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The success and accuracy of remote sensing with Radar can be predicted from

reasonably limited samples of Radar signals.
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ABSTRACT | Remote sensing with radar is typically an ill-posed

linear inverse problem: a scene is to be inferred from limited

measurements of scattered electric fields. Parsimonious models

provide a compressed representation of the unknown scene and

offer a means for regularizing the inversion task. The emerging

field of compressed sensing combines nonlinear reconstruction

algorithms and pseudorandom linear measurements to provide

reconstruction guarantees for sparse solutions to linear inverse

problems. This paper surveys the use of sparse reconstruction

algorithms and randomized measurement strategies in radar

processing. Although the two themes have a long history in radar

literature, the accessible framework provided by compressed

sensing illuminates the impact of joining these themes. Potential

future directions are conjectured both for extension of theory

motivated by practice and for modification of practice based on

theoretical insights.
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radar ambiguity function; random arrays; sparse reconstruc-
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I . INTRODUCTION

Radar imaging is an inverse scattering problem whereby a

spatial map of reflectivity is reconstructed from measure-

ments of scattered electric fields. Imaging techniques to

exploit parsimony in sparse or compressible scenes have
been proposed throughout the 60-year development of

radar processing for suppression of sidelobes and super-

resolution of scattering locations. Many radar processing

tasks can be posed as finding sparse solutions to under-

determined linear equationsVa topic addressed by the

emerging field of compressed sensing (CS).

The primary interest in compressed sensing research is

the inverse problem of recovering a signal f 2 CN from
noisy linear measurements y ¼ Af þ n 2 CM [1], [2]. The

focus is on underdetermined problems where the forward

operator A 2 CM�N has unit norm columns and forms an

incomplete basis with M� N. The resulting ill-posed

inverse problem is regularized assuming 1) that the

unknown signal f is K-sparse (i.e., has at most K nonzero

entries) or is compressible with K significant coefficients

and 2) the noise process is bounded by knk2 G �. CS theory
provides strong results which guarantee stable solution of

the sparse signal recovery problem for a class of forward

operators A that satisfies certain properties. One such

class of operators is defined by bounding the singular

values of the submatrices of A. Specifically, the restricted
isometry constant (RIC) �K for forward operator A is the

smallest � 2 ð0; 1Þ such that

ð1� �KÞkxk2
2 � kAxk2

2 � ð1þ �KÞkxk2
2 (1)

holds for all vectors x with at most K nonzero entries.

One of the key contributions of CS is that stable

recovery of compressible, noisy signals can be achieved
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through the solution of the computationally tractable ‘1

regularized inverse problem

min
f
kfk1 subject to kAf � yk2

2 � �2: (2)

At present, the least conservative available bound on the
reconstruction performance [3] guarantees that if

�2K G
ffiffiffi
2
p
� 1 and knk2 � �, then the solution f̂ to (2)

will satisfy

kf � � f̂k2 � C0K
�1
2 kf � � f Kk1 þ C1� (3)

where f K is the best K-sparse approximation to the true

solution f �, C0 and C1 are small constants, and k � kp

represents the ‘p norm. The optimization in (2) can be

viewed as the convex relaxation [4] of the NP-hard task of

finding the sparsest feasible solution

min
f
kfk0 subject to kAf � yk2

2 � � (4)

where k � k0 is the ‘0 norm, i.e., the number of nonzero

entries in the vector. In radar and other array processing

applications, imperfect calibration implies that precise

knowledge of A is not available. Recent work [5] has shown
that a bounded unknown additive disturbance to the

matrix A still permits a RIC-based guarantee on recon-

struction performance that reduces to the result in [3] as

the disturbance bound approaches zero.

For large M, estimating and testing the RIC is imprac-

tical. A tractable yet conservative bound on the RIC can be

obtained through the mutual coherence of the columns of A

defined as

�ðAÞ ¼ max
i 6¼j

aH
i aj

�� ��: (5)

Mutual coherence can be used to guarantee stable

inversion through ‘1 recovery (2) [6]. Furthermore, the

RIC is conservatively bounded by �K � ðK � 1Þ�ð~A Þ.
We note that this mutual coherence notion is quite

different from the coherency concept in radar systems.

Typical radar systems process returns from multiple pulses
to estimate location and velocity information of the targets

in the scene. Coherent radar systems maintain a high level

of phase coherency from pulse to pulse, enabling joint

processing of the phase information from a collection of

pulses spanning the coherent processing interval (CPI). In

contrast, noncoherent radar systems encounter a random

phase error from pulse to pulse, limiting the receive

processing to the magnitude of the returns. To minimize
the confusion between the two notions of coherency in CS

and radar, we use the term phase coherency for the latter.

Compressed sensing combines three elements: linear

models with low coherence among regressors, low-

complexity nonlinear reconstruction algorithms, and,

most significantly, sufficient conditions for provably stable

reconstruction. The performance guarantees have validat-

ed the long-standing use of various sparse reconstruction
algorithms, have spurred resurgent use of pseduorandom

waveforms or radar apertures for low coherence, and have

illuminated the utility in combining these two separate

practices.

In this paper, we survey the roles of sparsity and CS

elements in existing radar imaging practice, linking

coherence and algorithms to analogous concepts in radar.

Further, we offer opinions on the potential impact of CS
insights on future directions of radar imaging. In Section II,

we sketch radar imaging as a linear inverse problem.

Section III gives an overview of the use of sparse recon-

struction algorithms, coherence, and spectrum estimation

in radar imaging. Example applications of sparsity and CS

concepts in radar are presented as vignettes in Section IV.

Section V concludes with a discussion of conjectured

directions of future inquiry.

II . RADAR IMAGING

Radar signal processing encompasses a wide diversity of

applications, sensing objectives, processing techniques,

propagation media, and sensor configurations, e.g., [7]–

[11]. This section seeks merely to provide an introduction

to some of the key ideas in radar imaging to facilitate the
reader’s appreciation of the CS radar vignettes provided in

Section IV. For simplicity, this paper will model reflected

radar signals using free space propagation, narrow

bandwidths, relatively slow targets, far-field plane waves,

and a linear, i.e., single bounce (Born) scattering approx-

imation. This treatment is standard and follows naturally

from a careful analysis of the scalar wave equation; see,

e.g., [12]. The resulting linear model can be adapted quite
easily to the CS framework, as shown below.

A. Monostatic Radar
We first consider the case of a radar with narrow

fractional bandwidth and monostatic operation, i.e.,

colocated transmitter and receiver antennas. A complex

baseband pulse uðtÞ is modulated in quadrature by a carrier

with frequency !c to yield the transmit waveform
pðtÞ ¼ RefuðtÞej!ctg, where Refg denotes the real oper-

ator. The echo of the transmitted pulse waveform encodes

backscatter energy from the illuminated scene. Assume the

illuminated scene consists of scatterers at range r with

radial velocity v. We can parameterize the complex scene

reflectivity in terms of delay and Doppler as fð�; !Þ, where

�ðrÞ ¼ 2r=c is the round-trip propagation time and
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!ðvÞ ¼ 2wcv=c is the Doppler shift. The total received
signal backscattered from the scene is then given by

yðtÞ ¼ Re

�ZZ
f �ðrÞ; !ðvÞð Þu t� �ðrÞð Þ

� ej wc�!ðvÞð Þ t��ðrÞð Þ dr dv

�
þ nðtÞ (6)

where nðtÞ is assumed to be white Gaussian noise arising

from thermal noise in the transmitter and receiver hard-

ware. Upon receive, quadrature demodulation yields the

complex baseband signal

yBðtÞ ¼
ZZ

fð�; !Þuðt� �Þe�j!t d� d!þ nBðtÞ (7)

where the constant phase terms have been absorbed into

the reflectivity and nBðtÞ represents the circular white

complex Gaussian baseband noise. The basic radar

problem is to estimate the reflectivity fð�; !Þ of the scat-
terers in the scene. The likelihood ratio test statistic for the

existence of a single target with delay � 0 and Doppler

frequency !0 is the matched filter output

�ð� 0; !0Þ ¼
Z

yBðtÞu�ðt� � 0Þej!0t dt

¼
ZZ

fð�; !ÞAð� � � 0; !� !0Þ d� d!

þ
Z

nBðtÞu�ðt� � 0Þej!0t dt (8)

where the radar ambiguity function Að�; !Þ is given by

Að�; !Þ ¼
R

uðtÞu�ðt� �Þej!tdt. Thus, the output of the

matched filter is the convolution of the reflectivity fð�; !Þ
with the radar ambiguity function Að�; !Þ, plus a filtered
copy of the baseband noise. The shape of the ambiguity

function can be adjusted by varying the pulse waveform

uðtÞ. However, shaping of the ambiguity function is subject

to a total volume constraint

ZZ
Að�; !Þj j2 d� d! ¼ uðtÞk k2

2: (9)

Therefore, the matched filter response cannot resolve

scatterers perfectly in delay and Doppler simultaneously,

and an ambiguity function with a sharper central peak will

necessarily have higher sidelobes to satisfy this constraint.

This model can be easily adapted for use with the CS

framework. If we discretize the scene reflectivity function

f over range and Doppler on a grid of points f�m; !mg to
produce the vector f and sample the received baseband

signal yB at times ftmg to obtain y , we obtain the linear

system of equations

y ¼ Af þ n: (10)

Likewise, the sampled matched filter outputs can be

written as

� ¼ AHy : (11)

Each column ai of A thus represents the received waveform

for a scatterer with given Doppler and range, and all

columns share the same 2-norm, under the far-field
assumption. The coherence between the columns of the

forward operator A is prescribed by the ambiguity function

jaH
i ajj ¼ jAð�i � �j; !i � !jÞj. The columns of A comprise

a dictionary for representing y , and the total volume

constraint given in (9) constrains the mutual coherence of

this dictionary.

B. Tomographic Perspective for Imaging
Imaging radars use antenna platform motion to in-

terrogate a scene with pulses from a diverse set of angles to

reveal the spatial distribution of the scatterers. If phase

coherency is maintained at the receiver from pulse to

pulse, then this motion effectively creates a larger aperture

for processing, hence the common term synthetic aperture

radar (SAR). We consider a stationary scene with spatial
reflectivity function fðrÞ parameterized by the spatial lo-

cation r, whose origin is fixed at scene center, and inter-

rogated with pulses transmitted and received at locations

fpmg. Note that the Doppler is assumed to be zero for all

targets, and the variable r maps into a delay � that depends

on the position of the transmitter at each pulse.

For sufficiently short pulse durations, the platform

motion during a pulse is negligible, owing to the high
speed of electromagnetic propagation. As a result, radar

signals are typically processed under the so called Bstop-

and-hop[ approximation [8], in which the platform and all

targets are assumed to be stationary during the transmis-

sion and reception of a given pulse. Reflector position is

encoded in the phase shifts between successive received

pulses; hence the importance of phase coherency in

modern radars. In this light, the data collected by a SAR
are conceptually the same as data collected in tomography

applications, an algorithmically fruitful connection that

was popularized in the radar community by [13].

High range resolution is achieved by high-bandwidth

pulses with good autocorrelation properties. The linear FM

chirp pðtÞ ¼ RefwðtÞejðwctþ�t2Þg, where wðtÞ is a rectangu-

lar time window with pulse length of �c, is by far the most
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common choice, owing to simplicity in implementation
and a constant modulus well suited to power amplifiers.

The received echo from pulse m is given by

yðt;mÞ ¼ Re

Z
fðrÞp t� 2kr � pmk=c

� ��
dr

� �
þnðtÞ: (12)

Upon receive, the chirp signal is typically deconvolved

from the received echo signal using a deramp (or
Bdechirp[) process by mixing the signal with the

transmitted chirp and sampling at a rate determined by

the scene size rather than the pulse bandwidth [10]. It can

be shown that the output of the deramp processing re-

presents samples of the Fourier transform of the Radon

projection Ppm
of the scene reflectivity orthogonal to the

vector pm for kpm � rk � krk, i.e., under a far-field

assumption. Because Pð!ÞP�ð!Þ is nearly constant across
the passband B ¼ ð!c � ��c; !þ ��cÞ, the samples are

equalized across frequency

yDð!;mÞ 	 F Ppm
fðrÞ

� 	
; ! 2 B: (13)

Finally, the projection-slice theorem relates the re-

ceived signal to the samples of the spatial Fourier trans-

form FðkÞ, where k is the spatial frequency of the

reflectivity function fðrÞ

yDð!;mÞ ¼ F
2!

c

pm

kpmk


 �
; ! 2 B: (14)

Under the far-field assumption, this model for the received

data can be easily extended to the bistatic case, i.e., where

the transmitter and receiver are not colocated. In this case,

for simplicity, we redefine pm to be the bistatic bisector

between the transmitter and receiver. Let �m be the bi-

static angle between the two platforms for pulse m. Then,

the collected data can be related to the Fourier transform

of the reflectivity by [14], [15]

yDð!;mÞ ¼ F
2!

c
cos

�m

2


 �
pm

kpmk


 �
; ! 2 B: (15)

Discretizing the frequency !, the scene reflectivity f ,

the dechirped received signal y , and the noise n, we obtain

the linear system of equations

y ¼ Af þ n (16)

where y represents a concatenation of the dechirped data
from each pulse in the CPI, and f is a properly ordered

vector of the reflectivities for the entire scene. The vector

n represents a discretization of the baseband noise. Each

column of the matrix A represents the set of dechirped

samples across the complete CPI for a given point in the

discretized scene.

This model can easily account for arbitrary waveforms,

windowing, or alternative linear receiver processing;
likewise, the index m may be generalized to include data

from multiple transmitters and receivers. A more general

development of the forward operator is provided in [16].

The development in this section has sought to emphasize

that the forward operator A for imaging radars depends on

both the transmit waveforms and the collection geometry

given by the platform position vectors pm.

III . SPARSITY AND CS THEMES
IN RADAR

The concepts of sparse reconstruction algorithms and

mutual coherence are central themes in CS and have been

present in five decades of array processing literature. This

section presents a brief survey of these themes and their use

in radar imaging while also drawing connections between
the radar and CS literatures. Compressed sensing gives an

easily accessible framework that illuminates the power of

combining pseudorandomization (for low-coherence for-

ward models A) with sparse reconstruction algorithms.

A. Sparse Scenes
For high-resolution images at high frequencies, the

scattering response of an object can be well approximated
as a sum of responses from individual reflectors [17].

These scattering centers provide a concise, yet physically

relevant, description of the object. For example, an ap-

proximate physical optics model for a set of canonical

reflectors [18], [19] parameterizes responses as a function

of frequency, incident angle, receive angle, and polariza-

tion. Fitting the models to measured data is a nonlinear

regression task, with the accompanying challenges of com-
putational cost, model selection, and local minima in the

nonconvex optimization. For example, Fig. 1(a) and (b)

shows images of a vehicle observed by a 9.6 GHz airborne

radar at 45
 elevation and full 360
 azimuth orbits [20]. A

single polarization image from eight orbits is given in

Fig. 1(a), which displays the backprojection image AHy

formed by matched filtering to a point reflector at each

voxel location in a 1000 m3 cube. The eight passes provide
only a sparse sampling across less than 2
 elevation and

hence result in high sidelobes and aliasing in the back-

projection image. Fig. 1(b) displays a sparse image

formed by jointly processing copolarized images using

nonlinear least squares estimation [21]. Scattering is

parametrically modeled as the superposition of responses

from plates and dihedrals [19]. Icons depict the
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estimated model parameters for (three-dimensional) posi-

tion, orientation, length (azimuth response), and polari-

zation. For visualization, a faceted model of the actual

vehicle is superimposed in the figure. The apparent points
of reflection for the multipath contributions (even bounce

polarization is shown in red) are along the dihedral crease

formed by the intersecting planes of the asphalt surface

and vehicle side panel.

Similarly, wide-area low-resolution images with many

reflectors resident in each pixel are typically compressible

in a suitable basis. In Fig. 1(c), the urban scene imaged

using the MiniSAR system1 can be transform encoded with
20 : 1 compression and less than 2% squared error. Image

texture, especially shadow, can be critical for many infer-

ence problems; moreover, phase in the complex-valued

image can reveal diffraction and closely spaced reflectors

[22], [23]. Thus, radar images are compressible using

either parametric models of physical scattering behaviors

or transform coding.

B. Algorithms for Sparse Linear Regression
At least three classes of algorithms appear in both CS

performance guarantees and existing radar applications.
The algorithms may be viewed as attempts to exploit the

sparsity, or compressibility, of the scene reflectivity in

order to regularize an otherwise ill-posed linear inverse

problem. The first class uses ‘p-norm regularization; the

second class comprises fast greedy heuristics; and the third

class uses iteratively reweighted ‘2 minimizations to

approximate the ‘1 minimization. We briefly survey these

three approaches.
First, linear inversion and deconvolution with ‘p-

penalized least squares have a long history [24]–[26]. In

this class of approaches, parameters are found via the

optimization

f̂ ¼ arg min
f
kAf � yk2

2 þ 	kfk
p
p: (17)

For p � 1, (17) is equivalent to the dual formulation in (2)

f̂ ¼ arg min
f
kfkp

p subject to kAf � yk2
2 � �2

for appropriate choice of 	. The large class of imaging

methods adopting (17) may be interpreted as providing the

Bayesian maximum posterior probability (MAP) estimate

of f under a sparsity inducing prior [27]

pðf Þ / exp ��kfkp
p

n o
(18)

where 	 ¼ 2
2� and 
2 denotes the variance of the

assumed additive white Gaussian measurement noise. For

p ¼ 1, (17) is the convex relaxation of the minimum ‘0

problem; CS manuscripts have established sufficient con-

ditions on the level of sparsity, noncoherence of the re-

gressors, and number of measurements to ensure stable

reconstruction, e.g., [1], [2], [4], [6], and [28]. For ex-

tension to p G 1, see [29].

The p ¼ 1 regularization was advocated for radar imag-

ing in [30]. Applications to radar imaging for 0 G p � 1

and for a total variation norm on pixel magnitudes were
introduced in [31], with extension to passive radar for

multiple transmitters in [32]. The algorithm in [31] em-

ploys an approximate Hessian and uses conjugate gradients

with a Toeplitz embedding of the Gram matrix AHA; a

majorization-minimization approach [33] yields the same

iterative algorithm. Direct application of conjugate

gradients to (17) was presented in [34].

A second class of algorithms contains various greedy
approaches with low computational complexity. Greedy

algorithms in array processing date at least to a heuristic

iterative deconvolution algorithm known as CLEAN,

which was introduced in 1974 [35] and is equivalent to

matching pursuits [36]. Examples of subsequent variations

for radar include frequency-dependent basis functions

[30], [37] and a modified tree search [38]. Orthogonal1http://www.sandia.gov/.

Fig. 1. Radar images are compressible. (a) Matched filter three-dimensional image. (b) Nonlinear regression can yield a parsimonious

representation of reflectors. (c) Radar image collected using MiniSAR demonstrating the compressibility of radar scenes.
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matching pursuit (OMP) [39] typifies greedy approaches
and comes with a guarantee of stable recovery [40] for

suitably sparse f and A with suitably small mutual coher-

ence. OMP successively selects from the A matrix the

column an that is most highly correlated with the residual

y res ¼ y �
Xn�1

k¼1

fkak

and updates the amplitude parameters ffkgn
k¼1 via recursive

least squares. From the CS literature, a variant of ortho-

gonal matching pursuit CoSaMP that iteratively selects and
then prunes a group of coefficients [41], [42] provides

stronger performance guarantees for stable signal recov-

ery. Thus, CS links the greedy heuristics to the convex

relaxations and provides lower bounds on performance in

terms of RICs (or mutual coherence), sparsity, and error

norms.

Despite the performance guarantees established for

greedy algorithms, a recent study [43] of moderately sized
three-dimensional imaging (N � 108, M � 104) using

measured airborne data [20] showed marked improvement

of ‘1 over a greedy approach, OMP. Preliminary empirical

results in this vein suggest that the penalized least squares

approaches to solving sparse reconstruction problems may

provide superior reconstruction performance compared to

greedy approaches like CoSaMP and OMP for some classes

of radar imaging problems.
A third class of sparse reconstruction algorithms ap-

pearing in both radar imaging and CS is iteratively re-

weighted linear least squares (IRLS) [44], [45]. As with the

other algorithm classes, the IRLS approach has a long

history, e.g., [46]–[48]. In this approach, a sequence of

weighted ‘2 minimizations is used to solve the ‘1 mini-

mization [49], [50]Vand hence solve the ‘0 problem for

suitably sparse f and A with suitably small RIC. In a similar
vein, a sequence of weighted ‘1 minimizations may be used

to approximate the ‘0 minimization [49], [51]; although

this approach is, as yet, without a provable performance

guarantee, numerical experiments suggest convergence to

a sparse solution using fewer measurements and with

greater computational cost than IRLS.

C. Coherence and Randomization
Randomization emerges from CS theory to provide a

forward operator A with low RIC and low mutual coher-

ence. In radar imaging, A is the combined result of trans-
mit waveform and sensor geometry, and randomization

has been employed for both waveforms and geometry.

Synthetic aperture radar may be viewed as an array

processing task in which cross-range resolution is obtained

by forming a directional beam pattern with the phased

array of aperture locations; sidelobes appear due to corre-

lation among responses from different directions. Ran-

domization of array element locations has been studied as
a means of reducing sidelobes in sparsely populated arrays

[52]–[54]. A similar use of randomization for reduced

imaging sidelobes has appeared in magnetic resonance

tomographic imaging [55]. A strength of the compressed

sensing results is that coherence of a linear model,

characterized by a RIC or the mutual coherence, is linked

to the conservative performance guarantees for specific

inversion algorithms. This link is exploited, for example, in
[16] and [56] to design pseudorandom spatial sampling

patterns in multistatic radar to be used in conjunction with

an ‘1-regularized least squares imaging algorithm.

Not only has spatial sampling of apertures been ran-

domized but waveforms have, too, in Bnoise radar[ to

generate wide-band signals with nearly constant envelope

[57]–[59]. Likewise, jittering, or staggering, of pulse re-

petition intervals has been used to randomize radar wave-
forms [7]. However, only recently have low-coherence

properties been mated with ‘1-regularized or greedy re-

construction algorithms for sparse imaging; examples

include random binary waveforms for recovery of one-

dimensional range profiles [60], random phase waveforms

for multistatic images [16], frequency-hopped measure-

ments for ground penetrating radar images [61], and pas-

sive imaging using communications waveforms [62]. For
the special case of range/Doppler processing for monostatic

radar with a single pulse, the Alltop cubic-chirp sequence

has been employed [63] as a deterministic construction of a

low-coherence waveform; for prime length, the Alltop

sequence nearly achieves the Welch bound on coherence,

thus producing a nearly thumbtack ambiguity function with

narrow peak and widely dispersed sidelobes. In recent CS

literature, restricted isometry properties are established in
[64] for observation matrices that exhibit structured

statistical dependencies. We believe that present technol-

ogy and radar modes of operation favor digital waveform

generation as a means of pseudorandomization to achieve

both good RICs and efficient operation of power amplifiers.

Thus, the two themes of sparse reconstruction

algorithms and pseudorandomized data acquistion are long-

standing concepts in radar processing; however, com-
pressed sensing gives an easily accessible framework that

illuminates the power of purposefully combining these two

themes.

D. Spectrum Estimation
In Section III-B, we surveyed imaging algorithms ap-

pearing in both CS literature and radar applications. In

addition to these algorithms, adaptive filter bank and sub-
space methods from spectrum estimation [65], [66] have

been widely used in radar imaging to exploit sparsity.

The inner products computed in (11) may be inter-

preted as a bank of matched filters. Adaptive filter weights

have been proposed as an apodization method to reduce

speckle and sidelobes [67], [68]. For example, in [68],

the filter weights at each image pixel are computed to
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minimize the least squares difference between the filtered
data and an ideal point reflector, with a linear constraint of

unity gain. Several similar adaptive filter banks are given in

an extensive survey [69]. The algorithms adopt quadratic

costs, therefore requiring estimates of data covariance

matrices and typically using unweighted Fourier transform

images as an intermediate step.

Subspace methods are applicable to radar imaging via a

point-scattering assumption. In (14), the Fourier samples
from a sparse scene of K point reflectors are sums of K
complex exponentials. Subspace methods [69]–[72] as-

sume rectangular Fourier sampling and exploit the

property that complex exponentials are the homogeneous

solutions to linear constant-coefficient difference equa-

tions. Computation entails singular-value decompositions

and order-K polynomial rooting. The subspace methods

can achieve the Cramèr–Rao lower bound on location
error variance for the sum-of-reflectors model with suffi-

ciently high signal-to-noise ratio [73].

Thus, spectrum estimation approaches directly exploit

sparsity via a nonlinear parametric estimation approach,

whereas the CS framework samples the unknown param-

eters to arrive at a sparse linear regression task. However,

many factors limit the utility of spectrum estimation

algorithms for radar imaging: the assumptions of uniform
sampling and planar wavefronts, high levels of correlated

clutter, order selection, and computational complexity.

IV. EXAMPLE APPLICATIONS

We briefly present example radar processing problems and

results obtained using sparsity-driven reconstruction
algorithms and CS concepts.

A. ‘p-Norms for Sparse Phase Coherent Imaging
Sparsity-driven reconstruction based on ‘p-norm con-

straints and their variants have been successfully used in

radar imaging. Here, we provide an overview of these

developments and display sample results. Generalizing

(17), we have

f̂ ¼ arg min
f
kAf � yk2

2 þ 	 Ljf jð Þk kp
p (19)

where p � 1. Two aspects of this modification are worth

noting. First, we have included the possibility of using an

operator L in the ‘p-norm constraint. When f is taken as

the complex-valued reflection coefficients of idealized
point reflectors, this operator allows one to impose sparsity

on features computed from the reflectivity magnitudes

rather than requiring the reflectivity to be sparse under

some linear transform. For example, [31] considers the

use of a discretized gradient operator for L, leading to a

sparsity constraint on the spatial derivatives of the

reflectivity magnitudes, indicating a preference for piece-

wise smooth fields. Such piecewise smoothness constraints
have a long history in real-valued image restoration and

reconstruction under various names, including edge-

preserving regularization [27] and total variation restora-

tion [74]. The second aspect is that we focus on features of

the reflectivity magnitudes jf j. This is based on the

observation that the phases of the complex-valued

reflectivities can be highly random and spatially uncorre-

lated. Hence, simplicity of the scene should be encoded
through the sparsity of some features of the magnitudes.

This nonlinearity makes the optimization problem for

radar imaging considerably more challenging than com-

monly used linear sparse representation problems. Effi-

cient algorithms matched to this problem structure have

been developed [31], [75]. These algorithms are based on

half-quadratic regularization [76] and can be viewed as

quasi-Newton methods with a specific Hessian update
scheme. Another interpretation is that the overall non-

quadratic problem is turned into a series of quadratic

problems, each efficiently solved using conjugate gradients.

The algorithms proposed in [31] and [75] have initially

been used on conventional SAR sensing scenarios involv-

ing narrow angular apertures and observations over a

contiguous band of frequencies. Sample results on the

MSTAR data2 are shown in Fig. 2(a) and (b) together with
the conventional reconstructions. The result in (a) is based

on imposing sparsity on the reflectivities directly, and

suggests the potential of improving the resolvability of

dominant scatterers. The result in (b) is based on imposing

sparsity on reflectivity gradients and demonstrates the

potential of suppressing artifacts such as speckle. Such

improvements have been partially quantified in terms of

feature extraction accuracy and object classification
performance [77].

Another way to formulate the problem in (19) is to

include a representation dictionary 8 explicitly in the

formulation: jf j ¼ 8A, where A denotes the representa-

tion coefficients and jf j admits a sparse representation in

8. Now, introducing the notation f ¼ %jf j, where % is a

diagonal matrix containing the unknown reflectivity

phases. The problem becomes [78]

Â; %̂ ¼ arg min
A;�
kA��A� yk2

2 þ 	kAk
p
p: (20)

Given the freedom of choosing the overcomplete dictionary

8, [78] demonstrates the use of a number of dictionaries in

radar imaging including wavelets, the combination of

spikes and edges, and dictionaries of various geometric

shapes matched to the expected scene structure.

The benefits provided by sparsity-driven imaging are
even greater in nonconventional sensing scenarios in

which the sensing aperture or the data are sparse or

2http://www.mbvlab.wpafb.af.mil/public/sdms/datasets/mstar/.
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limited in some sense. Examples include multistatic

passive sensing, data with frequency-band omissions, and

three-dimensional imaging. Sparsity-driven imaging based

on ‘p-norms has been extended to and applied in such

scenarios [21], [32], [79], [80]. Sample results are shown

in Fig. 2(c) and (d). The common observation is that

sparsity-driven images exhibit fewer artifacts than con-

ventional images.

B. Anisotropic Scattering
Isotropic point scattering is an idealized mathematical

abstraction that becomes untenable for wide-angle aper-

tures. Thus, wide-angle imaging invites reconstruction of

scene reflectivity as a function of both position and viewing

angle. Sparse reconstruction approaches have been offered
for wide-angle imaging and differ in the assumed structure

of scattering behavior versus azimuth angle.

The work in [79] and [80] assumes local isotropy and

no further structure; an aperture is split into subapertures

on which the isotropic scattering is assumed, and a sparse

reconstruction is computed on each subaperture. The

subaperture images are reported as either a sequence of

angle-indexed images or as a single composite. Alterna-
tively, angular dependence is assumed piece-wise constant

in [81], leading to a mixed-norm version of (19): a total

variation norm is applied in angle, and an ‘p norm is

applied in the spatial dimensions.

In [82], an overcomplete dictionary is adopted within a

sparse representation framework by assuming a sinc-like

angular response and approximating it with a constant

response over the main lobe. Thus, for each spatial location,
the dictionary contains contiguous angular responses of

prescribed extents and quantized center directions. For

computational tractability, a tree structure of the dictionary

is used to develop a fast greedy search. A sample result is

shown in Fig. 3. The algorithm produces an estimate of the

angular scattering function at each pixel of interest.

Fig. 3(c) and (d) shows the selected azimuth responses at

two particular pixels. The approach extends a generalized
likelihood ratio test for sinc-like angular responses [83] to

exploit the sparsity of bright reflectors.

C. Joint Sparsity
Many imaging radars use data from multiple channels;

these can be SAR data collected at multiple elevations,

multiple polarizations, multiple phase-centers, or multiple

frequency bands. As before, the convolution of the point

spread function gives rise to a linear model for each

Fig. 3. Joint imaging and angular anisotropy characterization through

sparse representations based on the backhoe data. (a) Illustration of

the scene. (b) 75 spatial locations of interest shaded according to

maximum magnitude. (c) and (d) Aspect-dependent scattering solution

for two example spatial locations. (Used with permission [82].)

Fig. 2. SAR imaging examples. (Left) Conventional imaging and

(right) ‘p-norm-based reconstruction. (a) MSTAR example with sparsity

imposed on reflection coefficients [31]. (b) MSTAR example

with sparsity imposed on reflectivity gradients [31].

(c) Passive radar imaging example [32]. (d) Backhoe data

(see https://www.sdms.afrl.af.mil/main.php) example for wide-angle

imaging aperture of 110
.
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channel. In addition, the channels carry common infor-
mation about the imaged scene. As an example, the

different channels can share common support of sparsity

or common edges of high contrast. In the special cases of

interferometric SAR (IFSAR) and polarimetric SAR,

precise relations between the channels can be imposed,

such as having identical magnitude scatterers in the

reconstructed images for the case of IFSAR, where the

phase encodes the height information about the detected
scatterers [10]. Sparse reconstruction techniques that

process the images independently may lead to poor

phase information between the channels [84]. In [85], a

joint reconstruction method was proposed where the

multiple channel ‘p-norm-based reconstruction is aug-

mented by constraint functions that relate the recon-

structed reflectivities. Specifically, for data collected

across M channels

f̂ ¼ arg min
f

XM

i¼1

kAif i � y ik
2
2 þ 	 Ljf ijð Þk kp

p;

such that
XM

i¼1

hijðf iÞ ¼ 0 for j ¼ 1; . . . N: (21)

The nonlinear constraints hijðf iÞ encode the common

information between the multiple channels. For example,
IFSAR applications require common magnitude constraints

for the reflectivity coefficients, resulting in N � 1 con-

straints of the form jf1j ¼ jf2j ¼ . . . ¼ jfNj. Alternatively,

for multiband frequency or polarimetric reconstructions,

the constraints can be relaxed, requiring only

hðjf1jÞ ¼ hðjf2jÞ ¼ . . . ¼ hðjfNjÞ, with a sigmoidal hð�Þ
constraining high amplitude reflectors to occupy the

same resolution cells across the images. The joint optimi-
zation problem in (21) can be converted into an equivalent

unconstrained problem through Lagrange multipliers [85].

The unconstrained problem can be solved efficiently using
a dual descent method, which alternates between descent

in the Lagrange multipliers and M independent optimi-

zation problems for each channel for a given set of

channel weights. Although prior work focused on the

multichannel enhancement of data, where the channels

represent data from separate sensors, joint sparsity ideas

could be applied to reconstruction of images at multiple

resolutions. This line of research has been considered in
recent work [86], [87].

A circular SAR (CSAR) data collection experiment

conducted by the Air Force Research Laboratory [20], [21]

features eight complete circular passes collected at an

altitude of 25 000 ft at nominal 45
 elevation angle using

an airborne fully polarimetric SAR sensor. To illustrate

the performance of the ‘p-norm regularized construction of

radar imagery, we divided the data into 72 nonoverlapping
windows of width � ¼ 5
 centered at �m 2 f0
; 5
;
. . . ; 355
g and used the entire 640 MHz bandwidth

centered at 9.6 GHz for the single VV polarization. For

returns from a stationary vehicle in the scene, Fig. 4(a)

shows the phase noncoherent sum of the traditional

Fourier-based images from a single pass. The Fourier-

based image was enhanced using the ‘p-norm-based opti-

mization problem given in (19). Fig. 4(b) and (c) shows
the results for p ¼ 1:0 and p ¼ 0:8, respectively. The

‘p-norm-based regularization can also be applied to

three-dimensional imagery if multiple elevation passes are

available [88]–[90]. Fig. 5(a) and (b) shows traditional and

sparsity-regularized reconstruction of the vehicle from

eight circular passes.

Alternatively, (2-D) images from these eight passes

could be jointly enhanced using joint sparsity constraints
by solving the constrained optimization problem in (21).

The resulting images share the same support but differ in

their phases. The sum magnitude over the eight passes is

given in Fig. 6 for independent and joint enhancement

techniques for p ¼ 1:0. We observe that joint processing

Fig. 4. SAR images of a vehicle from 360
 aperture. (a) Standard Fourier image, sparsity regularized reconstruction using (b) p ¼ 1:0

and (c) p ¼ 0:8.
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reduces clutter levels and provides better isolation of

target features.

D. UNB Moving Target Indication
In this example, we describe an approach to radar that

blends SAR and moving target indication (MTI) while
simultaneously eliminating the need for high bandwidth

waveforms. Specifically, a constellation of ultra-narrow-

band (UNB) sensors is used in a multistatic fashion to

estimate both the positions and velocities of moving

targets. A similar problem formulation was termed the

Btomography of moving targets[ in [91] and shown to be a

special case of more general imaging techniques in [12].

Here, we demonstrate a greedy sparse reconstruction
approach using CoSaMP; a similar formulation with

‘1-penalized least squares computation is given in [92].

A traditional wide-bandwidth monostatic SAR col-

lects data densely sampled on an annular region in

Fourier space characterized by (14). This densely sam-

pled data is suitable for analysis with continuous methods

and leads to familiar reconstruction techniques such as

filtered backprojection, omega-k [93], polar format, and
others [10].

In contrast, spatially distributed UNB sensors produce
a cloud of sparsely sampled and widely dispersed points in

Fourier space. Each transmitter emits a simple tone, which

produces a single Fourier space sample for each listening

receiver, with the Fourier locations governed by (15).

Irregular spacing of the sensors can further accentuate this

pseudorandom quality of the Fourier space measurement

locations. The transmitters can either be multiplexed in

time or use different transmit frequencies. In this way, a
small set of tone waveforms can be used to obtain a set of

pseudorandom projections of the scene’s reflectivity,

which are reasonably incoherent due to the geometric

diversity of the sensor constellation. An analogy can be

made to CS matrices that use random subsets of the

columns of Fourier matrices [28].

The stop-and-hop assumption can be applied to ignore

target motion during a single pulse. A sequence of such
pulses can be used to obtain a model in the form (16).

There are at most P
PS

k¼1 k measurements for P pulses and

S sensors. Each column of A will encode these measure-

ments for one assumed initial position and velocity pair,

corresponding to an element of f .

The stationary background, i.e., clutter, can be removed

either by subtracting background reference data or through

adaptive nulling techniques in the spirit of space-time
adaptive processing (STAP) [9], [94], [95]. Techniques to

combine STAP and SAR are on ongoing areas of research

[96]. Once the background has been removed, moving

targets are sparse in the velocity/position domain.

We simulated a two-dimensional example using a

constellation of 15 sensors placed along a 1 km radius ring.

The exact positions were slightly perturbed from a perfect

circle to promote reduced mutual coherence in the result-
ing dictionary. Monochromatic measurements at a fre-

quency of 100 MHz were simulated for a pulse repetition

frequency of 50 Hz. A square 2-D scene with an edge

length of 100 m was placed at the center of the sensor ring,

discretized into 1 m2 pixels. The velocity was discretized to

Fig. 6. Phase noncoherent sum of multichannel SAR images of a vehicle from eight passes with 360
 aperture.

(a) Independent enhancement and (b) joint enhancement.

Fig. 5. Three-dimensional SAR images of a vehicle from eight passes

with 360
 aperture. (a) Standard Fourier image and (b) sparsity

regularized reconstruction using p ¼ 0:8.
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include components in each dimension ranging from �35

to 35 m/s in 5.0 m/s steps. The resulting A matrix is 960 by

2 295 225 elements.

A collection of nine targets was simulated, each with
unit amplitude and a speed of either 10, 20, or 30 m/s. The

target configuration is shown in Fig. 7(a) with arrows

indicating the direction and magnitude of the target

velocities. All target positions and velocities were chosen

to lie off the reconstruction grid points. Additive white

Gaussian noise was also included to obtain an SNR of 25 dB.

CoSaMP was used to reconstruct the scene with

120 iterations and an assumed sparsity of 20, which is
more than twice the true value. The simulation result is

shown in Fig. 7(c). This figure was computed by taking the

maximum reflectivity observed over all possible velocity

choices for each pixel. For comparison, the matched filter

reconstruction is shown in Fig. 7(b). The top 20 local

maxima are marked with black crosses to illustrate simple

target detections using this ‘2 approach. A single target is

missed due to its proximity to another target, while several

false alarms appear. Table 1 shows the estimated velocities

using CoSaMP, which closely match the simulated values.

The velocity estimates are derived from the maximum

coefficient in the reconstruction associated with the pixel
closest to each target. In the example, CoSaMP is able to

accurately estimate both the positions and velocities of the

targets without introducing excessive false alarms. Bias

due to grid sampling dominates the reconstruction error.

V. DISCUSSION

A. Practice Motivating Theory
The influence of compressed sensing in radar remains

an unfolding story. CS theorems sprang from the curiously
successful empirical results from long-standing ad hoc

sparse recovery algorithms. In this sense, future advances

in CS theory may similarly arise from the successes of other

ad hoc processing procedures from radar or other applica-

tion domains. We consider five example potential directions.

Table 1 Target Positions ðx; yÞ, Actual Velocities ðvx ; vyÞ, Velocity Estimates ðv̂x ; v̂yÞ, and Velocity Error Norms kv � v̂k2 for the Moving Targets Example.

Results Are in Meters and Meters per Second. Estimates Are Based on the CoSaMP Reconstruction

Fig. 7. Results for a moving targets example. (a) Truth data with red dots indicating initial target positions and blue arrows indicating constant

linear velocities. (b) Matched filter reconstruction; true target locations are shown with blue circles. Black crosses indicate the top 20 local

maxima. (c) The CoSaMP reconstruction. The blue circles indicate the true locations of the targets.
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First, sparse linear regression entails sampling the
parameters (such as spatial location), which results in

biased estimates. Common processing approaches to reduce

bias are to use iterative grid refinement or to compute the

(nonconvex) maximum likelihood parametric estimate using

an initialization from the linear regression [19], [97]. Indeed,

grid refinement has been employed to expand the dictionary

for all three algorithm classes surveyed in Section III-B

[98]–[100]. An open question is to characterize the bias
and variance of greedy or ‘1 algorithms as estimators for an

underlying, continuous-valued parameter set.

A second, and related, example candidate stems from

the good empirical results observed with highly coherent

dictionaries [43], [61]. For inverse problems, the columns

of the linear model A in (16) typically arise from sampling

a continuous parameter space, e.g., spatial location, and

the topology of the parameter space is lost in the linear
regression model. Resolution is the ability to detect two

objects in close proximity [73], [101], [102], while accuracy

refers to the mean squared error in estimating the object’s

parameters (location, amplitude, etc.). The suppression of

image sidelobes by ‘1 or greedy algorithms may invite a

qualitative claim of Bsuperresolution[; however, existing

CS results are silent regarding resolution and agnostic

regarding bias and variance of parameter estimates in the
underlying continuous parameter space. Indeed, super-

resolution implies that mutual coherence must be large.

Can sufficient conditions for stable recovery be extended

to provide modified performance guarantees for coherent

dictionaries and well-separated reflectors? Recent empir-

ical results [103] suggest that ‘p-penalized least squares,

for p � 1, performs as well or better than subspace

methods for high-resolution range profiles estimated from
limited bandwidth waveforms. For a limited bandwidth

and high-resolution spatial sampling in the reconstruction,

the mutual coherence of the resulting linear model A is

very large, irrespective of waveform randomization.

A third candidate direction is the expansion of notions

of sparsity and structure [104]; for example, a total

variation norm on the magnitude of a complex image [31]

does not tidily fit within existing frameworks. A fourth
direction is the joint estimation of both the unknowns f

and a parametric model of uncertainty in A. An important

example in radar imaging is autofocus, whereby antenna

locations at each pulse are estimated to subwavelength

accuracy. The approach is adopted in [105], where phase

errors are included as nuisance parameters in the
‘p-regularized optimization problem (19). A fifth potential

direction is the adoption of Bayesian priors, other than

(18), to exploit sparsity when coherence or noise may

create significant ambiguity among candidate sparse

solutions. For example, [106] and [107] consider a Bayes

model averaging approach whereby a minimum mean

squared error reconstruction, in contrast to a MAP

solution, is approximately computed as a weighted sum
of sparse solutions. For candidate sparse solutions, the fast

greedy search in [106] provides exact ratios of posterior

probabilities given the noisy measurements.

B. Theory Motivating Practice
Is CS merely a transient bandwagon [108] of little

lasting relevance for radar applications? Time will tell; but

we speculate that CS is relevant to radar imaging for five
reasons.

1) The algorithms admitting performance guarantees

in CS are established techniques in radar imaging;

greedy algorithms and ‘p regularization have a

long history in radar processing that is likely to

continue. CS informs and encourages refinement

(e.g., [41]) of these algorithmic approaches.

2) Coherence likewise has a prominent and physical-
ly interpretable place in the radar imaging liter-

ature, in the form of the radar ambiguity function.

3) Importantly, CS invites provable performance

guarantees for any proposed sparse imaging algo-

rithm, just as CS provides sufficient conditions on

sparsity and coherence to achieve stable recovery.

4) CS explicitly characterizes low-coherence acquisi-

tion schemes as well-mated to specific nonlinear
reconstruction algorithms. Thus, CS gives an access-

ible framework that serves as an impetus to consider

nonconventional data-acquisition schemes.

5) CS is consistent with the digital technology trend

that encourages a tradeoff of reduced acquisition

complexity in exchange for increased processing

complexity, in the form of nonlinear reconstruc-

tion. Likewise, digital technology allows for low-
cost flexibility in waveform generation with the

aim of low coherence in the data model A.

Thus, for these reasons, we speculate that compressed

sensing will serve as a catalyst for future developments in

radar imaging. h
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