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Abstract: We propose a sparse sSgnal
representation-based method for complex-
valued imaging. Many coherent imaging
systems such as synthetic aperture radar (SAR)
have an inherent random phase, complex-
valued nature. On the other hand sparse signal
representation, which  has mostly been
exploited in real-valued problems, has many
capabilities such as superresolution and feature
enhancement for various reconstruction and
recognition  tasks. For complex-valued
problems, the key challenge is how to choose
the dictionary and the representation scheme
for effective sparse representation. We propose
a mathematical framework and an associated
optimization algorithm for a sparse sgnal
representation-based imaging method that can
deal with these issues. Simulation results show
that this method offers improved results
compared to exiging powerful imaging
techniques.

Index Terms: sparse signal representation, complex-
vadued imaging, image reconstruction, coherent
imaging, synthetic aperture radar.

1. INTRODUCTION

This paper presents a new image reconstruction
technique based on spase sgnd representation
that can be used for complex-vdued imaging
sydems. Many coherent imaging systems such as
gynthetic  aperture  radar  (SAR),  holography,
magnetic resonance imaging, laser imaging, sonar
imegng, and 0 on, have an inherent complex-
vaued nature [1]. Also, phase of the imaged fidd
might be random and spatidly uncorrdaed in
some gpplications such as SAR [2].

In these systems, draightforward application of
image  recondruction  techniques  developed

origindly  for incoherent red-vdued imaging
sysems will not produce high qudity images. One
of these techniques that have moslly been
exploited in red-vdued problems is sparse sgnd
representation, which has many capabilities such
as superesolution and feature erhancement for
various recongtruction and recogritiontasks.

Recent work on feature-enhanced complex-vaued
imeging [3] has ties to sparse representation. In
paticular, one interpretation of this technique
involves sparse representation with some  fixed,
specific dictionaries. Our work generdizes that
work to sparse representation with  arbitrary
overcomplete dictionaries.

The key chdlenge for exploiting sparse
representation in complex-vaued problems is how
to choose the dictionary and the representation
scheme for effective sparse representation.

In the next sections we present a mathemdticd
framework that deds with these issues. As
presented in Section 2, we have used a generd
linear observation modd, and applied sparse
representation on the magnitude of the complex-
vaued scattered fidd. This then turns the image
recondruction problem into a joint optimization
problem over the magnitude and the phase of the
underlying fidd reflectivities We present an
iterdtive dgorithm to solve this joint optimization
problem. In the end of Section 2, a discussion on
dictionary sdection is presented. In Section 3 our
experimenta results are presented to show the
effectiveness of this new method.

2. SPARSE REPRESENTATION FOR
COMPLEX-VALUED PROBLEMS
This section contains a description of our sparse
representation  technique for  complex-vaued
problems. We sat with describing our generd



observation modd. Next we present our sparse
representation scheme and the  reated
optimization problem Then we present our
dgorithm to solve this optimization problem.
Fnally a discusson about proper dictionary
sdection ispresented.

2.1 Observation model
We use the following generd observation modd:

y=Tf+n (1)

where y is the sampled measured data f is the
wknown scene or object reflectivity imege, and n
is noise; dl are complex and column-reordered as
vectors. T represents a conmplex-vaued discrete
obsarvation kernd. T could be, for example, a
band-limited Fourier transform operator matrix, or
a prgection operator matrix as in SAR or other

tomographic imeging system [3,4].

2.2 Spar serepresentation scheme

In many gpplications of imaging sysens
introduced in Section 1, such as SAR, we could
have a sparse representation in a proper doman
for magnitude of complex scattered fidd (imege).

This means that we can write:
|f| =Fa 2
Where F is an appropriate dictionary for our

gpplication, and a is the new doman coefficient
vector with which the magnitude of scattered fidd
can be sparsdly represented.

We can wiite f =P|f| , where P=diag{e”'} ,
and fi's are the unknown phases of each image
vector dement fi. So we can rewrite our
observation mode as

y=T f+n=TP|f[+n=TPFa+n (3

If we knew P (the unknown image vector
dements phases), uing a sparsity regulaization
method such as an extenson of bags pursuit [5] as
folows, we could find an edimae of a and
hence of the image itdf:

d=arg min ||y-TPFa||§+I ||a||z (4)

where ||>H{p denotes the ¢ -norm and | is a scalar

parameter. However we dont know the image
phases and hence P. We use the following
approach to overcome this problem:

a. FArg we dat with an initid esimate for f that
could be a conventional recongruction of f, so we
can dso produce an initid edimate of the image
phase matrix P. In this way, we can solve the
optimizetion problem in (4 and find a new
edimatefora.

b. Now we have a new estimate of a and so |f|

and we should now find a new etimate for P. We
can rewrite our observation modd as:

y=TP|f|[+n=TBb +n (5)

where B:diag{|fi|} and b is vector of unknown

phases, hence a vector containing the diagond
dements of P. We can find an edimae of b as
folows

b =arg min ly- TBb||§ subjectto |b|=1," i

(6)
We replace the condrained optimization problem
in (6), with the following uncongtrained problem
that incorporates a pendty term on the magnitudes

of b,'s:

“ N
b=arg min |y- TBb+ @ (o[- 1
i=1

=arg min ly- TBb;+ 4p[;; - 20 b} (7)
Solving this optimization problem will give us a
new etimae for the phase vector b and so the
matrix P =diag{b} .



c. We are now back to step (a) and we repeat the
above deps until the dgorithm converges to its
find solution.

2.3 Solving the optimization problems
If we cdl the cog function of optimization
proolem (4) J@) ad use the gmooth

M
approximation  [a |° » 3 (lp;|" +e)™*, where e is
i=1
a gmdl postive  congat, to  avoid
nondifferenticbility problens of the /¢ -norm

around the origin, then the gradient of J(a) will
be:

NJ@)=H@)a- 2(TPF)"y (8)
where
H@)=2(TPF)" (TPF)+I pL(a)
3 1 #
L @) =diagj ———— 9
IR S
Usng the quas-Newton iterative  method
developed in [3], which is wel suited for this kind
of nonquadratic optimization problems,  with
agoproximate HessanH(a) :
a0 - g[HE™ )" NIE") (10

And after subdtituting (8) in (10) and rearranging
we obtain the iterative adgorithm:

A~

HE@™)a™ =@1-g) HE™) + 2g(TPF)"y
(11)
The algorithm can be dated from an initid
edimate of a and run until convergence occurs.
Solution of the optimization problem (7) can be
derived in agmilar manner:

H (KB(n)) 6(n+1) :(1_ g) H qﬁ(n)) + 29 (T B)H y
(12)
where

H&b)=2(T B)" (TB)+2I §L,(b)- 21 GL,(b)
(13)

N

Ll(b):diag}%ij
f (b +e)""h
fb|"+e) "
2.4 Dictionary selection
Sdection of the proper dictionay F is an

important part of this method. This dictionary
should sparsely represent the megnitude of the
complex-vaued image, and so it depends on the
gpplication and the type of objects or features of
interest in our image.

2.4.1 Overcomplete shape-based dictionaries

If our scene can be represented as combination d
some limited smple shgpes such as paints, lines,
sguares, and so on, then an efficient dictionary can
be congructed by gathering dl possble postions
of these fundamentd dements in an overcomplete
dictionary. The use of such an overcomplete
dictionary is demondrated in Section 3 on some
synthetic scenes.

It is dso possble to use more generd, possbly
multiresolution  dictionaries that are wel known

for sparse representation of two dimensond
dgnds (images. We present some possible
choicesbelow:

2.4.2 Biorthogonal wavelet transforms
Previous works havwe edsablished that wavelet
transform can sparsely represent natura scene

images [6,7]. The agpplication of waveet
tranforms to image compresson leads to
impressive results over Fourier-based

representations such as the discrete  cosne
tranform (DCT). However, waveet transform
offers only a fixed number of directiond eements
independent of scale.

2.4.3 Curvelet Transform
Curvde trandform endbles directiond andyss of
an image in diffeeent scdes This dictionary is
well suited for enhancing features like edges and
smooth curvesin an image.



2.4.4 Discrete cosine transform (DCT)

Both of above genera dictionaries are suitable for
piecewise smooth content images, however for
sparse representation of periodic patterns, as in
some textures, they may not be good choices and
other dictionaries such as DCT may be preferred.
DCT is known to be wdl suited for first order
Makov daionay sgnds [6]. For nongationary
sgnasit could be applied in blocks.

Thee exis many other popular dictionaries,
which we dont mention here for the ske of
brevity. We should just point out that any such
dictionary could be used in our framework, if it is
aopropriste  for the paticular application of
interest.

3.EXPERIMENTAL RESULTS

We present here our results of experiments with
vaious synthetic images to demondrate different
cgpabiliies of this new mehod. In our
experiments we have sdected a spotlight-mode
gynthetic aperture radar (SAR) moddity as our
complex-valued sensng sysem. In al presented
results we have used parameters of an X-band
SAR of 10 GHz center frequency and 0.375 m
range and azimuth resolution, except for results
that show superesolution capability, in  which
reolution vaues ae doubled s that system
resolution is a multiple of image pixe sze and we
can put multiple scaterers in one resolution cdl
and observe the results All images condst of
32° 32 complex-vdued pixes. To be adle to
compare the results, we aso present results of
conventiond recondruction as  well as
nonquadratic regularization method [3] that have
recently been developed for point and region
enhanced SAR image recongtruction.

Firda we show an important cgpability of this
method that is superresolution, which means that
it can remondruct image details under bandwidth
limitations. To show this propoerty, we goply our
method to a synthetic scene composed of eight
point scatterers with unit reflectivity magnitude
and random (uniform) uncorrelated phase. We set
our sysem parameters so that sysem resolution is
two times of imege pixd dze, sO we seek
superresolution  recongtructions. Fig. 1 (b) shows

conventional spotlight mode SAR  recongruction
usng polar forma dgorithm [8] that cannot
resolve closdy-spaced scatterers and suffers from

high sdelobes.

Hg. 1(c) shows the rewult of nonquadratic
regularization recongtruction method  with
pendties for both point and region feature

enhancement. Note that this method aso has
superresolution  capability when we just use point
enhancement pendty, however in this case we
dlow the posshility of both point and region
based features in the scene, eg. due to lack of
more specific prior knowledge on the scene. As a
result, this technique fails to recongtruct the scene
accurately.

Fig. 1(d) shows the resit of the sparse
representation method we propose in this paper,
with parameters p=0.7, | =3, ¢=0.3, and | (=0.07.
We have used the conventiond recongdruction as
the initid estimate of f. The dictionary used here
is the same as described in the next experiment.
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Fig. 1. Superresolving a scene with isolated point
scatterers. () True scene

(b) Conventional reconstruction (c) Point-region-
enhanced nonquadratic regularization

(d) Sparserepresentation-based reconstruction.

In order to demondrate the capabilities of this
new method and contrast it with existing methods,
we now consder a more generd scene composed



of both point targets and didributed targets,
shown in Fig. 2(a). Parameters used in this result
arep=0.9,1 =3,0=1, and | (=0.2.

Here we use an overcomplete shape-based
dictionary. In particular our dictionary conggts of
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Fig. 2. Scene composed of point and distributed targets.
(a) True scene (b) Conventional reconstruction

(c) Point-region-enhanced nonquadratic regularization
(d) Sparse representation-based reconstruction.

points as wel as squares of various Szes a every
possible location in the scene. We note that such a
dictionary can be used to sparsely represent many
interesting  scenes. Superiority of  parse
representation method over others can be clearly
observed inthisfigure

To be more redidic, in the next experiment we
ue a gynthetic image, condructed from the MIT
Lincoln Laboratory  Advanced Detection
Technology Sensor (ADTS) daa st [9 by
segmentation techniques, as shown in Fg. 3(@). In
these type real scenes, we may not have enough
prior information for usng overcomplete shape
based dictionaries andlor we may need more
gererd dictionaries that can sparsaly represent
many probable different scenes. Here we use the
wavdet trandorm which is a multiresolution
dictionasy and can pasey represent many
natural scenes containing information a multiple

goatid scales. Parameters used in this experiment
are p=0.6, | =17, g=1, and | (=10. We have used
Haar wavelet as our dictionary in this result.
Agan we see near perfect recongruction with our
Sparse signal representationtbased method.

10 10
=
20 20 g
|
30 30 -
10 20 30 10 20 30
(@ (b)
10 10
20 20
30 30
10 20 30 10 20 30
(c) (d)

Fg. 3. Synthetic ADTS phantom image reconstruction
(a) Synthetic scene (b) Conventiona reconstruction

(c) Poaint-region-enhanced nonguadratic regularization
(d) Sparse representation-based reconstruction.

4. CONCLUSIONS

In this paper we have presented a new method for
complex-valued image recondruction based on
goase sgnd representation, which brings many
cagpabilities of sparse sgnd representation to the
content of complex-vdued imaging systems. We
have developed a mahematicd framework for
this purpose and shown its effectiveness on
various synthetic scenes.
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