representation technique for complex-valued 
problems. We start with describing our general 



observation model. Next we present our sparse 
representation scheme and the related 
optimization problem. Then we present our 
algorithm to solve this optimization problem. 
Finally a discussion about proper dictionary 
selection is presented. 
 
2.1 Observation model 
We use the following general observation model:  
 

y = T f + n                         (1) 
 
where y  is the sampled measured data, f is the 
unknown scene or object reflectivity image, and n 
is noise; all are complex and column-reordered as 
vectors. T represents a complex-valued discrete 
observation kernel. T could be, for example, a 
band-limited Fourier transform operator matrix, or 
a projection operator matrix as in SAR or other 
tomographic imaging system [3,4]. 
 
2.2 Sparse representation scheme 
In many applications of imaging systems 
introduced in Section 1, such as SAR, we could 
have a sparse representation in a proper domain 
for magnitude of complex scattered field (image).  
This means that we can write:   

αΦ=f                               (2) 
Where Φ is an appropriate dictionary for our 
application, and α  is the new domain coefficient 
vector with which the magnitude of scattered field 
can be sparsely represented.  
We can write fPf =  , where  { }ijediagP φ=  , 
and φi's are the unknown phases of each image 
vector element fi. So we can rewrite our 
observation model as:  
 

nPTnfPTnfTy +Φ=+=+= α        (3) 
 
If we knew P (the unknown image vector 
elements phases), using a sparsity regularization 
method such as an extension of basis pursuit [5] as 
follows, we could find an estimate of  α   and 
hence of the image itself: 
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where 

p
⋅  denotes the pl -norm and λ is a scalar 

parameter. However we don't know the image 
phases and hence P. We use the following 
approach to overcome this problem: 
 
a. First we start with an initial estimate for f that 
could be a conventional reconstruction of f, so we 
can also produce an initial estimate of the image 
phase matrix P. In this way, we can solve the 
optimization problem in (4) and find a new 
estimate for α . 
 
b. Now we have a new estimate of α  and so f , 
and we should now find a new estimate for P. We 
can rewrite our observation model as: 
 

nBTnfPTy +=+= β                (5) 
 
where { }ifdiagB =  and β  is vector of unknown 
phases, hence a vector containing the diagonal 
elements of P. We can find an estimate of β as 
follows: 
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We replace the constrained optimization problem 
in (6), with the following unconstrained problem 
that incorporates a penalty term on the magnitudes 
of si 'β : 

∑
=

−′+−=
N

i

q
iBTy

1

22

2
)1(minargˆ βλββ

β
       

             
q

q

q

q
BTy βλβλβ

β
′−′+−= 2minarg

2

2

2

2
     (7) 

Solving this optimization problem will give us a 
new estimate for the phase vector β  and so the 
matrix { }βdiagP =  . 
 



c. We are now back to step (a) and we repeat the 
above steps until the algorithm converges to its 
final solution. 
 
2.3 Solving the optimization problems 
If we call the cost functio n of optimization 
problem (4) J(α) and use the smooth 
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a small positive constant, to avoid 
nondifferentiability problems of the pl -norm 

around the origin, then the gradient of  J(α) will 
be:  
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Using the quasi-Newton iterative method 
developed in [3], which is well suited for this kind 
of nonquadratic optimization problems, with 
approximate Hessian H(α) :  
 

)ˆ()]ˆ([ˆˆ )(1)()()1( nnnn JH ααγαα ∇−= −+      (10) 
 
And after substituting (8) in (10) and rearranging 
we obtain the iterative algorithm: 
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(11) 

The algorithm can be started from an initial 
estimate of α  and run until convergence occurs. 
Solution of the optimization problem (7) can be 
derived in a similar manner: 
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2.4 Dictionary selection 
Selection of the proper dictionary Φ is an 
important part of this method. This dictionary 
should sparsely represent the magnitude of the 
complex-valued image, and so it depends on the 
application and the type of objects or features of 
interest in our image. 
 
2.4.1 Overcomplete shape-based dictionaries 
If our scene can be represented as combination of 
some limited simple shapes such as points, lines, 
squares, and so on, then an efficient dictionary can 
be constructed by gathering all possible positions 
of these fundamental elements in an overcomplete 
dictionary. The use of such an overcomplete 
dictionary is demonstrated in Section 3 on some 
synthetic scenes. 
 It is also possible to use more general, possibly  
multiresolution dictionaries that are well known 
for sparse representation of two dimensional 
signals (images). We present some possible 
choices below: 
 
2.4.2 Biorthogonal wavelet transforms  
Previous works have established that wavelet 
transform can sparsely represent natural scene 
images [6,7]. The application of wavelet 
transforms to image compression leads to 
impressive results over Fourier-based 
representations such as the discrete cosine 
transform (DCT). However, wavelet transform 
offers only a fixed number of directional elements 
independent of scale. 
 
2.4.3 Curvelet Transform  
Curvelet transform enables directional analysis of 
an image in different scales. This dictionary is 
well suited for enhancing features like edges and 
smooth curves in an image. 
 



2.4.4 Discrete cosine transform (DCT) 
Both of above general dictionaries are suitable for 
piecewise smooth content images, however for 
sparse representation of periodic patterns, as in 
some textures, they may not be good choices and 
other dictionaries such as DCT may be preferred. 
DCT is known to be well suited for first order 
Markov stationary signals [6]. For nonstationary 
signals it could be applied in blocks. 
There exist many other popular dictionaries, 
which we don't mention here for the sake of 
brevity. We should just point out that any such 
dictionary could be used in our framework, if it is 
appropriate for the particular application of 
interest. 
 

3. EXPERIMENTAL RESULTS 
We present here our results of experiments with 
various synthetic images to demonstrate different 
capabilities of this new method. In our 
experiments we have selected a spotlight-mode 
synthetic aperture radar (SAR) modality as our 
complex-valued sensing system. In all presented 
results we have used parameters of an X-band 
SAR of 10 GHz center frequency and 0.375 m 
range and azimuth resolution, except for results 
that show superresolution capability, in which 
resolution values are doubled so that system 
resolution is a multiple of image pixel size and we 
can put multiple scatterers in one resolution cell 
and observe the results. All images consist of 
32×32 complex-valued pixels. To be able to 
compare the results, we also present results of 
conventional reconstruction as well as 
nonquadratic regularization method [3] that have 
recently been developed for point and region 
enhanced SAR image reconstruction.  
First we show an important capability of this 
method that is superresolution, which means that 
it can reconstruct image details under bandwidth 
limitations. To show this propoerty, we apply our 
method to a synthetic scene composed of eight 
point scatterers with unit reflectivity magnitude 
and random (uniform) uncorrelated phase. We set 
our system parameters so that system resolution is 
two times of image pixel size, so we seek 
superresolution reconstructions. Fig. 1 (b) shows 

conventional spotlight mode SAR reconstruction 
using polar format algorithm [8] that cannot 
resolve closely-spaced scatterers and suffers from 
high sidelobes.  
Fig. 1(c) shows the result of nonquadratic 
regularization reconstruction method with 
penalties for both point and region feature 
enhancement. Note that this method also has 
superresolution capability when we just use point 
enhancement penalty, however in this case we 
allow the possibility of both point and region-
based features in the scene, e.g. due to lack of 
more specific prior knowledge  on the scene. As a 
result, this technique fails to reconstruct the scene 
accurately.  
Fig. 1(d) shows the result of the sparse 
representation method we propose in this paper, 
with parameters p=0.7, λ=3, q=0.3, and λ′=0.07. 
We have used the conventional reconstruction as 
the initial estimate of f. The dictionary used here 
is the same as described in the next experiment. 
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             Fig. 1.  Superresolving a scene with isolated point 
 scatterers. (a) True scene  

              (b) Conventional reconstruction (c) Point-region- 
              enhanced nonquadratic regularization   
              (d) Sparse representation-based reconstruction. 
 

In order to demonstrate the capabilities of this 
new method and contrast it with existing methods, 
we now consider a more general scene composed 



of both point targets and distributed targets, 
shown in Fig. 2(a). Parameters used in this result 
are p=0.9, λ=3, q=1, and λ′=0.2.  
Here we use an overcomplete shape-based 
dictionary. In  particular our dictionary consists of 
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Fig. 2.  Scene composed of point and distributed targets. 
(a) True scene   (b) Conventional reconstruction  
(c) Point-region-enhanced nonquadratic regularization  
(d) Sparse representation-based reconstruction. 
 
points as well as squares of various sizes at every 
possible location in the scene. We note that such a 
dictionary can be used to sparsely represent many 
interesting scenes. Superiority of sparse 
representation method over others can be clearly 
observed in this figure. 
 
To be more realistic, in the next experiment we 
use a synthetic image, constructed from the MIT 
Lincoln Laboratory Advanced Detection 
Technology Sensor (ADTS) data set [9] by 
segmentation techniques, as shown in Fig. 3(a). In 
these type real scenes, we may not have enough 
prior information for using overcomplete shape-
based dictionaries and/or we may need more 
general dictionaries that can sparsely represent 
many probable different scenes. Here we use the 
wavelet transform which is a multiresolution 
dictionary and can sparsely represent many 
natural scenes containing information at multiple 

spatial scales. Parameters used in this experiment 
are p=0.6, λ=17, q=1, and λ ′=10. We have used 
Haar wavelet as our dictionary in this result. 
Again we see near perfect reconstruction with our 
sparse signal representation-based method. 
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Fig. 3. Synthetic ADTS phantom image reconstruction  
(a) Synthetic scene   (b) Conventional reconstruction  
(c) Point-region-enhanced nonquadratic regularization  
(d) Sparse representation-based reconstruction. 

 
4. CONCLUSIONS 

In this paper we have presented a new method for 
complex-valued image reconstruction based on 
sparse signal representation, which brings many 
capabilities of sparse signal representation to the 
content of complex-valued imaging systems. We 
have developed a mathematical framework for 
this purpose and shown its effectiveness on 
various synthetic scenes.  
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