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1. Introduction

Electroencephalogram (EEG) based brain-computer inter-
faces (BCIs) are used for direct brain communication in paral-
ysis and motor restoration in stroke [1–3]. Being considered 
in the context of post-stroke motor rehabilitation, such assis-
tive technology claims to reinforce neural plasticity and sup-
port motor recovery [4, 5]. Research in this context focuses on 
brain sensorimotor rhythm (SMR) activity and exploits such 

information in a brain-robot interface by rewarding users with 
movement support by the rehabilitation robot whenever high 
movement intent is decoded [6–8]. Protocols incorporating 
such SMR haptic feedback was shown to support modulation 
of these brain rhythms and enhance post-stroke recovery [9]. 
Despite this recent progress in BCI-assisted stroke rehabilita-
tion, we believe that the extent of brain activities considered 
in this context can be a confounding factor for further prog-
ress in the field. This argument relies on evidence claiming 
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Abstract
Objective. Recent brain-computer interface (BCI) assisted stroke rehabilitation protocols tend 
to focus on sensorimotor activity of the brain. Relying on evidence claiming that a variety 
of brain rhythms beyond sensorimotor areas are related to the extent of motor deficits, we 
propose to identify neural correlates of motor learning beyond sensorimotor areas spatially 
and spectrally for further use in novel BCI-assisted neurorehabilitation settings. Approach. 
Electroencephalographic (EEG) data were recorded from healthy subjects participating in a 
physical force-field adaptation task involving reaching movements through a robotic handle. 
EEG activity recorded during rest prior to the experiment and during pre-trial movement 
preparation was used as features to predict motor adaptation learning performance across 
subjects. Main results. Subjects learned to perform straight movements under the force-field 
at different adaptation rates. Both resting-state and pre-trial EEG features were predictive 
of individual adaptation rates with relevance of a broad network of beta activity. Beyond 
sensorimotor regions, a parieto-occipital cortical component observed across subjects was 
involved strongly in predictions and a fronto-parietal cortical component showed significant 
decrease in pre-trial beta-powers for users with higher adaptation rates and increase in pre-trial 
beta-powers for users with lower adaptation rates. Significance. Including sensorimotor areas, 
a large-scale network of beta activity is presented as predictive of motor learning. Strength 
of resting-state parieto-occipital beta activity or pre-trial fronto-parietal beta activity can be 
considered in BCI-assisted stroke rehabilitation protocols with neurofeedback training or 
volitional control of neural activity for brain-robot interfaces to induce plasticity.
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that a variety of brain activities beyond sensorimotor areas are 
related to the extent of motor deficits [10, 11]. Furthermore, 
resembling post-stroke recovery to a form of motor learning 
[12], various neuroimaging studies showing distinct large-
scale networks being involved in different stages of motor skill 
acquisition also support this argument [13–16]. These findings 
are consistent with empirical evidence on causal influence of 
multiple cortical sources on motor learning processes [17]. 
Thereby, we believe that brain activities beyond sensorimotor 
areas that are involved in human motor learning should be 
identified with EEG for potential use in BCI-assisted stroke 
rehabilitation settings.

In similar contexts, studies investigated how visuomotor 
learning is reflected in primary sensorimotor areas [18], as well 
as brain rhythms beyond sensorimotor areas [19–22], during 
various visuomotor tasks. Generally, such tasks tend not to 
incorporate physical motor learning, but simply involve fixed 
motor execution to quantify skill. Moreover, such visuomotor 
tasks require learning of an underlying mapping between 
motor task space and visual feedback environment [23], which 
further incorporates separate processing of different mapping 
aspects into the learning process [24, 25]. Expectedly, senso-
rimotor behavior during visuomotor learning was shown to 
be related with coherence of visual and motor cortex regions 
[26]. Hence, these studies generally quantify visual mapping 
performance together with motor execution skill, as visuo-
motor learning performance.

In previous motor rehabilitation studies, motor learning, 
which can be evaluated either in the form of motor adaptation 
or skill learning [27], is widely studied in force-field adapta-
tion tasks [28–30]. In order to dissociate visual mapping from 
the learning process, we investigate EEG correlates of motor 
adaptation learning during rest as well as pre-trial move-
ment planning, in the context of a force-field adaptation task 
without a separate artificial visual feedback environment. The 
task was performed within an actual physical environment and 
involved not simply motor execution to quantify skill, but also 
motor adaptation learning to quantify learning performance.

Based on experimental data from twenty-one healthy par-
ticipants, EEG correlates of motor adaptation learning were 

investigated spectrally and spatially during both resting-state 
and pre-trial phases prior to motor execution. Spectrally,  
β-oscillations are found to be informative of motor adapta-
tion learning performance. These findings are consistent with 
evidence in literature suggesting relevance of β-oscillations in 
mechanisms related to motor maintenance [31–33]. Spatially, 
a broad network of β-activity was found relevant with a 
parieto-occipital component beyond sensorimotor regions 
being involved more strongly in prediction. We further inves-
tigated whether changes occur in activities of these EEG cor-
relates with motor adaptation learning and observed a diverse 
change of pre-trial fronto-parietal β-activity between subjects 
with higher and lower adaptation rates. Finally we discuss 
how such EEG identifiers of motor learning can be exploited 
in future neurorehabilitation settings. A preliminary version of 
this work was presented in [34].

2. Methods

2.1. Subjects

Twenty-one right-handed healthy subjects (14 male, 7 female; 
mean age ±23.8 3.1) participated in this study. All subjects 
were naive to the force-field adaptation task. Before the 
experiments, all participants gave their informed consent after 
the experimental procedure was explained to them in accor-
dance with guidelines set by the research ethics committee of 
Sabancı University.

2.2. Experimental setup

The subjects sat in front of a horizontally placed board con-
structing the task workspace. Subjects were holding a handle, 
henceforth referred to as an end-effector, with their right 
hands that was suspended from above onto the board. The end-
effector was attached to a 3 degrees-of-freedom modified delta 
robot which had constrained motion on z-axis [35]. Using the 
task workspace, the subjects performed the force-field adapta-
tion task (see section 2.3) with simultaneous EEG recordings. 
The goal of the task was to perform center-out reaching move-
ments under an unknown force-field, as straightly as possible. 
The end-effector was only capable of two-dimensional move-
ments that were restricted to fall within a circle with a radius 
of 200 mm. Idle position of the end-effector corresponded 
to the center of this circle. There were four target locations 
placed on the circle at the northeast, northwest, southeast, and 
southwest positions. The target locations were indicated with 
holes over the board containing LEDs inside. An illustration 
of the task workspace is provided in figure 1.

2.3. Force-field adaptation task

The force-field adaptation task involved two-dimensional 
center-out reaching movements (i.e. trials). Goal of the sub-
jects was to follow a straight line path from starting position 
to the target location. During reaching movements, subjects’ 
motions were disturbed by an external force-field. Within 
the task workspace, a velocity dependent force-field was 

Figure 1. Illustration of the task workspace. Four target locations 
are placed on the board at the northeast, northwest, southeast, and 
southwest positions with equal distances of 200 mm from the center.

J. Neural Eng. 14 (2017) 046027



O Özdenizci et al

3

applied to the end-effector by the robotic setup. Specifically, 
end-effector velocity vector v→ was multiplied with a constant 
matrix B as in equation (1) at each time point.

=f vB
→ → (1)

where B was representing the viscosity of the imposed 
environ ment and f

→
 represented the forces that the robotic 

setup is programmed to produce on the end-effector as the 
subject performed reaching movements. In particular, B was 
chosen to be

⎡
⎣⎢

⎤
⎦⎥= − −

−
⋅ ⋅ −NB 10.1 11.2

11.2 11.1
s m .1

The constant matrix B was the same as in [36]. During pre-flight 
and washout phases of the experiment, subjects performed the 
reaching movements without an external force-field disturbance, 
but with the same trial flow.

Each trial began with a planning phase, where the subjects 
were instructed to hold the end-effector at the starting position 
(i.e. center of the circle on the board) and plan the upcoming 
movement. The planning phase lasted 2.5–3.5 s, chosen ran-
domly from a uniform distribution. Within the first second of 
this phase, the robotic setup guided the subjects to center the 
end-effector position by directing the end-effector to the pre-
calibrated starting position. During the planning phase, one of 
the four possible targets was selected randomly and indicated 
by a blinking LED light. At the end of the planning phase, 
the LED turned on steadily, signaling the beginning of the go 
phase. The time interval after the first second, until the end 
of the planning phase is referred as the pre-trial phase. In the 
go phase, subjects were instructed to reach for the target by 
moving the end-effector over the board. A trial was considered 
complete when the subject moved the end-effector to within 
20 mm of the target or if the subject exceeded a time limit of 
3 s. After the go phase, the subjects were instructed to move 

the end-effector back to the starting position. At the end of the 
trials, to quantify motor adaptation amount, a calculated score 
within a range of 0–100 was read out to the subjects through a 
speaker as an auditory feedback (see section 2.3.1). Each trial 
began with a new target location.

2.3.1. Auditory feedback score. The score in each trial indi-
cated how straight the movement trajectory was in the corre-
sponding trial. To calculate the score, we first computed the 
area between the curve defined by the movement trajectory 
and a straight line to the target as the kinematic measure [37]. 
Secondly, this value served as an input variable to a sigmoid 
function, indicating a gradually diminishing increase [38]. 
Third, the value of the sigmoid function was multiplied by 
the elapsed time of the trial as a penalty on the score. This 
encouraged subjects to make faster movements while increas-
ing the effect of the velocity dependent force-field. At the end 
of each trial, the subjects were informed about their move-
ment performance by inversely mapping this value to a range 
of 0–100; a higher score denoting a faster and more straight 
reaching movement.

While doing the inverse mapping, to calculate a lower 
limit for a score of 0, the worst movement trajectory was pre-
defined as drawing an isosceles right triangle with the straight 
line to the target being the hypotenuse, in combination with 
an elapsed time of 3 s. In other words, while calculating the 
score for a particular trial, the initially calculated total area 
between the curve defined by the movement trajectory and 
a straight line to the target was proportioned to the area of 
this pre-defined isosceles right triangle. For an upper limit 
score of 100, the ideal movement trajectory of a straight 
line path to the target had to be performed. As this was not 
practically feasible, in order not to prevent the possibility 
for a score of 100 for the subjects, the calculated value after 
the inverse mapping was rounded to the nearest hundredth  
(i.e. an inversely mapped value of 99.995 or greater was 
rounded to 100). Figure 2 illustrates the pre-defined worst and 
ideal movement trajectories.

Aim of the subjects was to increase their scores as close 
as possible to 100 throughout the experiment, hence attain 
perfect adaptation to the force-field. No information was pro-
vided to the subjects before or during the experiments on how 
to improve their scores.

2.4. Study design

Before conducting the study, to specify an appropriate experi-
ment flow, we executed a demo session with one participant 
performing the force-field adaptation task for a single target 
location, which was chosen to be the northeast target location, 
for a duration of 150 trials. Using the data from this demo 
session, to be able to gain insights into the neural processes 
underlying the initial stages of motor learning [13], we inves-
tigated an early adaptation time period. Inferred outcomes of 
this demo session were also used to determine the sufficient 
length of the experiment.

With the demo session data of 150 trials, exponential fits 
using nonlinear Nelder–Mead least-squares regression in the 

Figure 2. Illustration of the worst center-out movement trajectory 
for the lower limit score of 0 indicated in blue, and the ideal 
trajectory of a straight line path for the upper limit score of 100 
indicated in green, assuming the northeast target location is aimed. 
Red circle at the center represents the starting position and orange 
circles represent the target locations (200 mm far from the center) 
with radii of 20 mm.

J. Neural Eng. 14 (2017) 046027



O Özdenizci et al

4

form = +τ−S Le Ct
t

SS
/  were calculated, where St is the audi-

tory feedback score for trial t, | |L  represents the amount of 
change in scores, τ is the time-constant, and CSS represents 
the steady-state value. The exponential fit solution evaluated 
values of S1  =  76.38, S40  =  91.90 and S50  =  93.14, where the 
steady-state value was = =∞C S 95.47SS . Relying on these 
results, we argue that within the first 40 trials, most but not all 
of the adaptation was achieved. Figure 3 depicts the changes 
in auditory feedback scores throughout the demo session.

Furthermore, a total of 50 trials was found to be sufficient 
for learning to reach for a particular target under this force-
field and converge performance to a steady-state value. In par-
ticular, slope of a univariate linear regression fit to the feedback 
scores was calculated to be very small, indicating no further 
increase in scores (i.e. solutions for = × +y a x bt t , where xt 
denotes the score at trial t, were obtained as a  =  0.002 and 
b  =  94.93). Therefore, for four target locations, we designed 
the study for a duration of 200 trials, and approximated to 
investigate early adaptation during the first 40 trials. Complete 
study design of the actual experiments is as follows.

All subjects performed a pre-flight phase of eight trials (i.e. 
eight reaching movements) before the experiments without any 
force-field to get familiar with the task workspace and trial flow. 
As part of the force-field adaptation task, each subject performed 
200 trials in total, which were divided into three blocks of 40, 
80, and 80 trials. Within each of these blocks, there were equal 
number of trials per target location. After the task, subjects also 
performed a washout phase of 20 trials which involved no force-
field. Alongside the force-field adaptation task, four blocks of 
resting-state EEG recordings were performed throughout the 
experiment, each lasting for five minutes. During resting-state 
recordings, subjects were placed approximately 1.5 m in front 
of a computer screen and instructed to relax with eyes open, 
looking at a fixation cross displayed in the middle of the screen. 
Flow of the experiment is presented in figure 4.

2.5. Data acquisition

Throughout the experiments, the robotic setup recorded data 
at 500 Hz sampling rate and a 64-channel EEG was recorded 
at 512 Hz sampling rate, using active EEG electrodes and a 

BioSemi ActiveTwo amplifier (Biosemi Inc., Amsterdam, The 
Netherlands). Electrodes were placed according to the 10–20 
system. All data were re-referenced to common average refer-
ence offline.

2.6. EEG data analysis

Recorded EEG data corresponding to resting-state blocks and 
pre-trial phases (i.e. time interval after the first second, until 
the end of the planning phase of each trial), which will be 
used in separate analyses, constituted a large feature space 
to construct prediction models for motor adaptation learning 
across a small number of subjects, which was inclined to over-
fitting. Hence, an informative feature space was obtained by 
transforming the EEG data into a small number of relevant 
features. This was achieved by reducing the dimensionality of 
EEG data both in the spatial and temporal domains.

Specifically for dimensionality reduction in the spatial 
domain, we pooled all resting-state EEG data from all sub-
jects, by concatenating high pass filtered data at 3 Hz, and 
separated this data into group-wise statistically independent 
components (ICs) that represent cortical patterns consistently 
found across all subjects. This was done by first transforming 
the data into 64 principal components and then running the 
SOBI-algorithm, which computes the ICs [39]. We inspected 
each IC manually and rejected those ICs as non-cortical for 
which at least one of the following criteria applied [40, 41]: 
(1) The spectrum did not show the 1/f-behavior typical of a 
cortical source. (2) The topography did not show a dipolar 
pattern. (3) The time-series appeared to be contaminated by 
detectable eye blinks or other noise sources such as 50 Hz line 
noise. This resulted in remaining six cortical ICs that are later 
discussed in section 3.2.

For dimensionality reduction in the temporal domain, we 
transformed EEG data of these ICs into the spectral domain 
and computed log-bandpowers in four main frequency bands; 
θ-band (4–7 Hz), α-band (8–14 Hz), β-band (15–30 Hz), and 
γ-band (55–85 Hz). Specifically, we computed resting-state 
log-bandpowers of six non-artifactual ICs in four frequency 
bands of all subjects using an FFT in conjunction with a 
Hann window spanning the whole five minute resting phase. 
While computing pre-trial IC-powers, due to varying length of 
pre-trial duration, FFT was used in conjunction with a Hann 
window of one second length and a step-size of 100 ms. This 
analysis resulted in resting-state and pre-trial bandpowers in 
six ICs and four different frequency bands for each subject, 
which constituted our final feature space. Subsets of these fea-
tures in different frequency bands are later used to investigate 
neural correlates of motor adaptation learning. These features 
are further analyzed for changes in power during the course of 
motor learning.

2.7. Motor adaptation learning performance analysis

In order to monitor overall learning effects, four different mea-
sures to quantify motor learning performance were investigated; 
(1) auditory feedback scores, (2) total area (TA) between the 
curve defined by the movement trajectory and a straight line to 

Figure 3. Auditory feedback scores of the participant performing 
the force-field adaptation task for the northeast target location for a 
duration of 150 trials throughout the demo session. Yellow curve is 
the exponential fit.
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the target [37], (3) maximum deflection (MD) from (i.e. max-
imum perpendicular distance to) the straight line path to the 
target during movement [14, 37], (4) coefficient of determina-
tion (r-squared) between vertical and horizontal movement  
(i.e. how straight the movement was as an index of skilled move-
ment [42]). On a subject-specific level, these measures consti-
tuted a basis for studying individual motor adaptation learning.

Although many studies have used exponential or power 
law fits of performance data to characterize motor learning, 
it is known that motor adaptation depends on at least two 
independent processes with different time scales [43]. Hence, 
using parameters of exponential or power law fits on per-
formance data across trials may not quantify motor adapta-
tion sufficiently. Moreover, for some individual subject data 
in our study, exponential fits had r2 values lower than 0.02 
( p  >  0.1 with a random permutation test with 104 iterations). 
Therefore, individual measures of motor adaptation learning 
performance variability were calculated under no a priori 
assumptions about the shape of the performance data [44, 45].

Most of the adaptation is observed in the first block of 40 
trials where the initial exposure to the force-field took place 
(see section 3.1). Hence, individual motor adaptation learning 
performance measures were extracted from that phase of the 
experiment. As a kinematic measure to quantify motor adap-
tation, TA, which was also used as the basis of auditory feed-
back scores, was utilized after being normalized by scaling to 
a range of [0, 1] across all subjects. Specifically for each sub-
ject, the ratio of average TA during first ten trials over average 
TA during the last ten trials of the first block is computed. The 
resulting ratio, henceforth referred as the motor learning index 
(MLI), is an adapted version of the learning metric in [14]. 
The greater the value of MLI, the greater was the observed 
initial motor adaptation.

2.8. Motor adaptation learning prediction model

Individual MLI measures served as the dependent variables 
for multivariate linear regression models to predict motor 
adaptation learning from EEG features. In order to obtain 
more robust prediction models against outlier variables, we 
checked all subjects on whether their MLI or any EEG feature 
exceeded three standard deviations of the median across sub-
jects, as an apriori outlier rejection criterion [46].

2.8.1. Prediction with resting-state EEG features. As part of 
resting-state prediction, using each subject’s six IC powers 

in one of the four frequency bands from the first resting-state 
block recorded at the beginning of the experiment as the inde-
pendent variables, MLI was predicted with a leave-one-subject-
out cross-validation protocol. This was done for all frequency 
bands to investigate if any resting-state neural correlates exist 
for motor adaptation learning in a particular frequency band.

2.8.2. Prediction with pre-trial EEG features. With a similar 
approach, MLI was predicted using the information from the 
first 40 pre-trial IC powers. In particular, slopes of the linear 
regression fits to pre-trial IC powers in the first 40 trials were 
used as features. Thus, each subject’s rate of change in six IC 
powers in one of the four frequency bands during the first 40 
trials were used as the independent variables to predict MLI. 
Again, a leave-one-subject-out cross-validation protocol was 
adopted.

2.8.3. Statistical significance. For both resting-state and pre-
trial analyses in each frequency band, to quantify the strength 
of the prediction model, the correlation coefficient between 
actual and predicted MLI measures was calculated. Signifi-
cance of this correlation was tested with a permutation test. 
To test the null-hypothesis of zero correlation, we randomly 
permuted the assignment of MLI to features across subjects 
10 000 times and estimated the frequency at which the predic-
tion model achieved a higher correlation coefficient than with 
the true assignment of brain rhythms to performance measures 
as the p-value.

2.8.4. Feature relevance. In order to gain insights into the 
neural processes enabling significant prediction, a feature rel-
evance analysis is implemented. We applied multivariate pat-
tern analysis (MVPA) [47] to the EEG data and trained the 
regression model on all 63 non-empty subsets of the six IC 
features for all frequency bands. This enables us to identify 
the most predictive subset of ICs as well as the most signifi-
cant individual ICs in prediction by interpreting regression 
weights of the prediction models.

3. Results

3.1. Presence of motor adaptation learning

In the interest of observing the change in movement trajecto-
ries as learning proceeds under the force-field, figure 5 shows 
sample trials for one representative subject from the beginning 

Figure 4. Flow of the experiment. Before the experiment subjects performed a pre-flight phase. Green blocks indicate five minute resting-
state recordings. Red blocks indicate three blocks of force-field adaptation task which in total consisted of 200 trials. Before the fourth 
resting-state recording, subjects performed a washout phase of 20 trials. Blocks are separated by brief intermissions of one to two minutes.
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of the first task block, end of the first task block, end of the 
second task block, and end of the third task block. Visual eval-
uation reveals that movement trajectories converge to straight 
line paths by the end of the experiment.

Similarly we examined the after-effects of learning in 
movement trajectories during the washout trials performed 
by the end of the experiment under no force-field. Figure 6 
shows sample trials for three representative subjects from the 
beginning and the end of the washout phase. We argue that 
visual evaluation reveals a re-adaptation in reaching move-
ments recovering from a slight initial irregularity due to the 
after-effects of learning [36].

From the force-field adaptation task kinematic data, 
change in performance metrics (Score, TA, MD, R-Squared) 
averaged across all subjects were investigated to observe 
motor adaptation learning effects. As we are interested in 
general improvement rather than trial-to-trial changes in per-
formance, 20-trial-averaged performance metrics are plotted 
(see figure 7). Using the data from these plots, exponential fits 
using nonlinear Nelder–Mead least-squares regression in the 
form = +τ−M A Cei

i/  were calculated, where Mi is the per-
formance measure for trial group i, | |A  represents the amount 
of change in the performance measure due to learning, τ is 
the time-constant, and C represents the steady-state value. All 
performance metrics followed a power law with significant 
correlations between exponential fits and 20-trial averaged 
metrics; Score: ρ = 0.95, p  <  10−3; TA: ρ = 0.73, p  <  0.03; 

ρ =MD : 0.96, p  <  10−3; R-Squared: ρ = 0.90, p  <  0.01, 
where p-values are estimated by a random permutation test 
with 104 iterations. Note that, here we do not quantify motor 
adaptation using any parameter of these exponential fits (as 
discussed in section  2.7), but only demonstrate that motor 
learning performance metrics follow a power law as suggested 
by law of practice [48].

For all measures, strict increase in performance is observed 
in the first task block (i.e. first two trial groups in figure 7 plots). 
Moreover, we observe that within the first 40 trials, motor 
learning performance measures averaged across subjects show 
significant correlations with one another (see table 1). Hence, 
we can argue that MLI measures that are extracted from that 
phase of the experiment can sufficiently quantify motor adap-
tation learning in our experimental paradigm. Figure 9 shows 
the distribution of MLI values across subjects, capturing a 
wide range of motor learning performances.

3.2. EEG correlates of motor adaptation learning

Six IC topographies resulting from the EEG spatial dimen-
sionality reduction analysis are shown in figure  8. We note 
that ICs 1 and 4 are likely to represent processes linked to 
fronto-parietal attention networks [49], IC 2 appears to rep-
resent a sub-cortical source, ICs 5, and 6 are generated in 
sensorimotor cortical areas, and IC 3 appears to represent a 
parieto-occipital cortical source.

3.2.1. Resting-state analysis. Multivariate linear regression 
models did not provide statistically significant MLI predic-
tion with θ-, α-, or γ-powers of resting-state EEG features 
(p  >  0.05). However, MLI was significantly predicted with 
resting-state features extracted in β-band (ρ = 0.54, p  <  0.02, 
see figure  9(b) and table  2). Feature relevance analysis for 
resting-state EEG prediction yield the subset consisting of IC 
2, IC 3, and IC 4 β-powers as the most predictive (ρ = 0.70, 
p  <  10−3, see figure  9(c)). Significance decreased in com-
parison to a single β-band prediction, if pairs of frequency 
bands of the best subset were used as features. For both of 
these two predictive regression models, the residual plots 
demonstrated a horizontal band appearance in between two 
residual standard error levels, indicating the suitability of a 
linear regression model and absence of potential outliers (see 
figures 10(a) and (b)).

Figure 5. Movement trajectories of one subject during the force-field adaptation task. Three consecutive trials to each target at four 
different time periods of the experiment are shown; (a) beginning of the first task block, (b) end of the first task block, (c) end of the second 
task block, (d) end of the third task block. Red circles at the center represent the starting position and orange circles represent the target 
locations (200 mm far from the center) with radii of 20 mm. Dots are 20 milliseconds apart.

Figure 6. Movement trajectories from three subjects during the 
washout phase; (a) first trials to each target at the beginning of 
washout phase, (b) last trials to each target at the end of washout 
phase. Each different trajectory color represents one subject. Red 
circles at the center represent the starting position and orange 
circles represent the target locations (200 mm far from the center) 
with radii of 20 mm. Dots are 20 milliseconds apart.
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3.2.2. Pre-trial analysis. In the case of pre-trial analysis, 
one of the subjects was discarded due to outlier EEG fea-
tures across subjects (i.e. rate of change for all IC powers 
exceeded three standard deviations of the median across 
subjects). With the remaining 20 subjects’ rate of change 
in IC powers as features, regression analysis did not pre-
dict MLI significantly in any frequency band (p  >  0.05), 
including the resting-state predictive β-band (ρ = 0.30, 
p  =  0.10, see table  2). However, feature relevance analy-
sis yields prediction with the subset consisting IC 2, IC 3, 
and IC 6 β-powers as statistically significant and the most 
predictive (ρ = 0.44, p  <  0.02, see figure 9(d)). The resid-
ual plot for this regression model is shown in figure 10(c), 
again exhibiting an appropriate horizontal band appear-
ance. For the best subset, again a decrease in significance 
in comparison to a single β-band prediction was observed, 
if pairs of frequency bands were used as features. Table 3 
shows normalized linear regression weights of each IC for 
the β-band prediction models, both for resting-state and 
pre-trial analyses. IC 3, which is likely to represent a pari-
eto-occipital cortical source, has the strongest weight in all 
prediction models.

As part of the feature relevance analysis, we investigated 
all non-empty subsets of the six ICs for prediction. However 
among those, in tables  2 and 3, we have only included the 
results for the most predictive subset of ICs. In order to 
explore consistency with existing evidence on relation of sen-
sorimotor activity and motor learning performance, subsets 
formed by the ICs that represent sensorimotor cortical areas 
was also observed. The subset consisting of rate of changes in 
IC 5 and IC 6 β-powers was also found predictive (ρ = 0.26, 
p  <  0.05).

3.3. Changes in EEG activity with motor adaptation learning

Over the course of motor adaptation learning, subjects’ brain 
rhythms are likely to show temporary changes. For this reason, 
both resting-state and pre-trial EEG β-activities that are found 
to be predictive of motor learning are further analyzed.

3.3.1. Resting-state EEG features. To observe whether rest-
ing-state features show an overall change, resting-state β-
powers of the six predictive ICs, averaged across subjects as a 
grand average, were calculated (see figure 11). Difference of 
grand average β-powers for all six ICs between first and third 
resting-state recordings (i.e. before the experiment and after 
force-field adaptation task was completed) were computed 
and a Wilcoxon signed-rank test was used to test the null 
hypothesis of zero median. We observed a statistically signifi-
cant increase in grand average resting-state β-powers of ICs 
as the force-field adaptation task was completed (p  =  0.03).

However, resting-state β-powers in none of the ICs sig-
nificantly changed in a particular direction across subjects. To 
test this, for each IC, difference of β-powers between first and 
third resting-state recordings of all subjects were computed 

Figure 7. Four motor learning performance measures (Score, total area (TA), maximum deflection (MD), R-Squared) averaged over all 
subjects throughout the experiment. Trial groups represent the sequential order of the 200 trials grouped in 20 trials each. Each point on the 
blue curve represents an average value over 20 trials. Total area (TA) values are normalized to a range of [0, 1] across all subjects and trials 
before averaging. Shaded regions represent  ±  one standard deviation of mean measures across the corresponding 20 trials.

Table 1. Correlation coefficients between motor learning performance 
measures (averaged over all subjects) across first 40 trials. p-values are 
estimated by random permutation tests with 104 iterations.

Score TA MD R-squared

Score 1 −0.31b −0.85a 0.33b

TA — 1 0.18 −0.31b

MD — — 1 −0.50a

a p  <  0.01, b p  <  0.05

J. Neural Eng. 14 (2017) 046027



O Özdenizci et al

8

and a Wilcoxon signed-rank test was used to test the null 
hypothesis of zero median across subjects. No change for 
individual IC β-powers was observed across subjects through 
the experiment ( =−p 0.79, 0.25, 0.84, 0.45, 0.76, 0.79IC1 6 { }).

3.3.2. Pre-trial EEG features. Pre-trial EEG shows rapid 
trial-to-trial changes in activity. Hence, we investigated two 
separate groups of subjects that are better representative 

Figure 8. Topographies of the six non-artifactual ICs that represent cortical patterns consistently found across all subjects.

Figure 9. (a) Histogram of MLI measures across subjects. (b) Observed versus predicted MLI using six resting-state IC β-powers as 
features (ρ = 0.54, p  <  0.02). (c) Observed versus predicted MLI using the most predictive subset of resting-state IC β-powers as features 
(ρ = 0.70, p  <  10−3). (d) Observed versus predicted MLI using the most predictive subset of rate of changes in IC β-powers during first 40 
trials as features (ρ = 0.44, p  <  0.02).

Table 2. Correlation coefficients between actual and predicted MLI 
measures for prediction models in each frequency band when all six 
IC powers are used as features.

θ-band α-band β-band γ-band

Resting-state prediction 0.21 −0.07 0.54a −0.53
Pre-trial prediction −0.01 −0.27 0.30 0.37

a p  <  0.02

J. Neural Eng. 14 (2017) 046027



O Özdenizci et al

9

of learning with higher adaptation rates (i.e. four subjects 
with highest MLI measures) and lower adaptation rates  
(i.e. four subjects with lowest MLI measures). First, pre-trial IC  
β-powers are averaged within each of these groups. Then 
for both groups, correlation coefficients between trial indi-
ces, ranging from 1 to 40, and group-averaged pre-trial IC  
β-powers in the first 40 trials were calculated. A random per-
mutation test on the temporal order of trials with 104 iterations 
tested the null-hypothesis of zero correlation. Note that, here 
a negative correlation coefficient indicates a decrease in pre-
trial powers and vice versa.

For IC 5 and IC 6 representing sensorimotor cortical 
areas, significant decrease in pre-trial powers were observed 
for the group of subjects with higher adaptation rates; IC 5: 
ρ = −0.40, p  <  0.01, IC 6: ρ = −0.40, p  <  0.01, which are 
likely to be caused by stronger β-suppression over sensori-
motor cortex as motor learning proceeds [50, 51]. Moreover 
for IC 4, while a significant decrease in pre-trial powers was 
observed for the group of subjects with higher adaptation 
rates (ρ = −0.32, p  <  0.02), a significant increase in pre-trial 
powers were observed for the group of subjects with lower 
adaptation rates at the same time (ρ = 0.36, p  <  0.02). For the 
other ICs and groups, none of the changes in pre-trial powers 
were found statistically significant.

4. Discussion

We simulated the post-stroke recovery process of patients in 
an experimental setup for healthy subjects with a force-field 
motor adaptation task that involved not only motor execution 
to quantify skill, but also motor learning to quantify learning 
performance. Within an actual physical environment, purely 

focusing on the motor learning process without an under-
lying visual mapping, subjects learned to adapt to the force-
field and generate straight and smooth reaching movements. 
Motor adaptation rate, as a quantified learning measure, was 
significantly predicted with EEG features (i.e. resting-state β-
powers in cortical ICs and rate of change in these cortical IC 
powers as adaptation took place) across subjects.

Due to the small number of subject data in comparison to high 
dimensionality of possible feature spaces (i.e. combinations of 
frequency bands and cortical sources), we were not able to inves-
tigate prediction models incorporating all frequency bands simul-
taneously. Hence we present all results for individual frequency 
band features separately and conclude relevance of β-oscillations. 
We believe that performing a similar series of analysis with more 
participant data is likely to yield stronger results.

Nevertheless, the observed relation of motor learning 
and EEG β-activity was found to be consistent with evi-
dence in literature. Motor movements in general have been 

Figure 10. Residuals versus predicted MLI values for regression models with; (a) six resting-state IC β-powers as features (from figure 9(b)), 
(b) the most predictive subset of resting-state IC β-powers as features (from figure 9(c)), (c) the most predictive subset of rate of changes in IC 
β-powers during first 40 trials as features (from figure 9(d)). Dashed horizontal lines represent the first two levels of residual standard error.

Table 3. Regression weights for prediction models in β-band averaged over all cross-validation folds. Weights are normalized by dividing 
by the absolute maximum value.

EEG feature space Correlation IC 1 IC 2 IC 3 IC 4 IC 5 IC 6

Resting-state
All ICs ρ = 0.54a 0.15 0.21 −1.00 0.71 0.11 0.02
Best subset ρ = 0.70b — 0.33 −1.00 0.89 — —

Pre-trial
All ICs ρ = 0.30 −0.43 −0.36 1.00 −0.07 −0.16 −0.61
Best subset ρ = 0.44a — −0.59 1.00 — — −0.94

a p  <  0.02, b p  <  10−3

Figure 11. Grand average β-powers of the six ICs over all subjects 
in four resting-state phases. Error bars indicate  ±  one standard 
deviation across subjects.
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associated with changes in prominent β-oscillations [52, 53]. 
Moreover, event related changes in sensorimotor β-activity 
were shown to reflect neural processes associated with visuo-
motor learning [54]. Here we provide empirical evidence that 
β-activity during rest as well as movement planning before 
motor execution is related to pure motor learning in general. 
To date, β-activity was credited as informative of mechanisms 
related to motor maintenance [31–33]. It has been argued that 
stronger β-oscillations are observed if maintenance of the cur-
rent motor status is intended or predicted [31], consistent with 
the case of Parkinson’s disease where patients find it diffi-
cult to initiate movements, which is notably associated with 
higher levels of β-activity [55]. Such evidence further sup-
ports reliability of our findings on motor adaptation as a form 
of a change in current or upcoming sensorimotor state. As 
participants adapt their movements to the force-field, stronger 
resting-state β-activity is observed across all predictive ICs as 
an indicator of maintaining the newly adapted current senso-
rimotor state.

Different neuroimaging studies provided evidence on 
existence of resting-state alterations in brain activity with var-
ious motor performance tasks [14, 56, 57]. Here we provide 
evidence that none of the individual ICs are modulated or sup-
pressed across subjects with learning, but they are modulated 
with learning jointly. Hence, expectedly, same resting-state 
MLI prediction (as in section 2.8.1) could be performed using 
IC β-powers from the other resting-state recordings. Using the 
same regression weights of all ICs for the resting-state pre-
dictive model in table 3, MLI can be predicted significantly 
with features extracted from the second resting-state block 
(ρ = 0.56, p  <  0.02), third resting-state block (ρ = 0.62, 
p  <  0.01), or fourth resting-state block (ρ = 0.43, p  <  0.05). 
This further supports the finding that IC powers across this 
network are jointly involved in the adaptation process and 
enhanced or suppressed coherently among themselves. 
However, whether exploiting resting-state activity of these 
ICs individually will improve motor learning performance 
remains an open question.

Recently, using a similar physical force-field adaptation 
task, cortical re-organizations related to learning were shown 
to be extended beyond primary motor areas of the brain to sen-
sory systems as well [16]. These observed effects, as decoded 
from somatosensory evoked potentials, were also shown 
to be strictly associated with pure motor learning. Here, we 
further study and identify a broader range of brain activities 
correlated with motor learning, and coherently claim that the 
learning-related cortical re-organization is not restricted to 
primary motor areas only.

Our results on sensorimotor regions (i.e. prediction with 
and changes in pre-trial activities of IC 5 and IC 6) are con-
sistent with existing evidence on relation of sensorimotor 
activity and motor learning performance. Beyond that, several 
other cortical processes are also found to be jointly related 
with motor learning. This result, as hypothesized, supports 
the existence of a distributed network of cortical areas being 
involved in skill acquisition [58]. In particular, prediction of 
motor adaptation rate is jointly performed with β-powers in 

sensorimotor areas, fronto-parietal attention networks, and 
activity in parieto-occipital regions, which had a stronger 
weight in all prediction models. Fronto-parietal cortical net-
works are known to be related with visuospatial attention [59, 
60]. Similarly, parieto-occipital cortex is linked with visuos-
patial consciousness in visual attention tasks [61, 62]. In par-
ticular within parieto-occipital regions, precuneus is involved 
in shifting attention between different locations in space [63] 
and self-consciousness and self-related mental representations 
during rest [64]. Moreover, there is existing evidence in lit-
erature suggesting relevance of the parieto-occipital cortex 
in motor behavior of monkeys [65, 66], but this was not yet 
clearly identified with EEG for pure motor learning perfor-
mance in humans as presented hereby through the predictive 
nature of parieto-occipital β-activity. Relying on a vast body of 
evidence broadly linking the parietal cortex with visuomotor 
control as in visually guided reaching and grasping in physical 
space [67], we argue that our results on an IC level are not only 
consistent with existing literature, but also provide a basis on 
EEG identifiers of pure motor learning that can potentially be 
studied in the context of post-stroke neurorehabilitation.

We propose different scenarios in order to exploit these 
EEG correlates of motor learning in future neurorehabilita-
tion settings. Firstly, electrical stimulation of β-activity was 
considered as an effective technique for neurorehabilitation. 
Previously, stimulation of β-oscillatory activity in subtha-
lamic nucleus was studied in patients with Parkinson’s dis-
ease [68]. Similarly, electrical stimulation on primary motor 
cortex was shown to improve motor evoked potentials [69] 
and motor adaptation performance [70] in healthy subjects. 
Likewise, we hypothesize that stimulation of resting β-activity 
in cortical ICs beyond sensorimotor areas that are found to be 
relevant for motor learning is likely to improve motor learning 
performance.

Another favorable approach in the context of BCI-assisted 
neurorehabilitation would be neurofeedback training of such 
associative brain areas that are relevant for motor skill acqui-
sition. It has been shown that SMR neurofeedback training 
improves motor behavior during a reaction-time task [71] or a 
joystick-based cursor-movement task [72]. Motivated by such 
pieces of work and the predictive nature of changes in pre-
trial IC powers, we hypothesize that a neurofeedback training 
protocol incorporating pre-trial β-powers in fronto-parietal 
cortical networks, in particular IC 4, or parieto-occipital β-
oscillations (i.e. IC 3) together with SMR activity is likely to 
improve motor learning performance, possibly in combination 
with an adaptive training methodology as proposed in [73].

Finally, resembling a neurofeedback training approach, 
operant conditioning of neural activity for brain-robot inter-
faces is the ongoing trend in the context of BCI-assisted 
neurorehabilitation [74]. For these protocols, different brain 
activities are proposed as features (e.g. slow cortical potentials 
as proposed in [75], β-band event related desynchronization 
[76, 77], or sensorimotor rhythms [7, 9]) for brain-machine 
interfaces that provide operant control of neural activity to 
induce plasticity and assist motor rehabilitation. Extending 
the current focus of these studies to a broader range of brain 
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rhythms, we suggest that results presented in this work should 
be considered in a similar brain-machine interface setup in 
further studies. Accordingly, whether these findings can be 
generalized to stroke patients on an individual level remains 
as another research problem of interest.
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