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Abstract—The use of appearance and shape priors in image
segmentation is known to improve accuracy; however, existing
techniques have several drawbacks. For instance, most active
shape and appearance models require landmark points and
assume unimodal shape and appearance distributions, and the
level set representation does not support construction of local
priors. In this paper, we present novel appearance and shape
models for image segmentation based on a differentiable implicit
parametric shape representation called disjunctive normal shape
model (DNSM). The DNSM is formed by disjunction of polytopes
which themselves are formed by conjunctions of half-spaces.
The DNSM’s parametric nature allows the use of powerful local
prior statistics, and its implicit nature removes the need to use
landmarks and easily handles topological changes. In a Bayesian
inference framework, we model arbitrary shape and appearance
distributions using nonparametric density estimations, at any
local scale. The proposed local shape prior results in accurate
segmentation even when very few training shapes are available,
because the method generates a rich set of shape variations
by locally combining training samples. We demonstrate the
performance of the framework by applying it to both two and
three dimensional datasets with emphasis on biomedical image
segmentation applications.

Index Terms—Segmentation, disjunctive normal forms, shape
priors, appearance models, Bayesian, variational methods.

I. INTRODUCTION

THE use of prior information about shape and appear-
ance is critical in many image segmentation problems.

These include scenarios where the object of interest is poorly
differentiated from surrounding structures due to low image
contrast, noise, missing or diffuse boundaries, and occlusion.
For example, in medical image segmentation, tissue bound-
aries can be missing due to a low signal-to-noise ratio of
the acquisition device, or there may be no clear boundary
due to similarities of the surrounding tissues [1]. In such
cases, segmentation of object(s) of interest without use of the
prior knowledge of the object’s shape and appearance cannot
give satisfactory results. In this paper, we propose a general
segmentation framework that integrates shape and appearance
priors in a way that overcomes some of the major limitations
of the techniques currently available in the literature.

F. Mesadi is with the Department of Electrical and Computer Engineering,
University of Utah, Salt Lake City, UT, USA e-mail:fitsum.mesadi@utah.edu

E. Erdil, is with the Faculty of Engineering and Natural Sciences, Sabanci
University, Istanbul, Turkey

M. Cetin, is with the Faculty of Engineering and Natural Sciences, Sabanci
University, Istanbul, Turkey; and he is also with Department of Electrical and
Computer Engineering, University of Rochester, Rochester, NY, USA

T. Tasdizen is with the Department of Electrical and Computer Engineering,
University of Utah, Salt Lake City, UT, USA

A. Related Work

One of the earliest attempts to include a shape prior in
image segmentation is the active contour model, also called
Snakes, by Kass et al. [2]. In the Snakes, a general regularity
term is used as the shape prior, where the smoothness and
length of the curve serve as a penalty, which is based on the
assumption that smoother and shorter curves are more likely
[3]. However, in many applications a more informative object-
type specific shape prior can be learned from training samples.
In this regard, active shape models (ASM) by Cootes et al. [4]
are powerful techniques for segmentation using shape priors.
Variants of the ASM and their applications to different image
segmentation problems can be found in [5]–[7], and a review
in [8]. In the original ASM, a training set of shapes represented
by landmarks is used to construct allowable shape variations
via principal component analysis (PCA). The use of linear
analysis tools such as PCA in ASMs limits the domain of
applicability of these techniques to shape priors that can only
be modeled as unimodal densities. That is, the original ASMs
assume that the training shapes are distributed according to a
Gaussian-like distribution; hence, the technique cannot model
more complex (multimodal) shape distributions.

Several methods have been proposed to handle multimodal
distributions of shapes by extending ASMs [9]–[11]. These
approaches include the use of mixture of Gaussians [9] and
manifold learning techniques [10]. However, these approaches
use parametric probability distributions, which may not model
very complex shape variations [12]. In addition, the explicit
shape representation used in ASM models has two major
shortcomings. First, annotating landmark points with correct
correspondences across all example shapes can be difficult and
time consuming. Second, the extensions of the technique to
handle topological changes and segment multiply connected
objects are not straightforward. Active appearance models
(AAM), an extension of the ASM, are also proposed by Cootes
et al. [13] to model the possible appearance variations in
the training samples. However, like the ASM, the AAM also
assumes a Gaussian-like distribution of the appearances and
models the appearance variations using PCA.

To overcome some of the limitations of ASMs, level set
based shape priors were proposed [1], [3], [14]–[17]. Because
of their implicit nature, level set methods do not need land-
marks and can easily handle topological changes. In [14] and
[1], shape variability is captured using PCA on signed distance
functions of level sets. However, the space of signed distance
functions is a nonlinear manifold; hence, linear combinations
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of shapes no longer correspond to valid shapes. In order to
solve this challenge, Kim et al. [3] and Cremers et al. [15]
proposed nonparametric destiny estimation based shape priors
within a level set framework. Their priors do not assume
the space of signed distance functions to be linear and also
allow a good approximation of multimodal shape distributions.
However, the use of level set based shape and appearance
priors for image segmentation has several drawbacks; some of
the major ones are discussed next.

First, the similarities between two shapes are compared only
on a global scale in level set based approaches. Therefore,
during segmentation using level set based shape priors, the
candidate shape is forced to move towards the globally similar
training shapes without consideration for any local shape
similarities [3], [15]. For example, in Fig. 1 the top half of
shape (a) is similar to the top half of shape (b), and the bottom
half of shape (a) is similar to the bottom half of shape (c).
Therefore, if the shapes in Fig. 1 (b) and (c) are our training
samples, and the shape in (a) is our test sample, then during
segmentation, looking at local shape similarities can greatly
improve the segmentation accuracy. However, level set based
shape prior segmentation frameworks can compute only how
close the shape in Fig. 1 (a) is to shapes in (b) and (c), and
not to their local regions. Because of their inability to locally
combine training shapes in their segmentation framework,
level set based shape priors need large training samples with
all the possible shape variations as an independent training
sample [15]. Since medical datasets ussually don’t have many
ground truth segmentation shapes (as it is labor intensive to
obtain), methods that can develop shape models from a limited
number of training samples are advantageous.

Second, level set based shape priors methods use region-
based shape dissimilarity metrics [3], [15]. Region-based
shape dissimilarities such as the template metric or L2 distance
do not always correspond to the true shape dissimilarities
observed by humans [3], [15].

Furthermore, the appearance models used in the level set
framework are limited to mainly encoding the global object
properties such as intensity (color) and texture. Because of lack
of locality in the level set shape representation, it is difficult
to use more powerful localized appearance models [18]. For
instance, modeling the appearance of a prostate region (which
has a central gland and peripheral regions that usually have
different intensity levels) with a single density function, as is
done in global appearance models, may not capture sufficient
information for successful segmentation. Therefore, learning
the appearance distributions at small local scales results in a
better expressive power of the model, and hence can improve
the segmentation performance. We refer the reader to a survey
by Cremers et al. [19] for an overview of the use of priors
- including shape and appearance - in level set based image
segmentation

In this paper, we compare our algorithm with the level
set, ASM, and AAM frameworks, because of their popularity
in the medical image segmentation applications and their
similarity to the proposed method. However, there are many
other priors-based image segmentation methods available in
the literature. For instance, Zhang et al. [20], [21] proposed

Fig. 1. Similarities of shapes at a local level. The test shape (a) is similar to
the training shapes (b) and (c) at different regions.

a sparse shape composition and applied it to various medical
image segmentation problems. In [22], watershed segmenta-
tion using prior shape and appearance knowledge is presented.
In [23], an adaptive shape prior is proposed using a graph
cut image segmentation framework. Patenaude et al. [24]
developed a Bayesian model of shape and appearance for
subcortical brain segmentation. In [25], Nguyen et al. proposed
a classifier-based implicit shape representation using support
vector machines. Recently, deep learning methods for shape
priors using Boltzmann machines have been presented in
[26], [27]. However, most of these techniques require a large
number of manually segmented training samples, which are
time consuming and labor intensive to obtain [28].

B. Contributions

In order to solve some of the limitations of the currently
available techniques in the literature, we propose a novel
appearance and shape priors based segmentation in a Bayesian
framework. We use an implicit and parametric shape model
called Disjunctive Normal Shape Models (DNSM) [29]–[31]
to construct our shape and appearance models. The DNSM
approximates the characteristic function of a shape as a union
of convex polytopes which themselves are represented as
intersections of half-spaces. Figure 2(a) shows the intersection
of five half-spaces that form a polytope. If we use more half-
spaces, we can represent smoother convex polytopes as in
Fig. 2(b). The DNSM uses the union of convex polytopes to
represent complex shapes, as shown in Fig. 2(c). DNSM is

(a) (b) (c)

Fig. 2. Illustration of the DNSM shape representation. In (a), the intersection
of five discriminant half-spaces is used to create a polygon. In (b), a larger
number of half-spaces are used to create a smoother polytope. In (c), the
union of ten polytopes are used to represent a walking person shape (each
color represents a polytope).

a differentiable shape representation which allows the use of
variational approaches. The DNSM’s parametric nature allows
the use of powerful local prior statistics, and its implicit nature
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removes the need to use landmark points and easily handles
topological changes.

The major contributions of this paper include:

• Shape Priors: We propose DNSM-based global and local
shape priors. The DNSM shape representation allows the
estimation of nonparametric shape densities at any local
scale. The main observation here is that a rich set of
candidate shapes can be generated by locally combining
training shapes. For instance, in Fig. 1 our model can easily
learn the local shape distributions from the two training
samples (b and c), and hence can correctly segment the
noisy or occluded version of the test shape in (a). Therefore,
previously unseen shapes in the testing dataset can be
segmented by combining the local regions that are closest to
the candidate shape from the training shapes. The advantage
of our local shape prior model is particularly significant
when there are limited training shapes, as is usually the
case in most medical image segmentation problems. In
addition, we show that the traditional level set based shape
prior methods are a special case of our general shape prior
framework.

• Appearance Models: Similar to the shape priors, we also
propose local and global appearance models using the
DNSM. The main observation here is that an object of inter-
est can have varying appearances at different locations, and
hence, learning appearance statistics at small corresponding
local regions from the training samples can have a better
expressive power, compared to a single global appearance
distribution. Since the DNSM shape representation has a
concept of locality, for instance the different discriminants
or the polytopes shown with different colors in Fig. 2, local
nonparametric appearance models can easily be constructed
at any spatial scale.

• Segmentation Framework: We propose a general segmen-
tation framework that incorporates appearance and shape
priors in a Bayesian framework.

The rest of the paper is organized as follows. In section II,
we review the DNSM shape representation and introduce how
the model can be used in image segmentation in a Bayesian
framework. In section III, we present novel DNSM global and
local shape priors together with a new shape dissimilarity mea-
sure. In section IV, we construct global and local appearance
models using the DNSM. In section V, we provide qualitative
and quantitative analysis of our segmentation framework by
applying it to five different datasets: walking person, dendritic
spine, brain tumor, central gland, and full prostate. Finally,
section VI provides the conclusions. Preliminary results of
this work were presented at the MICCAI conference [32].
Compared to [32], this journal version: provides detailed
explanations and derivations of the algorithms, formulates
the proposed algorithm in a Bayesian framework and tie
together the shape and appearance models, gives a generic
appearance model that can be used with different features,
provides the formulations of the global and local priors for
both shape and appearance models, and gives a significantly
expanded experimental section. The DNSM has also recently
been formulated as a parametric level set framework for image

segmentation in [33], [34].

II. DISJUNCTIVE NORMAL SHAPE MODEL

A. DNSM Shape Representation

Consider the characteristic function f : RD → B where
B = {0, 1}. Let Ω+ = {x ∈ RD : f(x) = 1}. Let us
approximate Ω+ as the union of N convex polytopes Ω̃+ =
∪Ni=1Pi, where the i’th polytope is defined as the intersection
of Pi = ∩Mj=1Hij of M half-spaces. Hij is defined in terms
of its indicator function

hij(x) =

{
1,

∑D
k=0 wijkxk + bij ≥ 0

0, otherwise
, (1)

where wijk and bij are the weights and the bias term, and D
is the dimension. Since any Boolean function can be written
in disjunctive normal form [35], we can construct

f̃(x) =
N∨
i=1

 M∧
j=1

hij(x)


︸ ︷︷ ︸

Bi(x)

, (2)

such that Ω̃+ = {x ∈ RD : f̃(x) = 1}. Since Ω̃+ is an
approximation to Ω+, it follows that f̃ is an approximation
to f . Our next step is to provide a differentiable approx-
imation to f̃ , which is important because it allows us to
use variational approaches; in other words, it allows us to
formulate various energy functions and to minimize them with
respect to the parameters of the model. First, the conjunc-
tion of binary variables

∧M
j=1 hij(x) can be replaced by the

product
∏M
j=1 hij(x). Then, using De Morgan’s laws [35] we

replace the disjunction of the binary variables
∨N
i=1Bi(x) with

¬
∧N
i=1 ¬Bi(x), which in turn can be replaced by the expres-

sion 1 −
∏N
i=1(1 − Bi(x)). Finally, we approximate hij(x)

with logistic sigmoid functions σij(x) = 1

1+e

∑D

k=0
wijkxk+bij

to get the differentiable approximation of the characteristic
function f̂(x)

f̂(x;W) = 1−
N∏
i=1

1−
M∏
j=1

1

1 + e
∑D

k=0
wijkxk+bij︸ ︷︷ ︸

gi(x)

 , (3)

where x = {x, y, 1} for two-dimensional (2D) shapes and
x = {x, y, z, 1} for three-dimensional (3D) shapes, and W =
{wijk}. By appending 1 to the pixel coordinates x, we use
wijk to represent both the weights and the biases in the rest
of the paper.

The only adaptive parameters, wijk, are the weights and
biases of the first layer of logistic sigmoid functions σij(x)
which define the orientations and positions of the linear
discriminants that form the shape boundary. The conjunctions
of σij(x) form the convex polytopes gi(x). Fig. 2(a) and (b)
show convex polytope examples with different choices for
M . The disjunction of gi(x) forms the shape model f̂(x;W)
(Fig. 2 (c)). Note that, f(x) : RD → [0, 1], and the level set
f(x) = 0.5 represents the interface between the foreground
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f(x) > 0.5 (inside the shape) and background f(x) < 0.5
(outside the shape) regions.

Next, we discuss how to initialize the parameters of the
DNSM. We use the domain knowledge to decide on the small
number of polytopes needed N . For example, in order to
represent a walking person shape with DNSM, we can use
around N=10 polytopes to capture the limbs, head, torso, etc as
shown in Fig. 2. Similarly, we can easily pick the right number
of polytopes for medical organ (or tissue). DNSM shape
representation is less sensitive to the number of discriminants
per polytope, M . We use M = 16 for 2D images and
M = 32 for 3D segmentation. The initialization polytopes are
approximated as discs for 2D (and spheres for 3D) of a fixed
radius. The set of N seed points, C(i), i = 1 to N , are chosen
such that they are well distributed in the region of interest.
For 2D image segmentation, the initial disc approximations
are obtained by choosing the parameters, wijk, as

wijk =



cos

(
2πj

M

)
, k = 0

sin

(
2πj

M

)
, k = 1

−

(
r +

(
Cx(i)× cos

(
2π(j − 1)

M

))

+

(
Cy(i)× sin

(
2π(j − 1)

M

)))
, k = 2

(4)
where r is the radius of the initial disc. Cx(i) and Cy(i) are the
center point coordinates for disc polytope i. j = [0, ...,M−1].
For 3D images segmentation, we can use similar approach
to obtain the parameters, wijk, that approximate sphere poly-
topes.

B. Image Segmentation Using DNSM

The goal of DNSM-based segmentation can be formu-
lated as the estimation of the optimal DNSM parameters,
W = {wijk}, given an image I : Ω → R. In the Bayesian
framework, this can be computed by maximizing the posterior
distribution

P(W/I) ∝ P(I/W)P(W). (5)

The most probable segmentation of a given image is then
obtained by maximizing the posterior probability in equation
(5), which is equivalent to minimizing its negative logarithm.
Therefore the energy to be minimized is given as

E(W) = − logP(I/W)︸ ︷︷ ︸
EAppr

− logP(W)︸ ︷︷ ︸
EShape

(6)

where the first term is an image-based term which depends
on the observation I that can consist of appearance features
such as intensity, color and texture. The second term is based
on geometry, and it can be used to introduce prior shape
knowledge [19]. Therefore, the first term in (6) can be seen
as energy from appearance, EAppr, and the second term as
energy from shape, EShape. The segmentation is achieved by
minimizing the weighted average of the shape and appearance

energy terms. The energy minimization implies computing
the derivatives of both the shape and appearance terms with
respect to each discriminant parameters, wijk. By applying
gradient descent to the combined energy, the update to the
discriminants wijk is then given as

wijk ← wijk − α
∂EShape
∂wijk

− γ
∂EAppr
∂wijk

(7)

In the next two sections, we present the details on how we
formulate the EShape and EAppr for DNSM-based image
segmentation.

III. DNSM SHAPE PRIORS

In this section, we describe how a DNSM shape prior
can be constructed from a set of training shapes and used
in the segmentation of new images. The set of parameters
W = {wijk} of the DNSM is used to represent shapes; hence,
shape statistics will be constructed in this parameter space.
Therefore, in this section, we first present how to represent the
training shapes using W = {wijk} parameters of the DNSM.
Then, we detail the construction of global and local shape
prior energy terms.

A. Representation of Training Shapes with DNSM Parameters

In order to obtain pure shape statistics, it is important to
first remove pose variations (scale, translation, and rotation)
from the training samples [8]. Procrustes analysis [36] or
other shape alignment (matching) techniques can be used
to first align the training samples before representing them
with the DNSM parameters. Alternatively, the DNSM can
also be used for binary image registration in the discriminant
parameter domain. Shape transformation for alignment using
the DNSM has a significant computational advantage during
segmentation, and it is given in the Appendix.

The DNSM discriminant parameters, Wt, that represent
a given training shape, t, can be obtained by choosing the
weights that minimize the energy

E(Wt) =

∫
Ω

(f(x)− qt(x))2dx+η
∑
i

∑
r 6=i

∫
Ω

gi(x)gr(x)dx

(8)
where gi(x) represents the individual polytopes of f(x) as
given in equation (3). qt(x) is the ground truth segmentation
(1 for object and 0 for background) of the tth training shape,
and η is a constant. The first term in (8) fits the model to the
training shape by minimizing the mean square error between
the level set value f and the ground truth q. The energy from
the first term in (8) is minimum when f = 1 inside the
object shape (where the intensity value of the ground truth is
q = 1), and f = 0 outside the object shape (where the intensity
value of the ground truth is q = 0). The second term in (8)
minimizes the overlap between the different polytopes. The
motivation for including such an overlap constraint is to obtain
a representation which can provide better correspondence
across training samples, in addition to helping us develop local
appearance model for each region represented by a unique
polytope in Section IV. An η value of 0.1 is experimentally
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found to be sufficient to avoid the overlapping of the polytopes.
Figure 3 shows the effect of the second term in (8). There is
almost no overlap of the polytopes in Fig. 3(c) compared to
(b).

(a) (b) (c)

Fig. 3. Demonstration of the effect of the overlap constraint term of equation
(8). a) One slice of a prostate ground truth to be represented by the DNSM.
(b) and (c) show the DNSM representation with 3 polytopes. In (b), no overlap
constraint is used, η = 0 . In (c), the overlap constraint of η = 0.05 is used.
The different colors show the individual polytopes, and the white part in (b)
and (c) shows the area where at least two of the polytopes overlap.

We minimize (8) using gradient descent to obtain Wt which
represents the tth training shape. The derivative of (8) with
respect to the discriminant parameters, wijk, is given as

∂E

∂wijk
= 2 (f(x)− qt(x))

∂f(x)

∂wijk
+ η

∑
r 6=i

gr(x)
∂gi(x)

∂wijk
(9)

where ∂f(x)
∂wijk

=
(∏

r 6=i(1− gr(x))
)
∂gi(x)
∂wijk

, and
∂gi(x)
∂wijk

= −gi(x)(1− σij(x))xk. Therefore, during the evolu-
tion, the discriminant parameters are updated on each iteration
as wijk ← wijk − γ ∂E

∂wijk
, where γ is the step-size.

We have found that a common initialization (e.g. the mean
shape) for all the registered training shapes together with the
second term in (8) is sufficient to keep the correspondence
among the discriminants and polytopes across the training
shapes for most applications. Figure 4(d-f) shows the corre-
spondence achieved between the polytopes across the shapes
in (a-c). This is an advantage over ASMs, which can require
manually placed landmark points to ensure correspondence.
We use walking person silhouettes to demonstrate our shape
model, since person silhouettes have shapes that are easily
recognizable by any reader and they also have larger shape
deformations (and variations) compared to most biomedical
organs.

(a) (b) (c) (d) (e) (f)

Fig. 4. (a)-(c) are shapes from the walking silhouettes dataset [15]. (d)-(f)
show the non overlapping polytopes for shapes in (a)-(c) respectively, using
the DNSM. The fifteen polytopes (N=15) are shown with different colors.

B. DNSM Global Shape Prior

Our goal is to estimate how likely a candidate shape
represented by parameters W is, given T training shapes
W1, ...Wt, ..WT . Following an approach similar to [3], we
assume that the T aligned shapes are i.i.d. We can write

the Parzen probability density function, P(W), given the
discriminant parameters of the training shapes, Wt, as

P(W) =
1

T

T∑
t=1

K(d(W,Wt), σ) (10)

where K is a one-dimensional Gaussian kernel of standard
deviation σ, and d(W,Wt) is the shape distance between the
candidate shape and tth training sample. We can define the
distance between two shapes as the sum of the absolute dif-
ference between their corresponding normalized discriminant
parameters, which is given as

d(W,Wt) =

N∑
i=1

M∑
j=1

D+1∑
k=1

(∣∣∣∣∣wijkwt
kA
−
wtijk
wt
kA

∣∣∣∣∣
)

(11)

where wkA is the average of the kth weight across all
discriminants. Notice that we are dividing the weight of each
discriminant by its average value to normalize its contribution
to the overall distance summation. This normalization is
necessary because the bias weights are typically much larger
than the other weights. The shape dissimilarity distance in
(11) has some advantages compared to the approaches used in
level set based shape prior techniques. In [15] and [3], region
overlap based techniques such as template and L2 metrics are
used to evaluate the shape dissimilarity distance. However,
these region-based metrics do not always provide a good
shape dissimilarity measure. For instance, a rectangle with a
small protruding part is visually very different from a normal
rectangle, but the region-based similarity metrics still show
small shape dissimilarity (or large shape similarity) between
them. On the other hand, using the proposed method in
equation (11), in order for two shapes to have good similarity,
the corresponding discriminant planes (or lines in 2D) of the
two shapes should have similar angles and locations (biases).
Hence, our shape dissimilarity is based on the geometric
representation of the shapes and has the potential to correspond
closer to true shape dissimilarity observed by humans.

As presented in equation (6), the shape energy is defined
as the negative logarithm of (10). The energy minimization
implies computing the derivatives of the shape energy terms
with respect to each discriminant parameters, wijk.

C. DNSM Local Shape Prior

One of the major limitations of existing level set based
shape priors is that the similarity between the candidate and
training shapes is computed only globally. Since no local shape
similarity is considered, these approaches cannot generate
shape variations by locally combining training shapes. As
discussed in Section I-A using Fig. 1, the capability to measure
and use shape similarity at local level helps to segment shapes
that are not seen in the training. That is, we do not need to
have a specific shape in the training sample as long as there are
other training samples that can be locally combined to create
the candidate shape.

Unlike the traditional level set formulations, our DNSM
shape representation allows shape density estimation at any
local scale. Such local shape priors are of particular interest



IEEE TRANSACTIONS ON MEDICAL IMAGING 6

in applications in which different object parts can have inde-
pendent (uncoupled) statistical shape variability.

Next, we discuss how the global shape probability density
in (10) can be modified to obtain a local shape density. Let
a given shape be represented by N polytopes and M dis-
criminants per polytope using the DNSM. Let us also assume
that each local region is represented by a single polytope (see
Fig. 4(d-f)). We make this assumption for ease of explanation.
It can easily be relaxed so that the local region can be of
any size. We study shape density estimation for each region
(polytope) independently by decoupling the entire shape into
N local regions (polytopes). We can write the probability den-
sity function of the candidate’s ith polytope shape, represented
by the weight Wi, given the discriminant parameters of the
training shapes for the corresponding polytope Wt

i as

P(Wi) =
1

T

T∑
t=1

K(d(Wi,W
t
i), σi) (12)

where K is a Gaussian kernel of standard deviation σi,
and d(Wi,W

t
i) is the ith polytope (local) shape distance

between the candidate shape and tth training sample. We
define the distance between two polytopes as the sum of the
absolute difference between their corresponding normalized
discriminant parameters (similar to equation (11), but limited
to the two polytopes under consideration).

The shape energy for the ith polytope is then defined as the
negative logarithm of (12). During segmentation, the update to

the discriminant weights
(
wijk ← wijk − α

∂EShape,i

∂wijk

)
for

the ith polytope from the shape term is obtained by minimizing
the energy using gradient descent as

∂EShape,i
∂wijk

=
1

p(Wi)nσi2

T∑
t=1

K(d(Wi,W
t
i), σi)(wijk−wijkt).

(13)
Equation (13) shows that at local minima, the candidate
polytope shape is a weighted average of the corresponding
polytope training shapes, where the weight depends on the
similarity (d(Wi,W

t
i)) between the polytope of the candidate

shape and that of the given training sample. Therefore, in the
local region represented by a given polytope, the shape prior
term forces that part of the segmented image to move towards
the locally closest plausible shapes. Although we have only
shown when the local region size is defined to be a single
polytope, the local size can easily be changed (to multiple
of polytopes) by modifying equations (12 - 13) accordingly.
If necessary, the combination of shape priors computed at
varying local scales can be used during segmentation.

IV. DNSM APPEARANCE MODELS

Appearance models (priors), learned from the training
datasets, are frequently used in image segmentation. In this
section, we present how to construct global and local ap-
pearance models. Since the main application of this paper
is medical image segmentation, we only use intensity and
texture to demonstrate the model. However, the proposed
appearance model framework can be used with color and any

other advanced appearance features (such as HOG [37] and
CNN [38]) depending on the application area.

The P(I/W) appearance factor in equation (5) is approxi-
mated by an appearance distributions at the foreground and
background regions, where the regions are formed by W.
Maximization of the posterior appearance pdf is the same as
minimizing its negative logarithm. Since f(x) is close to 1
inside the object and close to 0 outside, it acts as a Heaviside
function. Therefore, the energy to be minimized is given as

EGAppr(W) = −
∫

Ω

(f(x) logPf + (1− f(x)) logPb)dx
(14)

by assuming independence of appearances at the foreground
and background regions, where Pf and Pb are the pdfs in the
foreground and background regions, respectively. We use Pf
instead of Pf (I(x),x) to simplify the notation. We also use
f or f(x) instead of f(x;W) for a similar reason.

Given a training image dataset the intensity probability
density functions for the foreground, Pf , and for the back-
ground, Pb, regions can be constructed using nonparametric
density estimation [39], [40]. Smoothed normalized intensity
histograms can be used to estimate the nonparametric Parzen
density [41] pdfs from the training images. Therefore, the
energy minimization implies computing the derivatives of the
appearance energy with respect to each discriminant parame-
ters, wijk. During segmentation, the update to the discriminant
weights from the appearance term is obtained by minimizing
the energy using gradient descent.

In our DNSM model, in addition to intensity, we use texture
features to obtain appearance priors. Grey-level co-occurrence
matrix (GLCM) texture measurements [42] are used to obtain
eight features (energy, entropy, correlation, difference moment,
inertia, cluster shade, cluster prominence, and Haralick’s corre-
lation) that summarize the texture T of a given image. Similar
to the intensity pdf, the texture pdf at the foreground PTf and
at the background PTb are estimated using the nonparametric
Parzen density [41] from the training images. Assuming the
texture and intensity pdfs are independent, the energy from
the appearance model given in (14) can now be modified as

EGAppr = −
∫

Ω

(logPf (I/W) + logPTf (T/W)) f(x)

+ (logPb(I/W) + logPTb(T/W)) (1− f(x))dx
(15)

The above probability densities and the corresponding en-
ergy from appearance in (15) are global functions. That is,
the probability densities are estimated from the foreground
and background training pixels, without any consideration for
the local relative positions of the pixels. However, images and
objects usually have spatially varying appearance distributions.
For example, the prostate in Fig. 5(a) is surrounded by
different structures (tissues) from different sides. In addition,
the prostate itself can have a spatially varying appearance
distribution. Hence, studying appearances at smaller local
regions has the potential to improve the expressive power of
our statistical framework, thereby increasing image segmen-
tation accuracy. Our DNSM allows the estimation and use
of appearance models at any scale. The local scale can be



IEEE TRANSACTIONS ON MEDICAL IMAGING 7

the neighborhood of a discriminate plane (see Fig. 2(a)), or a
polytope (see Fig. 4(d-f)), or even a union of polytopes. For
our next discussion, let us assume the local scale to be the
neighborhood of a given discriminant plane. It can easily be
extended to the cases when the local scales are a polytope or
combination of polytopes.

The first step in local appearance pdf estimation is repre-
senting the training shapes with the DNSM using (8). Then,
each pixel in the region of interest is assigned to its closest
discriminant plane using point-to-plane distance (point-to-line
distance in 2D images). In order to have a proper local
appearance prior, the different polytopes should cover non-
overlapping regions, which is achieved by the second term of
equation (8), as seen in Fig. 4(d-f) and Fig. 3. In the previous
global appearance prior case, we simply estimated the global
intensity and texture pdfs for foreground and background
regions. However, in the current local appearance prior case,
each discriminant plane hij has its own set of pixels (or voxels)
that are closest to it. Let us denote the hij discriminant with
just h to simplify the notations.

We use a similar approach discussed above (for global
energy), except that we compute the different pdf for each dis-
criminant h using its local region. For the hth discriminant, the
intensity pdf for the foreground Ph,f and for the background
Ph,b, and the texture pdf for the foreground Ph,Tf and for the
background Ph,Tb, are obtained (as discussed before) using a
smoothed normalized histograms for a nonparametric density
estimation. The global appearance model in equation (15) can
now be modified to obtain a local appearance energy given as

EAppr = −
∫

Ω

(logPh,f (I/W) + logPh,Tf (T/W)) f(x)

+ (logPh,b(I/W) + logPh,Tb(T/W)) (1− f(x))dx
(16)

See Fig. 5 for an example of intensity, texture, and combined
(intensity and texture) appearance probability map obtained
using local appearance density estimation. The figure shows
the probability in the region-of-interest. The region-of-interest
(ROI) used is a sphere with a radius large enough to encompass
all the prostate sizes. The radius of the sphere is set to twice
the size of the prostate with the largest size in the training
dataset. The ROI is placed automatically with its center set to
the mean location obtained from the center of masses of all
the prostates in the training. The accuracy of our segmentation
algorithm is not sensitive to the ROI, since it is set to include
all the voxels (regions) that can plausibly be part of a prostate.
The only purpose of using the ROI is to avoid unnecessary
computation on regions that are known to not contain any
prostate. Since prostate cannot be found outside that region of
interest, we automatically assign the areas outside the ROI to
zero.

Note that, the appearance energy given in (14) can easily
be reformulated to represent the popular Chan and Vese (CV)
[43] region-based method that approximates the image into
piecewise constant regions. In this case, since the image is
assumed to be made up of two piecewise constant regions,
a Gaussian probability density with fixed standard deviation
and constant mean can be used for the Pf and Pb in equation

(a) (b) (c) (d)

Fig. 5. a) Prostate MRI section. Appearance map using intensity in (b), texture
in (c), and combination of both intensity and texture in (d). The brightness
corresponds to the probability of the point to be inside the prostate. Note that,
we automatically assign zero confidence to areas outside the region-of-interest
in the appearance confidence maps.

(14). Hence, Pf ∝ exp−η(I(x)−c1)2 , and logPf (I(x),x) ∝
−(I(x)− c1)2. Therefore, the CV equivalent of the proposed
DNSM two-phase piecewise constant region-based variational
energy to be minimized is given as

EAppr =

∫
Ω

(I(x)− c1)2f(x) + (I(x)− c2)2(1− f(x))dx

(17)
where c1 and c2 are the mean intensities in the foreground and
background regions, respectively.

V. EXPERIMENTS

In this section, we present experiments conducted on five
different datasets. In Section V-A, we use the 2D walking
person data [15] to compare the performances of the global
and local shape priors. In Section V-B, we analyze the per-
formances of using both the shape and appearance priors on
the 2D dendritic spine dataset [44]. In this section, we also
evaluate the different combinations of no-priors, global, or
local priors, for both the shape and appearance. In Section
V-C, we use our appearance model to segment 3D brain tumors
using the MICCAI BRATS dataset [45]. No shape priors are
used here since brain tumors do not have well-defined shapes.
We segment the prostate central gland using 3D data from the
ISBI challenge [46] in Section V-D, and full prostate using
the MICCAI challenge 3D dataset [47] in Section V-E. In all
the experiments, we compare our results with results using a
level set framework, and (or) with results from the challenge
participants. Since the nonparametric density estimation based
level set methods are already shown to perform better than
ASM and AAM on multimodal shape datasets [3], [15], we
give no explicit comparison of our algorithm with ASM
and AAM (except for when they are used by the challenge
participants).

A. Walking Person Segmentation

Example images from the walking person dataset, obtained
from [15], are shown in Fig. 4. Cremers et al. [15] used the
same dataset to evaluate their level set based shape prior seg-
mentation. In order to compare and evaluate the segmentation
performances of the global and local shape priors, we add
Gaussian noise to the walking person images. We use this
section to present the results of two experiments.

First, we show the segmentation result for the walking
person example (Fig. 1) introduced at the beginning of this
paper to demonstrate our shape prior concept (in section III).
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We use the two training samples shown in Fig. 1(b) and (c).
Fig. 6(b) is our test image, which is a noise-corrupted version
of (a). From the figure, it is clear that the segmentation using
the proposed DNSM local shape prior, Fig. 6(f), is closer in
shape to the ground truth (a), because the top half of the test
image has moved closer to the training shape in Fig. 1(b),
whereas the bottom half of the test image has moved closer in
shape to the training sample in Fig. 1(c). On the other hand,
both the DNSM global shape prior and the level set based
shape prior methods move the shape of the test image to one
of the two training shapes in Fig. 1(b or c).

(a) (b) (c) (d) (e) (f)

Fig. 6. Comparison of segmentation results with no shape prior, with global,
and with local shape priors for noisy walking person. (a) is the test image, (b)
is noisy version of (a) to be used for testing. The rest are the segmentation
results using: without any shape prior (c), with level set shape prior [3] (d),
with the DNSM global shape prior (e), with the DNSM local shape prior (f).
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Fig. 7. Segmentation DICE score as a function of the number of training
samples.

Next, we show the effect of the number of training shapes
on the segmentation result. Figure 7 shows the average DICE
score as a function of the number of training samples: using
the global shape prior (dashed line), and using the local
shape prior (solid line). The graph shows that the performance
of global-based shape prior technique fall drastically as the
number of training shapes decreases. Whereas, our proposed
DNSM local shape prior performs reasonably well even with
very small training shapes because the local shape prior
method generates a rich set of shape variations by locally
combining the few training shapes available.

B. Dendritic Spine Segmentation

In this section, we demonstrate the effect of both the shape
and appearance priors using experiments conducted on the seg-
mentation of dendritic spines in 2-photon microscopy images.
Dendritic spines are the post-synaptic partners of a synapse. It
has been shown that the structure of dendritic spines and their
function are highly dependent [44]. Studying such structures

requires accurate segmentation of spines. Segmentation of
spines is challenging because spine heads and the dendrite
regions usually have similar appearances. In addition, the spine
neck region generally has very low contrast and is blurry in
2-photon microscopy images [44]. In this section, we segment
40 spines (with leave-one-out) using images obtained from
[44]. Figure 8 shows some of the spines to be segmented
and their corresponding ground truth segmentation. From the
figure it is clear that segmentation of spines can benefit from
both shape and appearance priors. A coarse level classification
of spine shapes reveals two spine classes: spines that have
a neck, and those that do not. Therefore, this example also
helps to demonstrate the performance of the proposed shape
priors when the shape distribution involves two shape classes,
leading to a multimodal shape density. We use the spines

Fig. 8. On the first row are some example spine images; and on the second
row the corresponding ground truth segmentation (by a domain expert) binary
images.

TABLE I
SPINE SEGMENTATION QUANTITATIVE RESULTS USING DICE

COEFFICIENTS

Prior Combinations DNSM Level set

No Shape + No Appearance Prior 32.1 31.0
No Shape + Global Appearance Prior 60.3 -
No Shape + Local Appearance Prior 64.8 -
Global Shape + No Appearance Prior 66.7 63.3
Global Shape + Global Appearance Priors 77.2 75.8
Global Shape + Local Appearance Priors 79.4 -
Local Shape + No Appearance Priors 70.5 -
Local Shape + Global Appearance Priors 79.3 -
Local Shape + Local Appearance Priors 82.6 -

in this subsection to compare the performances of the global
and local (shape and appearance) priors. Table I gives the
average DICE score obtained using the different shape and
appearance prior combinations. It can be seen from the table
that the result improves as we go from no priors to global
priors, and then to local priors (in terms of both the shape
and appearance priors). Table I also compares segmentation
using the DNSM priors with the level set based priors of [3],
[40]. For the level set based segmentation, only the global
shape and global appearance prior results are given in the
table, since existing level set based frameworks are limited
to global models. The DICE score using our DNSM global
shape and global appearance priors is slightly better than the
corresponding level set based shape and appearance priors.
We argue that this is because the proposed DNSM shape
distance is better than the template metric used in the level
set segmentation. However, the greatest improvement comes



IEEE TRANSACTIONS ON MEDICAL IMAGING 9

from the ability of our DNSM to model local shape and local
appearance priors. In Table I, it should be noted that in cases
(rows) when no appearance prior is used, the region-based data
term of equation (17) is employed for the DNSM, and the
Chan-Vese method [43] is applied for the level set. Therefore,
in the Table, no shape plus no appearance means using only
equation (17) for DNSM, and Chan-Vese [43] for level set.
In this experiment, we used N = 8 polytopes and M = 16
discriminants per polytope to represent a spine shape with
DNSM.

Figure 9 gives an example qualitative segmentation compar-
ison of local DNSM, level set based prior of [3], and the joint
classification and segmentation approach of [44]. The DICE
scores for the example in Fig. 9 are 83.1 using [3] (c), 83.9
using [44] (d), and 90.2 using our local DNSM approach (e).

(a) (b) (c) (d) (e)

Fig. 9. Spine segmentation: (a) the original intensity spine image to be
segmented, (b) the ground truth segmentation image, (c) the segmentation
result using the level set based shape prior [3], (d) the segmentation result
using [44], and (e) the segmentation result using our DNSM local shape and
local appearance model.

One way to get additional insight into the significance of
the different variants of our algorithm is to look at standard
deviation of the segmentation results on the image samples.
Table II shows the minimum, maximum and standard deviation
of the variations of our algorithm for the spine segmentation.
In the table, min score is the DICE segmentation value for the
sample that is segmented poorly, out of the total 40 samples.
Similarly, max score is for the sample that is best segmented by
the algorithm in terms of the DICE score. From the table, we
can see that local appearance + local shape has the smallest
standard deviation, since it results in good segmentation on
almost all the image samples. Whereas, no appearance +
no shape prior has large performance difference for different
image samples, resulting in large standard deviation.

Using the mean and standard deviations provided in Tables I
and II, we can show if the results obtained with the different
variants of our algorithm is statistically significant. By first
computing the variance between two different variants of our
algorithm and then using t-score, we can obtain the p-value
of the hypothesis. An experiment is statistically significant
when the p-value is less than the significance level α such
as 0.05. First, by using the result of the algorithm that does
not use any shape or appearance priors (first row in Table I)
as a null hypothesis and the variant that uses local shape +
local appearance priors (last row in Table I) as our testing
hypothesis, we get a t-score of 18.598 and the corresponding
p-value is less than 0.00001. Second, by using the result of
the algorithm that does not use any shape or appearance priors
as a null hypothesis and the variant that uses global shape
+ no appearance priors (see Tables I and II) as our testing
hypothesis, we get a t-score of 11.147 and the corresponding

p-value is less than 0.00001. Similarly, using global shape
+ global appearance priors as our null hypothesis and the
variant that uses local shape + local appearance as out testing
hypothesis we get a t-score of 6.904 and the corresponding
p-value is less than 0.00001. Hence, all of these comparisons
are deemed statistically significant. Note that, we used one-
tailed hypothesis since the improvement in the segmentation
result is from one side of the distribution, and the degree of
freedom is based on 40 training samples.

TABLE II
SPINE SEGMENTATION STATISTICAL ANALYSIS TO SHOW THE

DIFFERENCES BETWEEN THE VARIATIONS OF THE PROPOSED ALGORITHM

Prior Combinations Min score Max Score STD

No Shape + No Appearance 18.4 61.8 15.3
No Shape + Global Appearance 36.8 78.6 12.9
No Shape + Local Appearance 38.5 80.4 12.5
Global Shape + No Appearance 39.7 81.6 12.3
Global Shape + Global Appearance 51.4 85.1 10.6
Global Shape + Local Appearance 54.6 87.2 10.4
Local Shape + No Appearance 45.5 82.6 11.3
Local Shape + Global Appearance 62.7 89.9 8.9
Local Shape + Local Appearance 68.9 92.3 7.8

C. Brain Tumor Segmentation

In this section, we apply our method to segment tumors
in multimodal brain images using the MICCAI BRATS-2012
dataset [45]. Segmentation of brain tumors is an important but
difficult task in many clinical applications. In this experiment,
we use 20 high-grade (HG) and 10 low-grade (LG) images
available in the BRATS dataset to segment the active tumor
(core) regions. Since tumors do not have a well-defined
shape, no shape prior is used in this experiment. Instead, the
appearance model (prior) energy of equation (15) is used for
the automatic segmentation (with leave-one-out) of the active
tumors.

Quantitative results for comparing our segmentation with
the top performing automatic methods from the challenge
participants [45] are given in Table III. It should be noted
that the methods from the challenge [45] are specifically
designed for brain tumor segmentation, but we made no
special modifications to our general segmentation framework.
Recently, deep convolutional neural network is applied to
segmentation of brain tumors in [48] using MICCAI BRATS-
2013 datase (which has larger training samples compared to
BRATS-2012 we are using for this experiment).

TABLE III
QUANTITATIVE COMPARISON IN % DICE COEFFICIENT FOR

SEGMENTATION OF THE BRATS-2012 DATASET

Method HG LG

Zikic et al. [49] 71 62
Bauer et al. (with std. dev.) [50] 62± 0.27 49± 0.26
Geremia et al. [51] 58 20
DNSM 66 67
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Figure 10 and 11 show examples of segmentation results for
the low-grade and high-grade images, respectively. Figure 11
also shows the potential of our DNSM shape representation
for handling topological changes. The tumor locations are first
detected using the appearance energy followed by the gradient
descent step. The gradient descent of our segmentation starts
from the detected bounding box (in green) in Fig. 11(b), and
after several iterations the box splits gracefully to capture the
multiple small tumor components (see Fig. 11(c)).

(a) (b) (c) (d)

Fig. 10. Segmentation of brain tumors from low-grade multimodal MR im-
ages. a) FLAIR image b) the appearance probability map, c) the segmentation
(in red) overlaid on the appearance map image, d) the segmentation (in red)
overlaid on the ground truth segmentation.

(a) (b) (c) (d)

Fig. 11. Segmentation of brain tumors from high-grade multimodal MR
images: a) T1 image, b) bounding box (in green) detected using our ap-
pearance energy, c) segmentation (in red) overlaid on the T1 image, d) the
final segmented tumors (in red) overlaid on the manual segmentation.

D. Prostate Central Gland Segmentation
We use the NCI-ISBI 2013 Challenge - Automated Seg-

mentation of Prostate Structures [46]- MRI dataset to evaluate
the performance of our shape and appearance priors on 3D
image segmentation. The training data has 60 samples with
half obtained at 1.5 T and the other half at 3T. The test
data has 10 samples. Since the two acquisition setups (1.5T
and 3T) have different appearances, we decided to construct
two training appearance models one for each setup. During
segmentation (testing), we first detect the class of the image
(whether it is 1.5T or 3T), and then use the training data
of that particular class. We used N = 8 polytopes and
M = 32 discriminants to represent a central gland shape with
DNSM. We first apply histogram normalization to the MRI
images, and then we use the appearance and shape prior energy
terms of equation (7) to segment the central gland. Automatic
segmentation of the central gland in MRI is challenging due
to its variability in size, shape, location, and its similarity
in appearance to the surrounding structures. Figure 12 shows
one slice of MR image segmentation using DNSM local and
global shape priors. The local appearance model is used in
this experiment.

Table IV compares our algorithm with the top performing
results from the NCI-ISBI challenge. From the table it is clear

(a) (b) (c) (d)

Fig. 12. Central gland segmentation: a) MRI section and b) local appearance
map image (the brightness corresponds to the probability of the point to be
a central gland). c) Segmentation results with and without the shape prior
in yellow and red, respectively; green is the ground truth. d) Result in (c)
zoomed in.

that DNSM segmentation with local shape and local appear-
ance models performs better than with the global models. Our
algorithm produces better results compared to the top methods
in the challenge, both in terms of the DICE coefficient and the
mean distance (MD) between the segmented and the ground
truth surfaces, for the central gland segmentation part of the
challenge. For MD, the smaller the better. Rusu et al. in [46]
is an atlas-based segmentation, whereas the RUNMC in [46]
used an interactive segmentation. Table IV also compares our
result with the level set based shape and appearance priors
method of [40].

TABLE IV
CENTRAL GLAND SEGMENTATION QUANTITATIVE RESULTS USING

AVERAGE DICE AND MEAN DISTANCE (MD).

Method DICE MD

DNSM: Local Appearance + No Shape 75.2 2.13
DNSM: Global Appearance + Global Shape 80.9 1.57
DNSM: Local Appearance + Global Shape 82.7 1.32
DNSM: Local Appearance + Local Shape 84.1 1.27
Level set: Appearance + Shape Priors [40] 77.8 -
Atlas: Rusu et al. in [46] 82.1 1.58
Interactive: RUNMC in [46] 80.8 1.83

TABLE V
PROSTATE SEGMENTATION QUANTITATIVE RESULTS

Method Mean DICE

DNSM: No Shape Prior + Local Appearance 79.5
DNSM: Global Shape + Global Appearance 82.5
DNSM: Local Shape + Global Appearance 84.1
DNSM: Local Shape + Local Appearance 89.2
Level set: Shape Prior + Appearance Prior [40] 79.3
AAM: Vincent et al. in [47] 88.0
ConvNet: Yu et al. in [47] 89.4

E. Full Prostate Segmentation

We finally apply our algorithm to full prostate segmentation
using the MICCAI PROMISE 2012 challenge dataset [47].
There are 50 training samples of T2-weighted MR images
of the prostate with two different acquisition setups: with
and without endorectal coil, each with 25 training samples.
Since the two acquisition setups have different appearances,
we decided to construct two training appearance models one
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Fig. 13. Prostate segmentation results with local and global appearance priors
in yellow and red respectively. Green is the ground truth.

for each setup. During segmentation (testing), first we detect
the class of the image (whether it is with coil or without
coil) automatically, and then use the training data of that
particular class. The experiment is conducted using leave-one-
out. We used N = 8 polytopes and M = 32 discriminants
to represent a prostate shape with DNSM. Since the prostate
has two distinct regions, the central gland and the peripheral
region, a single global appearance prior has limited modeling
capability. Learning local appearances in different parts of the
prostate during training improves accuracy, as shown in Table
V. Our approach, with local appearance and local shape priors,
performs equivalent to the result from the top challenge partic-
ipant. The method in Vincent et al. [47] is based on AAM, and
Yu et al. [47] uses a volumetric convolutional neural network
to segment the prostate. The table also compares our result
with the level set based shape and appearance priors method
[3], [40]. Figure 13 shows a sample segmentation result for
one slice using local and global DNSM appearance models.

Note that, the computational time of our proposed algorithm
is on the order of seconds for 3D dataset (e.g. prostate) and
less than a second for 2D images (e.g. the spine segmenta-
tion). Our algorithm is implemented in C++ using the Insight
Segmentation and Registration Toolkit (ITK) [52] on 2.5-GHz
Intel Core i7, 8 GB RAM machine. The computational cost
(C) of our algorithm is proportional to the number Of DNSM
parameters M × N × D; where N is number of polytopes,
M is the number of discriminants per polytope, and D is
the dimensionality of the image (2D or 3D). That is, DNSM
that has N number of polytopes with M discriminants per
polytope has N×M×3 number of parameters to represent 2D
shape, and N ×M × 4 number of parameters to represent 3D
shapes. Since N = 8 and M = 16 (or 32 for 3D) successfully
represented all the shapes in our experiments, we believe that
DNSM can represent complex shapes with relatively smaller
number of parameters compared to active shape models (which
use landmark points) or level set methods (which use signed
distance function).

VI. CONCLUSION

In this paper, we presented priors-based image segmentation
using the DNSM shape model in a Bayesian framework.
The proposed segmentation framework solves some of the
major drawbacks of the commonly used priors-based methods
available in the literature for biomedical image segmentation;
in particular, active shape and appearance models and level set
based shape priors techniques. We have shown the potential
of our segmentation framework by applying it to different 2D
and 3D datasets. In the experiments, in addition to comparing
our results with state-of-the-art methods, we have also shown
the advantages of local shape and local appearance priors
compared to the global priors. The experimental results further
highlights the better suitability of our local shape prior method,
particularly in situations when the training data is limited
in size. Similarly, we have shown that learning appearance
statistics at small local neighborhoods gives better results.
Possible extensions of our work include coupled segmentation
of multiple objects and object tracking.

APPENDIX

In order to learn the shape statistics of training samples,
any pose (translation, scale, and rotation) variation has to
be removed first. We needed to align the shapes to remove
pose variations from the training samples before shape density
estimation, and to register the candidate shape to the pose of
the aligned training samples before modifying its shape using
shape priors. The use of binary image registration techniques
available in the literature is computationally expensive for
shapes represented by the DNSM parameters, due to the
required transformations between the image domain and the
DNSM parameter domain.

In this Appendix, we show how the pose of a shape repre-
sented by the DNSM parameters can be changed without going
to the image domain. For clarity of presentation, we focus on
the translation and scaling for 2D shapes. Let a given shape
with an initial (i) center-of-mass at (xi, yi) be represented by
the DNSM parameters W = {w}. A discriminant line with
a parameter w = (wx, wy, wb) has the x and y coordinate
weights (wx, and wy) and the bias weight (wb). Translation
and scaling of this shape to a new location and size do not
affect the orientations of the discriminants; hence only the bias
weight wb changes after the transformation. Let us say we
wanted to change the pose of the current shape by translating
it to a new center-of-mass location (xf , yf ) and scale it by a
factor C. Then, the final translated and scaled shape has the
same wx, and wy parameters, but different (wb). Therefore,
during translation and scaling the only unknown parameter
we need to find is the final bias weight (wfb).

Let di and df be the initial and final (after registering) dis-
tance of the center-of-mass point from the current discriminant
line. If there is no scaling, then di = df . However, during
scaling of the initial shape by C, then df =

√
Cdi. Using the

point-to-line distance equation, the distance of the center-of-
mass point (xi, yi) from the discriminant line x.wx+y.wy+wb
is given as

di =
|xi.wx + yi.wy + wb|√

wx2 + wy2
(18)
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After translating and scaling of the initial image, the final
shape has a discriminant line given by wx + y.wy + wf b.
wf b is the final bias weight, since the translated and scaled
shape has the same wx, and wy parameters. Therefore, the
distance of the new (final) center-of-mass point (xf , yf ) from
the discriminant line x.wx + y.wy + wf b is given as

df =
|xf .wx + yf .wy + wf b|√

wx2 + wy2
(19)

From equations (18) and (19), and the fact that df =
√
Cdi,

it follows that the final bias weight, wf b, is

wf b =
√
C(|xi.wx+yi.wy +wb|)− (|xf .wx+yf .wy|) (20)

Using equaion (20), therefore, the scaled and translated
shape has discriminant weights wf = (wx, wy, wf b). Pose
variation due to rotation can similarly be derived using the
observation that all the discriminant lines rotate at the same
angle. For 3D shapes, the only differences are the use of
the point-to-plane distance equation (in place of the point-
to-line) and df = 3

√
Cdi (in place of df =

√
Cdi) in the

above derivation. Because of the closed-form solution of (20),
the back and forth registration of the candidate shape in our
segmentation algorithm (for shape and appearance updates) is
achieved at a very low computational cost.
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