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ABSTRACT

In synthetic aperture radar (SAR) imaging, sparsity-driven imaging techniques have been shown to pro-
vide high resolution images with reduced sidelobes and reduced speckle, by allowing the incorporation of
prior information about the scene into the problem. Just like many common SAR imaging methods, these
techniques also assume the targets in the scene are stationary over the data collection interval. Here, we
consider the problem of imaging in the presence of targets with unknown motion in the scene. Moving
targets cause phase errors in the SAR data and these errors lead to defocusing in the corresponding spatial
region in the reconstructed image. We view phase errors resulting from target motion as errors on the ob-
servation model of a static scene. Based on these observations we propose a method which not only benefits
from the advantages of sparsity-driven imaging but also compansates the errors arising due to the moving
targets. Considering that in SAR imaging the underlying scene usually admits a sparse representation, a
nonquadratic regularization-based framework is used. The proposed method is based on minimization of a
cost function which involves regularization terms imposing sparsity on the reflectivity field to be imaged, as
well as on the spatial structure of the motion-related phase errors, reflecting the assumption that only a small
percentage of the entire scene contains moving targets. Experimental results demonstrate the effectiveness of
the proposed approach in reconstructing focused images of scenes containing multiple targets with unknown
motion.

Keywords: SAR imaging, phase errors, regularization-based image reconstruction, sparse signal represen-
tation, moving target imaging

1. INTRODUCTION

Regularization-based image reconstruction has succesfully been applied to SAR imaging and it is shown
that it has many advantages over conventional imaging.1 These techniques can alleviate the problems in
the case of incomplete data or sparse apertures. Moreover, they produce images with increased resolution,
reduced sidelobes, and reduced speckle by incorporation of prior information about the features of interest
and imposing various constraints (e.g., sparsity, smoothness) about the scene. Such algorithms assume that
the mathematical model of the imaging system is perfectly known. However, in practice, it is very common
to encounter various types of model errors. In synthetic aperture radar (SAR) imaging one predominant
example of model errors is phase errors. Uncertainties on the position of the sensing platform or on the motion
of the targets in the underlying scene cause phase errors in the SAR data and subsequently defocusing in the
reconstructed image. Phase errors arising due to uncertainties in the position of the SAR sensing platform
cause space-invariant defocusing, i.e., the amount of the defocusing in the reconstructed image is the same for
all points in the scene. However, moving targets in the scene induce a space-variant defocus, i.e., defocusing
appears only around the positions of the moving targets whereas the stationary background is not defocused.2

Motivated by these observations and considering that in the context of SAR imaging of man-made
objects, the underlying scene, dominated by strong metallic scatterers, usually exhibits a sparse structure,
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we previously proposed a sparsity-driven technique for joint SAR imaging and space-invariant focusing by
using a nonquadratic regularization-based framework.3,4 Here, we present an extension of this framework for
the space-variant defocusing problem. In this technique, the problem is handled as an optimization problem,
in which besides the constraint on the sparsity of the reflectivity field, also a constraint on the spatial sparsity
of the phase errors is imposed based on the assumption that motion in the scene is limited to a small number
of spatial locations. The method is performed through iterative minimization of a cost function of both the
field and the phase errors. Each iteration consists of two steps, the first of which is for image formation
and the second is for phase error estimation. For phase error estimation we present two approaches. The
first approach looks for potential motion and estimates the phase errors at all points in the scene. The
second approach aims to improve the computational efficiency of the phase error estimation procedure by
first determining regions of interest for potential motion using a fast procedure, and then performing phase
error estimation only in these regions. Experimental results on various synthetic scenes demonstrate the
effectiveness of the proposed method.

2. SAR IMAGING MODEL

In most SAR applications, the transmitted signal is a chirp signal, which has the following form:

s(t) = Re
{

ej(ω0t+αt2)
}

(1)

Here, ω0 is the center frequency and 2α is the so-called chirp-rate. The received signal qm(t) at the m − th
aperture position with a corresponding look angle of θ involves the convolution of the transmitted chirp
signal with the projection pm(u) of the field at that observation angle.

qm(t) = Re

{∫

pm(u)ej[ω0(t−τ0−τ(u))+α(t−τ0−τ(u))2]du

}

(2)

Here, τ0 represents the time required for the transmitted signal to propagate to the scene center and back.
τ0+τ(u) is the delay for the returned signal from the scatterer at the range of d0+u, where d0 is the distance
between the SAR sensor and the scene center. The data used for imaging are obtained after a pre-processing
operation involving mixing and filtering steps.5 After this process, the relation between the field F (x, y) and
the pre-processed SAR data rm(t) becomes

rm(t) =

∫ ∫

x2+y2≤L2

F (x, y)e−jU(x cos θ+y sin θ)dxdy (3)

where

U =
2

c
(ω0 + 2α(t − τ0)) (4)

and L is the radius of the illuminated area. All of the returned signals from all observation angles constitute
a patch from the two dimensional spatial Fourier transform of the corresponding field. The corresponding
discrete model including all returned signals is as follows.
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Here, rm is the vector of observed samples, Cm is a discretized approximation to the continuous observation
kernel at the m − th aperture position, f is a vector representing the unknown sampled reflectivity image
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and M is the total number of aperture positions. The vector r is the SAR phase history data of all points in
the scene. It is also possible to view r as the sum of the SAR data corresponding to each point in the scene.

r = Cclmn−1f(1)
︸ ︷︷ ︸

rp1

+Cclmn−2f(2)
︸ ︷︷ ︸

rp2

+.. + .. + Cclmn−If(I)
︸ ︷︷ ︸

rpI

(6)

Here, Cclmn−i is the i−th column of the model matrix C and, f(i) and rpi represent the complex reflectivity
at the i− th point of the scene and the corresponding SAR data, respectively. I is the total number of points
in the scene. The cross-range component of the target velocity causes the image of the target to be defocused
in the cross-range direction, whereas the range component causes shifting in the cross-range direction and
defocusing in both cross-range and range directions.6,7 The image of a target that experiences significant
vibration is defocused in the cross-range direction as well.8 The defocusing arises due to the phase errors in
the SAR data of these targets. Let us view the i − th point in the scene as a point target having a motion
which results in defocusing along the cross-range direction. The SAR data of this target can be expressed
as:6,7 
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Here, φi represents the phase error caused by the motion of the target and, rpi and rpie
are the phase history

data for the stationary and moving point target, respectively. In a similar way, this relation can be expressed
in terms of the model matrix C as follows:
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Here, Cclmn−i(φ) is the i-th column of the model matrix C(φ) that takes the movement of the targets into
account and Cclmn−im

(φ) is the part of Cclmn−i(φ) for the m − th cross-range position. In the presence of
additional observation noise, the observation model for the overall system becomes

g = C(φ)f + v (9)

where, v is the observation noise. Here, the aim is to estimate f and φ from the noisy observation g.

3. PROPOSED METHOD

We propose a sparsity-driven method for joint estimation of the field and phase errors caused by the mov-
ing targets which result in defocusing in cross-range direction. The method is based on a nonquadratic
regularization-based framework which allows the incorporation of the prior sparsity information about the
field and about the phase errors into the problem. The phase errors are incorporated into the problem using
the vector β, which includes phase errors corresponding to all points in the scene, for all aperture positions.
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Here, βm is the vector of phase errors for the m − th aperture position and has the following form:

βm =
[

ejφ1(m), ejφ2(m), ...., ejφI(m)
]T

(11)

The method is performed by minimizing the following cost function with respect to the field and phase
errors.

arg min
f,β

J(f, β) = arg min
f,β

‖g − C(φ)f‖
2
2 + λ1 ‖f‖1 + λ2 ‖β − 1‖1

s.t. |β(i)| = 1 ∀i (12)

Here, 1 is a MI × 1 vector of ones. Since the number of moving points is much less than the total number
of points in the scene, most of the φ values in the vector β are zero. Since the elements of β are in the form
of ejφ’s, when φ is zero, β becomes one. Therefore, this sparsity on the phase errors is incorporated into the
problem by using the regularization term ‖β − 1‖1.

This problem is solved similarly to the optimization problem in a previous work on SAR imaging.9 The
algorithm is iterative and at each iteration, in first step, the cost function J(f, β) is minimized with respect
to the field f .

f̂ (n+1) = arg min
f

J(f, β̂(n)) = arg min
f

∥
∥
∥g − C(n)(φ)f

∥
∥
∥

2

2
+ λ1 ‖f‖1 (13)

This minimization problem is solved using a previously proposed technique.1 In the second step of each
iteration, we use the field estimate f̂ from the first step and estimate the phase errors by minimizing the
following cost function for each aperture position:

β̂(n+1)
m = arg min

βm

J(f̂ (n+1), βm) = arg min
βm

∥
∥
∥gm − CmT (n+1)βm

∥
∥
∥

2

2
+ λ2 ‖βm − 1‖1

s.t. |βm(i)| = 1 ∀i (14)

Here, T is a diagonal matrix, with the entries f̂(i) on its main diagonal, as follows:

T (n+1) = diag
{

f̂ (n+1)(i)
}

(15)

In (14), 1 is a I × 1 vector of ones. The constrained optimization problem in (14) is replaced with the
following unconstrained problem that incorporates a penalty term on the magnitudes of βm(i)’s.

β̂(n+1)
m = arg min

βm

∥
∥
∥gm − CmT (n+1)βm

∥
∥
∥

2

2
+ λ2 ‖βm − 1‖1 + λ3

I∑

i=1

(|βm(i)| − 1)
2

= arg min
βm

∥
∥
∥gm − CmT (n+1)βm

∥
∥
∥

2

2
+ λ2 ‖βm − 1‖1 + λ3 ‖βm‖

2
2 − 2λ3 ‖βm‖1

m = 1, 2, ...,M (16)

This optimization problem is solved by using the same technique as in the field estimation step. Using the
estimate β̂m, the following matrix is created,

B(n+1)
m = diag

{

β̂(n+1)
m (i)

}

(17)

which is used to update the model matrix for the m − th aperture position.

C(n+1)
m (φ) = CmB(n+1)

m (18)

After these phase estimation and model matrix update procedures have been completed for all aperture
positions, the algorithm passes to the next iteration, by incrementing n and returning to (13).
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3.1 Phase Error Estimation and Correction by Determining Regions of Interest(ROI)

The approach we have described in the previous section looks for potential motion everywhere in the scene.
However, moving points usually exist in limited regions of a scene. Let us consider a scene containing a
few moving vehicles. In this case, only a small portion of the entire scene will contain motion, and all
the points belonging to a vehicle will have the same motion. In order to exploit such a structure both for
computational gains and for improved robustness, we present a modified phase error estimation procedure.
In the phase error estimation step of every iteration to solve the optimization problem in (12), we use a
two-level approach. In the first level, we determine the range lines that are likely to contain moving objects.
This generates regions of interest which we use in the second level to estimate the phase error. Assuming
that the targets in each of these regions have the same motion and clutter is not strong, we perform space-
invariant phase error estimation and compensation for each region. Now let us describe the overall phase
error estimation step in detail. In the first level of the phase error estimation step the following cost function
is minimized with respect to phase errors.

β̂(n+1)
m = arg min

βm

J(f̂ (n+1), βm) = arg min
βm

∥
∥
∥gm − CmT (n+1)βm

∥
∥
∥

2

2
+ λ2 ‖βm − 1‖1 (19)

Note that this optimization problem is slightly different from the one in (14) in the sense that the constraint
on the magnitudes of the vector β is missing. This slight modification leads to significant computational
savings. Since the goal of this first level is just to determine the ROI, rather than estimating β perfectly,
the inaccuracies caused by this modification do not have a significant impact on overall performance. Then
a matrix P is created, columns of which are the phase values of the βm vectors.

P =
[

6 β1 6 β2 . . . 6 βM

]
(20)

i-th row of the matrix P corresponds to the phase error vector for the i-th point in the scene. After taking
the absolute value of each element of the matrix P , an I×1 vector Psum is created by summing the elements
in each row.

Psum(i) =

M∑

m=1

abs (P (i,m)) ∀i (21)

Let the total number of image domain range indices be J and the total number of image domain cross-range
indices be S. By reshaping the vector Psum to an S × J matrix and then summing the elements in each
column of this matrix, a 1 × J vector V is obtained which includes a phase error-related value for each
range line in the scene. For the range lines in which moving targets exist, this value is relatively greater
than the values for other range lines. The vector V is normalized and the range lines having a value greater
than 0.3 are decided to be range lines that potentially contain moving targets. This completes the first
level of the phase error estimation step. The second level involves estimation of the phase error in each
region determined in the first level. We assume that adjacent range lines correspond to the same target and
apply space-invariant focusing for each spatially distinct region. This reduces the number of unknown phase
error terms as compared to our more generic approach described at the beginning of Section 3, and leads to
improved robustness in cases where the assumption that there is a single motion in each spatially connected
ROI is valid. To simply explain the second level of the phase error estimation procedure, let us assume that
there is only one moving target in the scene. Let the parts of the model matrix and the field corresponding
to the region of interest be Creg and freg, and the parts of model matrix and the field corresponding to the
outside of this region be Cout and fout, respectively. Then the phase error φreg is estimated by minimizing
the following cost function for every aperture position

φ̂(n+1)
reg (m) = arg min

φreg(m)

∥
∥
∥g(n+1)

regm
− ejφreg(m)Cregm

f̂ (n+1)
reg

∥
∥
∥

2

2
(22)

for m = 1, 2, ....,M
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where greg is the phase history data corresponding to the region of interest and is given by:

g(n+1)
reg = g − Coutf̂

(n+1)
out (23)

The problem in (22) is solved in closed form for every aperture position.3,4 Using the phase error estimate,
the corresponding part of the model matrix is updated.

Cregm
(φ̂(n+1)

reg (m)) = ejφ̂(n+1)
reg (m)Cregm

for m = 1, ....,M (24)

If there are more than one moving targets in the scene, then this procedure is implemented for all regions
with a potentially moving target. After the model matrix has been updated, the algorithm passes to the
next iteration, by incrementing n and returning to the field estimation step.

4. EXPERIMENTAL RESULTS

We present experimental results on three different synthetic scenes. The scene for the first experiment is
shown in Figure 1(a). There are four targets in the scene one of which (the leftmost one) is stationary and
the other three have different motions. To simulate different motions and velocities of the targets, the phase
history data of each target are corrupted by a different phase error function. The phase histories of the
two targets lying in the right side of the scene are corrupted by independent random phase error functions
uniformly distributed in [−π/2, π/2] to simulate a vibration effect. The phase history data of the remaining
target, third one from right in the scene, are corrupted by a quadratic phase error function to simulate
a constant motion in cross-range direction. In Figure 1, the results of this experiment are displayed. In
the results for conventional imaging and sparsity-driven imaging without any phase error correction, the
defocusing and artifacts in the reconstructed images caused by the moving targets are clearly seen. On the
other hand, images reconstructed by the proposed method are well focused and exhibit the advantages of
sparsity-driven imaging such as high resolution, reduced speckle and sidelobes. In the second experiment,
the scene involves many stationary point targets and two moving targets with constant velocities of 5m/s
and 8m/s in the cross-range direction. The SAR system parameters for this experiment are shown in Table
1. For the two moving targets the cross-range velocity induced quadratic phase error is computed as follows:7

Table 1. SAR System Parameters

range resolution ρr 1m

cross-range resolution ρcr 1m

wavelength λ 0.02m

angular range (∆θ) 0.573o

center frequency f0 15GHz.

distance between the SAR platform and patch center d0 30000m

platform velocity vp 300m/s

aperture time T = λd0

2vpρcr
1s

φ(t) =
4πvcrvpt

2
s

λd0
(25)

Here, ts is the slow-time variable (continuous variable along the cross-range) and vcr is the constant cross-
range velocity of the target. According to this relationship, the target with velocity 5m/s and the target with
velocity 8m/s will induce a quadratic phase error defined over an aperture −T/2 ≤ ts ≤ T/2 with a center
to edge amplitude of 2.5π radians and 4π radians, respectively. In Figure 2, the results for this experiment
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(a) (b)

(c) (d)

Figure 1. a) Original scene. b) Image reconstructed by conventional imaging. c) Image reconstructed by sparsity-
driven imaging. d) Image reconstructed by the proposed method.

are displayed. In this experiment, we present the results of our general approach as well as our ROI-based
approach. As shown in Figure 2, the two approaches produce successful and visually indistinguishable results.
In the third experiment, performed on another synthetic scene involving many point-like targets and a larger
rigid-body target, the SAR system parameters displayed in Table 1 are used. The phase history data of the
rigid-body target are corrupted with a quadratic phase error of a center to edge amplitude of 4π radians
which corresponds to a cross-range velocity of 8m/s. In this experiment, we employ our ROI-based approach.
The result shows the effectiveness of the approach in estimating and compensating phase errors.

5. CONCLUSION

In this work we have presented a sparsity-driven method for joint imaging and space-variant focusing in SAR.
The method effectively produces high resolution images and removes the phase errors causing defocusing in
the cross-range direction. On various synthetic scenes we have presented experimental results which show
the effectiveness of our approach. Our planned future work involves application of the proposed method
on real SAR data. With some extensions, the method can be used to compansate phase errors imposed by
targets with a motion in range direction, as well.
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Figure 2. a) Original scene. b) Image reconstructed by conventional imaging. c) Image reconstructed by sparsity-
driven imaging. d) Image reconstructed by the proposed method. e) Image reconstructed by the proposed method
with phase error estimation for ROI.
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Figure 3. a) Original scene. b) Image reconstructed by conventional imaging. c) Image reconstructed by sparsity-
driven imaging. d) Image reconstructed by the proposed method with phase error estimation for ROI.
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