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Disjunctive Normal Parametric Level Set With
Application to Image Segmentation
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Abstract— Level set methods are widely used for image seg-
mentation because of their convenient shape representation for
numerical computations and capability to handle topological
changes. However, in spite of the numerous works in the
literature, the use of level set methods in image segmentation still
has several drawbacks. These shortcomings include formation
of irregularities of the signed distance function, sensitivity to
initialization, lack of locality, and expensive computational cost,
which increases dramatically as the number of objects to be
simultaneously segmented grows. In this paper, we propose a
novel parametric level set method called disjunctive normal
level set (DNLS), and apply it to both two-phase (single object)
and multiphase (multiobject) image segmentations. DNLS is a
differentiable model formed by the union of polytopes, which
themselves are created by intersections of half-spaces. We formu-
late the segmentation algorithm in a Bayesian framework and use
a variational approach to minimize the energy with respect to the
parameters of the model. The proposed DNLS can be considered
as an open framework that allows the use of different appearance
models and shape priors. Compared with the conventional
level sets available in the literature, the proposed DNLS has
the following major advantages: it requires significantly less
computational time and memory, it naturally keeps the level
set function regular during the evolution, it is more suitable for
multiphase and local region-based image segmentations, and it is
less sensitive to noise and initialization. The experimental results
show the potential of the proposed method.

Index Terms—Level set, disjunctive normal forms, segmen-
tation, parametric level set, multiphase level set, variational,
Bayesian methods.

I. INTRODUCTION

HE level set method, first introduced by Osher and

Sethian [1], is a popular technique for the evolution
of interfaces. The technique has a wide range of applica-
tions in image processing, computer graphics, computational
geometry, optimization, and computational fluid dynamics.
The basic idea behind the level set method is to represent
contours as the zero level set of an implicit function defined
in a higher dimension, usually referred to as the level set
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function, and formulate the evolution of the contour through
the evolution of the level set function [2].

A. Related Work

The ability of the level set method to handle topological
changes automatically, and its convenient representation of
regions and their boundaries on the pixel grid without the need
of complex data structures, has made the level set suitable for
image segmentation applications [3], [4].

The Bayesian formulation of Geman and Geman [5] and
the energy functional of Mumford and Shah (MS) [6] had a
significant impact on the understanding of image segmentation
by transforming the handling of the problem from a heuristic
approach to algorithms with sound mathematical concepts [7].
Brox and Cremers [7] have shown the equivalence of the
MS energy functional and the Bayesian model. Given an
image [ : Q — R with Qg regions, the general energy
functional that unifies the MS and the Bayesian method for
image segmentation [4], [8] is given as

R
E(Q, P) = Z/Q —log Prdx + o|S] (1)
_1 T

where P, models the probability density functions (pdf) of
region €, |S| represents the total length of the bound-
ary of the disjoint regions, and v is a constant weighting
parameter. The first term in (1) maximizes the a posterior
probability of pixels being assigned to the correct region, and
the second term minimizes the boundary length. Minimizing
equation (1) is difficult since the first term is acting on the
two-dimensional (2D) image domain while the second term
is a one-dimensional (1D) curve. The use of a level set
framework helps to elegantly handle this problem, since the
contour S is embedded into the image domain and represented
by the zero level set of the level set function @. For instance,
the level set formulation of (1) for a two-phase (two regions)
segmentation can be written as

E :—/ H(®)logP1+(1 — H(D))logP> + v|VH (D)|dx
Q
)

where the level set function @ > 0 for region € and ® < 0
for region ;. The Heaviside function H(®) = 0 for ® < 0
and H(®) =1 for ® > 0.

Although the use of a level set framework in image seg-
mentation has significant advantages, the conventional level set
formulation has several major drawbacks: expensive compu-
tational cost, formation of irregularities of the signed distance
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Fig. 1. SDF, @.

function, sensitivity to noise and initialization, and lack of
locality. Next, we elaborate these shortcomings, give the
prominent works in the literature that address them, and then
discuss the remaining challenges that we attempt to solve in
this paper.

1) Computational Cost: Level set implementation is com-
putationally expensive, since it increases the dimension of
the problem by one. Modifications such as fast marching [9]
and sparse methods [10] have been proposed to improve the
computational time of level set evolution. However, level set
evolution is still relatively slow [11]. This is mainly because
the gradient descent methods used in level set evolution need
a large number of iterations, since their time step is limited
by the standard Courant-Friedrichs-Lewy (CFL) condi-
tion [12], [13] (CFL is also essential for the numerical stability
of the iterative scheme [12], [13]).

2) Level Set Function Irregularity: The level set function,
®, develops irregularities, such as a very sharp or flat shape,
during evolution [2]. Figure 1 shows an example of a regular
signed distance function (SDF), ®, which is usually used as a
level set function. Irregularities in the function cause numerical
errors and eventually destroy the stability of the level set
evolution. In order to overcome these irregularities, some
of the techniques employed are periodically re-initializing of
the level set function, and adding a regularizing term that
forces the level set function to be close to a signed distance
function [14], [15]. However, the re-initialization method has
the undesirable effects of moving the level set from its
original location, expensive computational cost, and blocking
the emerging of new contours; whereas, the regularizing terms
also add computational cost and still cannot guarantee the
smoothness of the signed distance functions [14], [15].

3) Sensitivity to Noise: Segmentation of noise corrupted
images using conventional level set methods is challenging.
The recently proposed level set segmentation methods in [14]
and [15] have more capability to handle significant noise
level corruption. However, these latest techniques still require
tuning of parameters. For instance, by using larger weight
for the boundary length term (see equation 1) which forces
the boundary to be shorter, these methods can make the
segmentation less sensitive to noise. However, forcing the
boundary to be shorter has the unintended consequence of
making the contour stiff resulting in reduced flexibility to
handle complex shapes.

4) Multiphase Segmentation Challenges: For segmentation
of an image into more than two regions, several algorithms
have been proposed in the literature using the level set
method [4], [16]-[19]. To segment multiphase images, one
level set function @, can be used for each region €, in
equation (1). However, this simple method can result in
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overlap of the different regions and creation of gaps. To over-
come these challenges, extra coupling forces are introduced in
[16] and [18]. Although modeling each object independently
with its own level set function has some advantages, the com-
putational cost and memory requirements become daunting
as the number of objects to be segmented grows [19]. Vese
and Chan [20] proposed a multiphase level set framework
that requires log, R level set functions to segment R regions.
Although the method in [20] is relatively computationally
attractive, it is more convenient to have a unique level set for
each object in applications such as tracking of the individual
objects and use of their shape priors. The computational
cost of all the above multiphase level set methods increases
significantly as the number of objects to be simultaneously
segmented grows. In general, in addition to their expensive
computational cost and memory requirements, most multi-
phase level set methods in the literature are also very sensitive
to initialization [4], [20].

5) Lack of Locality: The current level set methods available
in the literature lack a locality property. That is, signed
distance functions do not give unique local information. For
instance, from the signed distance function shown in Fig. 1,
we can see that all the points that are at the same distance
from the zero level set are given the same value, even
though the points are far from each other; hence, there is no
way to uniquely identity a given local region. This prohibits
the use of powerful local appearance models in level set
methods [21]. For instance, a pedestrian wearing multicolored
clothes requires modeling of her appearance at a small local
scale, instead of a single global appearance model normally
obtained by using a conventional level set to represent the
person.

Lankton and Tannenbaum [22] proposed a mathematical
framework for localizing region-based energies in the level set
segmentation method. Localizing of the region-based energy is
necessary when the image features are not spatially invariant,
for instance due to the bias field in MR images. Recently,
several local region-based segmentation methods have
appeared in the literature for inhomogeneous image segmen-
tation [7], [23]-[25]. What all the inhomogeneous image
segmentation methods in the literature have in common is
that they compute local region statistics by convolution of the
image with a truncated Gaussian kernel or a box of fixed size
around each pixel. This convolution significantly increases the
computational time.

In order to limit the computational cost and also
minimize irregularities of the level set function, parametric
level set methods have been proposed in the literature [3],
[12], [26]-[31]. The minimization of the functional is directly
obtained in terms of the radial basis function or B-spline
coefficients. These parametric level set formulations require
less computational cost due to the low-order representation
and the possibility of using larger step sizes. Although these
parametric level set methods simplify the challenges involved
in keeping the regularities of the level set function, they still
require re-normalization of the level set function during the
evolution process [3]. In addition, when applied to multiphase
and local region-based image segmentations, the parametric
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Fig. 2. [Illustration of the DNLS shape representation. In (a), the intersection
of 8 discriminant half-spaces is used to create a polytope. In (b), a larger
number of half-spaces is used to create a smoother polytope. In (c), the union
of many polytopes are used to represent a horse shape (each polytope is shown
with a different intensity/color level).

level set currently available in the literature has the same
drawbacks as the conventional nonparametric level set method.

B. Contributions

In this paper, we propose a novel parametric level set
method called Disjunctive Normal Level Set (DNLS), and
apply it to both two-phase and multiphase image segmenta-
tions. The DNLS is based on an implicit and parametric shape
model called Disjunctive Normal Shape Models (DNSM). The
DNSM has recently been used for a single object segmen-
tation: to model the shape and appearance priors of objects
in [32]-[34], and as an interactive segmentation framework
in [35]. The DNLS approximates the characteristic function
of a shape as a union of convex polytopes which themselves
are represented as intersections of half-spaces. Figure 2(a)
shows how the conjunctions of eight half-spaces form a
convex polytope. If we use more half-spaces, we can represent
smoother convex polytopes as shown in Fig. 2(b). Our DNLS
uses the disjunction of many convex polytopes to represent
complex shapes, as shown in Fig. 2(c).

DNLS is a differentiable level set shape representation
that allows the use of variational approaches. The major
contributions of this paper include a novel parametric level
set representation and Bayesian framework for two-phase and
multiphase image segmentations using the proposed level
set. Compared to the conventional level set formulations,
the proposed DNLS has the following major advantages:

o Lower computational cost: Two major factors contribute
to the reduction in computational time for the proposed
DNLS method. First, parametric representation of the
DNLS level set results in a lower-dimensional problem.
Second, the time step of our DNLS is not limited by the
standard CFL condition; hence, we can use a larger step
size during the initial stages of the evolution, resulting in
fewer number of iterations.

o Regular level set function: The DNLS is not based on
a signed distance function, and the level set function
remains naturally regular during the evolution. Hence,
re-initialization (and all the drawbacks that comes with
it) is completely avoided.

o Insensitivity to Noise: The proposed DNLS is less sen-
sitive to noise, and does not need tuning of any length
term.

o Efficient and robust multiphase level set framework: The
DNLS we propose in this paper has the highly desirable
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properties that it is less sensitive to initialization, and
its computational cost and memory requirement remains
almost constant as the number of objects to be segmented
grows, while also having the capability to represent each
object with a unique level set. These properties are mainly
because the DNLS is formed by union of many polytopes,
each of which can be treated as a level set function and
assigned to different objects (or phases).

o Locality information: The DNLS we propose has strong
locality due to its discriminants and polytopes that form
the model, which can be seen from the differently col-
ored local regions in Fig. 2(c). The locality property of
the DNLS allows the use of powerful local appearance
models, and can also reduce the computational cost of
local region-based multiphase segmentations.

The rest of the paper is organized as follows. In section II,
we present the DNLS shape representation. Section III intro-
duces how the DNLS can be used in image segmentation.
In section IV, we present an application of the proposed
level set for two-phase image segmentation. In section V,
we describe our multiphase level set framework and show
how it is used for simultaneous segmentation of multiple
regions. In section VI, we provide qualitative and quantitative
analysis of the proposed DNLS segmentation framework and
compare it with the latest level set image segmentation meth-
ods in the literature by using different phantom, natural, and
medical images. Finally, section VII provides the conclusion.
Preliminary results of this work have been presented at the
ICIP 2016 conference [36]. Compared to [36] this journal
version: provides detailed explanations and derivations of the
algorithms, formulates the proposed algorithm in a Bayesian
framework, gives a generic approach that can be used with
any appearance feature, shows the capability of the proposed
DNLS method for both homogenous and inhomogeneous
image segmentations, and provides a significantly expanded
experimental section.

II. DISJUCTIVE NORMAL LEVEL SET

Consider the characteristic function f : R? — B where
B = {0,1}. Let QF = {x € R? : f(x) = 1}. Let us
approximate Q* as the union of N convex polytopes Q1 =
UII.V: 1 Pi, where the i’th polytope is defined as the intersection
of P; = ﬂyle,-j of M half-spaces. H;; is defined in terms
of its indicator function

1, Z/?:o wijkxk +bij =0

hii (x) =
ij (%) 0, otherwise,

3)

where w;j; and b;; are the weights and the bias term, and D
is the dimension. Since any Boolean function can be written
in disjunctive normal form [37], we can construct

. N M
fo =\ Ahi®]. )
i=1 \j=1

Bi(x)

such that QT = {x € R : f(x) = 1}. Since Q" is an

approximation to Q7 it follows that f is an approximation
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Fig. 3. Regularly distributed polytopes.

to f. Our next step is to provide a differentiable approx-
imation to f , which is important because it allows us to
use variational approaches; in other words, it allows us to
formulate various energy functions and to minimize them with
respect to the parameters of the model. First, the conjunc-
tion of binary variables /\M_1 hij(x) can be replaced by the

product H
replace the disjunction of the binary variables \/l-:1 B;(x)
with — /\l 1 B (x) which in turn can be replaced by the
expression 1— ]_[ _;(1=B;(x)). Finally, we approxunate hij (x)
with logistic sigmoid functions o;;(x) =

—1 hij (x). Then, using De Morgan’s laws [37] we

1+ Zk Oll)ljk¥k+’7lj
to get the differentiable approximation of the ‘characteristic
function f (x)

N M

fewy=1- 1]
i)

1
1— , (5
j=1 1+ o2 e0 WijkXk+bij )

8i(x)

where x = {x, y, 1} for two-dimensional (2D) shapes and x =
{x,vy,z, 1} for three-dimensional (3D) shapes. By appending
1 to the pixel coordinates X, we use w;;jx to represent both the
weights and the biases in the rest of the paper. W = {w;;} are
the discriminant parameters, and X (x) is the list of polytopes
that are in the neighborhood of the location x. g;(x) represents
the i'" polytope.

The only adaptive parameters in equation (5) are the
weights (w;jx) and biases (b;;) of the first layer of logistic
sigmoid functions o;; (x) that define the orientations and posi-
tions of the linear discriminants that form the shape boundary.
In equation (5), f(x) : RP? — [0,1], and the level set
f(x) = 0.5 represents the interface between the foreground
f(x) > 0.5 (inside the shape) and background f(x) < 0.5
(outside the shape) regions. Therefore, the DNLS f(x) is a
continuous value between 0 and 1; hence, it is not a signed
distance function and does not suffer from irregularities.

The DNLS formulation of equation (5) is similar to the
DNSM shape model presented in [32] and [35], except for
two modifications.

First, instead of using the application domain knowledge to
decide on the small number of polytopes needed [32], [35],
we use a large number of polytopes, N, in the DNLS for-
mulation, and initialize the level set with regularly distributed
polytopes (in the region of interest), as can be seen in Fig. 3.
The use of dense initialization helps the DNLS to automati-
cally capture complex shapes, detect small parts and holes, and
provides a fast convergence speed. The initialization polytopes
are approximated as discs (and spheres for 3D) of a fixed
radius, using seed points that are regularly distributed in the
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region of interest. The initial disc approximation is obtained
by choosing the parameters, w;jk, as

(27rj)
cos{— ), k=0
M
i
sin(ﬂ R k=1
M

Wijk =

- (6)
_(r—i—(Cx(i)xcos (727[(5‘4 1)))
+(Cy(i)xsin (W))) k=2

where r is the radius of the initial disc. C, (i) and C, (i) are the
center point coordinates for polytope i. In conventional level
set methods, the initialization is carried out by generating a
signed distance function using, for instance, a fast marching
method. On the other hand, the initialization of our DNLS
is generated efficiently using the closed-form equation given
in (6).

Second, for computational efficiency, we use only the neigh-
boring polytopes, 8 (x), for each location, x, in the image. For
instance, in Fig. 3 only the polytopes in the red box are used
when evaluating the characteristic function, f, at location x.
Since the polytopes are regularly distributed in the image, each
pixel has its own fixed set of polytopes, R (x), which can be
precomputed. During the level set evaluation, the individual
polytopes can grow, shrink, deform, disappear, and reappear.

III. IMAGE SEGMENTATION USING DNLS

The goal of DNLS-based image segmentation can be for-
mulated as the estimation of the optimal DNLS parameters,
W = {w;jr}, given an image I : Q — R. In the Bayesian
framework, this can be computed by maximizing the posterior
distribution

PW/I) o< P(1/W)P(W) (M

The P(W) factor is the a prior probability of a certain
partitioning W. P(W) is a geometry-based factor for which a
simple approach that minimizes the total boundary length (sur-
face in 3D) or a sophisticated shape priors can be used [32].

The P(I/W) factor, in general, is approximated by an
intensity distributions in the regions r € {1, ..., R}, where the
regions are formed by W. Following a similar approach given
in [7], and assuming independence of intensities at different
locations x, we can write P(I/W) = [[ycq PU (x)/W, x)d%,
where dx is an infinitesimal bin size. With the partitioning of €
by the DNLS parameters W into disjoint regions (Q = U, Q,,
Q,NQ; =0, Vr # j), P(I/W) over the whole image domain
can be separated into products over the regions

Pa/W) =TT pUm/x e Q)™ @®)
r xeQ,

The most probable segmentation of a given image is
then obtained by maximizing the posterior probability in
equation (7), which is equivalent to minimizing its negative
logarithm. Therefore, the energy to be minimized is given as

R
EW)=->" /Q log P (I (x), x)dx — log P(W)  (9)
r=1 4
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where P, is the probability density of region r. Equation (9)
is the DNLS-based equivalent of the general segmentation
equation given in (1). Looking at equation (9), we can observe
different image segmentation cases. When R = 2, we have a
standard two-phase segmentation of an image into foreground
and background regions. When R > 2, we have a multiphase
segmentation case. We present these two cases in detail in
sections IV and V, respectively. In addition, based on how
‘P, is modeled, we can have homogenous and inhomogeneous
image segmentation cases. If the intensities in each region are
assumed to be homogenous, P, can be modeled as a Gaussian
distribution with a constant mean, resulting in the popular
piecewise constant case.

Other than intensity, the /P, probability densities can also
model color, texture, or any other appearance features. In this
paper, we focus on intensity-based P,; however, the algorithms
we present can equally be used for all other appearance
features. In the rest of the paper, we omit the geometry prior
term in (9) by assuming uniform shape priors. A term that
minimizes the boundary length (surface in 3D) frequently used
in conventional level set based methods [38] or advanced shape
priors [32] can easily be incorporated into the algorithms we
present.

Note that the above DNLS-based energy formulation is for
region-based image segmentation. Additionally, edge-based
image segmentation methods that utilize image gradients in
order to specify object boundaries are available in the liter-
ature. In this paper, we focus on region-based segmentation
and show the two-phase and multiphase applications. However,
the proposed DNLS can easily be formulated for (and applied
to) edge-based segmentation. For instance, in an edge-based
image segmentation using the proposed DNLS, the data term
P(I/W) in equation (7) becomes the likelihood that the
contour is on the image edge by first computing the image
gradient.

IV. TWO-PHASE SEGMENTATION

Segmentation of an image into two regions (foreground and
background) with equation (9) can be accomplished by using a
single level set function f. Thatis, f > 0.5 in the foreground
and f < 0.5 in the background regions. In this two-phase
case (R = 2), equation (9) can now be rewritten as

EW) = —/Q(f(x)log’Pf—i-(l — f(x))log Pp) dx (10)

where Py and P, are the pdfs in the foreground and back-
ground regions, respectively. To simplify the notation, we use
Py instead of Ps(I(x),x). We also use f or f(x) instead of
f(x; W) for a similar reason. Since f(x) is close to 1 inside
the object and close to O outside, it acts as a Heaviside
function. Hence, equation (10) gives the DNLS version of the
general two-phase equation in (2).

Rearranging (10) (and ignoring the term that is not a
function of the discriminant W), we get

E(W):—/Q(f(x)(long—long)) dx (11)
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The energy minimization implies computing the derivatives
of equation (11) with respect to each discriminant parame-
ter, w;jr. During segmentation, the update to the discriminant
weights, w;jr, is obtained by minimizing the energy using
gradient descent as

JEW) B of (W)
B = (long logpb) dwi (12)
where
of (W) o
= 1-Tla-g
- aw,-,-k( ,l;lf g(x)))
0gi
= | [T - &0 | 5
ref Wijk
r#i
M 60-'
=[] -g0n|{1-]]ou| ==
ren 1£) Wijk
r#i
=[]0 - &®) | &i®0 —0yx)x  (13)
ref
r#£i

Therefore, during the level set evolution, the discriminant para-
meters are updated on each iteration as w;jr <— wjjk —y i}—ik
where y is the step-size. Since the evolution of the proposed
parametric level set is not constrained by the standard CFL
condition, we can easily choose large y at the beginning of
the evolution and gradually decrease it as the segmentation
progresses, for fast convergence. Notice that the level set
function, f, remains regular throughout the evolution; hence,
no re-initialization or additional regularizing term is needed.

1) Homogenous (Piecewise Constant) Case: Chan and
Vese [38] (CV) proposed one of the most popular two-phase
level set based segmentations by approximating the image
into piecewise constant regions and evolving the level set in
order to minimize the variance of each partition. In this case,
since the image is assumed to be made up of two piecewise
constant regions, a Gaussian probability density with fixed
standard deviation and constant mean can be used for the Py
and P, in equation (10). Hence, Py o exp’”(l(x)’cl)z, and
logPr(I(x),x) o< —(/ (x)—c1)?. Therefore, the CV equivalent
of the proposed DNLS two-phase piecewise constant region-
based variational energy to be minimized is given as

E(W) = /Q IO —en? )+ (16 — )21 — f&))dx
(14)
where c¢1 and c; are the mean intensities in the foreground and

background regions, respectively. The average intensity in the
foreground, c1, can be obtained by

_ Jo T&®)H(f(x) — 0.5)dx
atn= Jo H(f(x) — 0.5)dx

15)
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That is, the mean intensity in the foreground, c1, is simply the
average of the intensities of all the pixels where f(x) > 0.5.
Similarly, ¢; is given as

() = Jo I®)(1 = H(f(x) - 0.5))dx
Jo(1 — H(f(x) — 0.5))dx

2) Inhomogeneous (Piecewise Smooth) Case: During inho-
mogeneous image segmentation, the pdf at the foreground (and
at the background) cannot be approximated by a constant mean
Gaussian. Since the intensity inhomogeneity is usually due to
a slowly varying field, in a small local region the intensity
distributions can still be approximated by a constant mean
Gaussian [22]—-[24]. Therefore, the mean intensities ¢; and c¢»
in equation (14) are now replaced by their localized versions
¢1(x) and ¢z (x). Following a similar approach proposed in [22]
for localizing region-based energies in level set segmentation
methods, we can write ¢ (x) and cz(X) as

fg Bx,r)I(X)H (f(x) —0.5)dx
fg B(x,r)H(f(x) — 0.5)dx
fg Bx,r)I(x)(1 — H(f(x) — 0.5))dx
fQ Bx,r)(1 — H(f(x) —0.5))dx
where B(x,r) is a local region mask of radius r. That is,

B(x,r) = 1 for all pixels that are at a radius of less
than or equal to r from pixel x, and B(x, r) = 0 otherwise.

(16)

ca(f) =

o(f) = (18)

V. MULTIPHASE SEGMENTATION

In this section, we extend the DNLS framework to simulta-
neous segmentation of multiple regions, R > 2. The general
segmentation equation in (9) can be directly used for multi-
phase image segmentation by employing R different level set
functions, each representing one region. However, as noted
in [4], [18], and, [20] the level set functions need coupling
in order to avoid creation of overlaps (constraint of disjoint
regions) and gaps (there must not be pixels that are not
assigned to any region). To overcome this limitation, three
major approaches are available in the literature.

The first approach is based on using one level set function
for each region, together with a Lagrangian multiplier for
a coupling force term that enforces the constraint of dis-
joint regions [16], [18]. However, this additional coupling
term results in significant computational cost [4]. The second
approach, proposed by Vese and Chan [20], uses log, R level
sets to represent R regions. This approach naturally handles
the constraint of disjoint regions without the need for any
additional coupling term if the number of regions is a power
of 2. The fact that the [20] method does not represent each
object with its unique level set limits the suitability of the
approach for certain applications (e.g., in applications that
require tracking of the individual objects and (or) use of
their shape priors). The third approach, proposed by Brox
and Cremers [4], uses the concept of competing regions.
By enforcing a competition between the level sets assigned
to the different objects, the method avoids the creation of
overlaps and gaps, without requiring the additional coupling
force term. We use a method similar to the Brox-Cremers
approach of competing regions, and propose an efficient
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DNLS-based multiphase segmentation framework, by starting
from the energy maximization of equation (9).

Since the DNLS level set presented in section II is made up
of the union of many polytopes, the single level set function
given in equation (5) can be used to segment R regions.
Each of the polytopes can individually be regarded as a level
set function, and hence, each can be assigned to a different
region (object). We represent each region, r, by a unique
level set f,, that is formed by the union of some of the
polytopes of the function f. See Fig. 4(b) for an example
of polytopes assigned to three different regions using random
label assignment initialization, to create a unique level set
fr for each region.

We can use the energy given in equation (9), by omitting the
geometry prior term using uniform shape priors assumption,
for the multiphase segmentation

R
EW) =~ [ 3 frlog (P)ax (19)
Q
r=1
However, since log (P,) is always negative, during
minimization of the energy in equation (19) all the
fr level sets quickly become zero, resulting in the

disappearance of all the regions, €,. By comparison,
the energy for the two-phase case in equation (11) has
two competing regions all the time. That is, the log Py at the
foreground is balanced by the —log”P, at the background.
There is no such balancing term in equation (19) for the
multiphase case. Therefore, we can introduce a similar concept
of competing regions in the multiphase equation. Hence,
the energy to be minimized can be given as

R
EW) = —/ Zfr log Py — max,«,logP; | dx  (20)
xeQ
S(x,r)

Let us look at the sign of S(x, r). S(x, r) is positive for the
level set with the best pdf P,p,, and negative for all the other
level level sets, P;. Py is the best pdf at pixel location x with
intensity 7(x), if

Prp(I(x),x) > P-(I1(x),x), Vre{l,..,R}, and rb #r.

2y

Therefore, based on the sign of S(x, r), the level set with the
best pdf, f;», at a given pixel location x advances to include
the pixel; whereas, all the other level sets f, retreat to exclude
the pixel. For example, from Fig. 4(d) the green and yellow
level sets retreat to exclude the pixel x, and the red level set
advances to include the pixel. That is, in (20) at each pixel
location we maximize the most likely pdf (the object label
that can best explain the intensity at that location), while at
the same time we minimize all the other pdfs. Maximizing the
pdf of only one level set at each location ensures that every
pixel has exactly one level set (label) assigned to it. Therefore,
no gaps or overlaps are created when (20) is minimized for the
multiphase segmentation. During segmentation, the energy is
minimized using gradient descent by computing the derivatives
of equations (20) with respect to each discriminant parame-
ter, wij-
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a b c d e

Fig. 4. a) Multiphase image. b) and c) show the effect of applying the
labeling energy term, Ej (polytopes assigned to the same region label are
shown with the same color). d) shows the effect of the deformation term,
using enlarged polytopes for clarity, and the arrows show the direction of
their deformation. e) Final segmentation result.

The sign of S(x, r) in equation (20) determines the direction
of movement of the level set; that is, whether a given level
set, f; advances to include a given pixel or retreats to exclude
the pixel. The magnitude of S(x,r) gives how fast the level
sets move. If we simply use the sign of S(x,r) (hence, force
all the level sets to move at the same rate), then (20) can be
simplified to give

R
E(W) = / N > f|ax (22)
xe r=1

r#rb

3) Homogenous (Piecewise Constant) Case: Next, we dis-
cuss the case of piecewise constant (homogenous) image
segmentation. Since the image is assumed to be made up of
R piecewise constant regions, a Gaussian probability density
with fixed standard deviation and constant mean can be used
for P,. Hence, Py o exp~1U0=¢)’ and log P, (I (x), X)
—(I(x) — ¢,)?. Therefore, following equation (21) the best
pdf, Pyp, at location x is now the r label that results in the
smallest (1 (x) — c,)2.

In a piecewise constant case (homogenous image),
the DNLS provides an additional benefit, which we discuss
next. Using DNLS, where a given unique level set is cre-
ated by assigning different labels to the different polytopes,
the movement of the surfaces between the different objects
can take place in two ways: by the deformations of the
polytopes, and by a change in the labels of the polytopes.
The DNLS multiphase total energy can then be given as
Er = Ep + Ep; where E is the energy for changing the
labels of the polytopes, and Ep is the energy for deforming the
polytopes. This makes the proposed DNLS-based multiphase
algorithm computationally even more efficient, and also makes
it less sensitive to initialization.

The deformation term Ep is the same as the energy given
in (22), except that we can now consider only the polytopes
that are in the immediate neighborhood of the pixel, i € R(x).
That is, large surface movement and initialization are handled
by the E; term, and local deformation is handled by the Ep
term. Hence, equation (22) becomes

N
EoWy= [ Negor X g fax o)
xe i=1

i-grb

ieR(x)
That it, only the polytopes in the immediate neighborhood
of the pixel will advance or retreat to include or exclude
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Algorithm 1 Algorithm for Multiphase Image Segmentation

Input: The image to be segmented, parameters N, M, gradi-
ent step size 7, and total number of iteration T'
Output: The final segmented image and its discriminants Wy
Initialization :
1: Get the initial discriminant parameters W using (6)
2: Assign region label for every polytope. This label initial-
ization, L, can be assigned randomly.
LOOP Process
3: for iteration t=0tot="1T do
4:  Step l: minimize E;, given in (24) to change the labels
of the polytopes (new L)
5:  Step 2: minimize Ep given in (23) using gradient de-
scent to segment the images by deforming the polytopes
Wijk = Wijk — W’ﬁifh
6: end for
7: return Final weights Wy and polytopes label set L
8: Get the final multiphase segmented image: from the W¢
using (5), and from the final labels of the polytopes L.

the pixel. Therefore, the energy in equation (23) becomes
minimum when the polytopes that are part of the best pdf
level set label, rb, include the pixel at x, and all the remaining
polytopes in the neighborhood with other labels exclude that
pixel. Since we look at only a fixed number of neighboring
polytopes at each pixel, the computational time of the Ep term
is independent of the number of regions R to be simultane-
ously segmented.

For the label assignment energy term E7, we use a simple
K-means clustering; however, any advanced clustering method
can be employed. By first computing the mean intensities for
each polytope p;, we can cluster them into R region labels.
That is, given a set of N polytopes with their average intensi-
ties (p1, p2, ---» PN), k-means clustering aims to partition the
N polytopes into R region label sets L. = {L1, L2, ..., L} to
minimize the within-cluster sum of squares as

R
Ep = argminz Z (p—cr)?
L

r=1 peL,

(24)

where ¢, is the mean intensity of all the polytopes assigned
to region r (the mean intensity of region r). The E energy
becomes minimum when the polytopes with closer mean
intensity values are labeled similarly. For instance, Fig. 4 (c)
shows the effect of applying E; to (b), which changes the
label assignments of the polytopes. Fig. 4(e) shows the final
result using both the E7 and Ep terms. The summary of the
proposed multiphase segmentation of homogenous image is
given in Algorithm 1.

a) Computational cost: The computational cost of
K-means clustering is proportional to both the number of
data points N (polytopes) and the number of clusters R
(regions). The number of polytopes we use, N, is fixed and
is independent of the number of regions R to be simultane-
ously segmented. As shown in the experiment section VI-A,
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N = 100 polytopes are usually enough for a smooth repre-
sentation of shapes. Therefore, the E; term due to clustering
of 100 polytopes (data points) is computationally insignifi-
cant compared to the gradient decent based Ep term. Since
the computational time of the Ep term is independent of
the number of regions R to be simultaneously segmented,
the increase in the computational cost due to the increase
in the number of regions R comes only from the clustering
part. Since the clustering of around N = 100 polytopes takes
insignificant time (compared to the Ep gradient descent term),
the overall computational time of our multiphase algorithm
remains almost constant as the number of regions R to be
segmented grows.

4) Inhomogeneous (Piecewise Smooth) Case: For multi-
phase segmentation of inhomogeneous images, a similar local
region-based segmentation approach discussed in section IV-.2
can be used together with equation (20). That is, the mean
intensity ¢, for each region, r, is now replaced by its localized
versions ¢, (x). However, computation of ¢,(x) for each local
region using convolution is computationally expensive [22].
Luckily, our DNLS formulation allows an efficient way of
computing local mean statistics because of its use of polytopes.
The mean intensity for each polytope p; is obtained auto-
matically during the f function evaluation, with no additional
computational expense. Therefore, the mean local intensity for
region r, ¢,(X), can now be obtained by simply averaging the
mean intensities of the polytopes in the neighborhood. It is
important to notice that the quality of any local region-based
image segmentation depends heavily on the size of the local
region chosen [22], that is, on the radius, rad, of the local ball
size, B(x,rad). Therefore, the ability to efficiently compute
local region statistics at multiple local region sizes is crucial.
Since the proposed DNLS framework allows obtaining these
local region statistics using the polytopes with little additional
computational expense, we can easily obtain and use these
statistics at multiple local region sizes.

VI. EXPERIMENTS

In this section, we present the results of seven experiments.
In section VI-A, we present the effect of the DNLS shape rep-
resentation parameters (N and M) on the segmentation quality
and computational time. In Section VI-B, we show the seg-
mentation results of our DNLS on two-phase images. In this
section, we also compare our method with the conventional
region-based level set method of Chan and Vese (CV) [38].
In Section VI-C, we evaluate the effect of noise (at differ-
ent levels) on the segmentation performance by comparing
our DNLS method with the CV method. In Section VI-D,
we compare our DNLS with three different state-of-the-art
level set methods on large data set corrupted with Gaussian,
Poisson, Speckle, and Salt & pepper noise types. We give
a brief comparison of our DNLS with the Bernard ef al. [3]
parametric level set in section VI-E. In Section VI-F, we com-
pare the proposed DNLS multiphase version with the CV mul-
tiphase [20] for a piecewise constant image segmentation.
In this section, we focus on the effect of initialization, and the
growth in computational time as the number of objects to be
simultaneously segmented increases. Finally, in section VI-G,
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Fig. 5. Demonstration of the effect of the number of polytopes and the
number of discriminants of the DNLS on the segmentation accuracy. Top
to bottom rows correspond to N = 25, 64, and 100, respectively. The left
column shows the initialization. Columns 2 to 4 (left to right) correspond to
M =4, 8, and 16, respectively.
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we provide some segmentation results for inhomogeneous
images. Our algorithm is implemented in C++ using the
Insight Segmentation and Registration Toolkit (ITK) [39] on
2.5-GHz Intel Core i7, 8 GB RAM machine. For comparisons
of the homogenous image segmentation, we use the optimized
implementations of the two-phase and multiphase CV level
sets available in the latest ITK. We use a Matlab implementa-
tion for comparison with the other level set methods [3], [14],
[15] in Sections VI-D and VI-E, since these level set methods
have publicly available Matlab implementations (mostly by the
corresponding authors).

A. The Effect of the DNLS Shape Representation Parameters

The DNLS shape representation equation (5) has two para-
meters that control the smoothness of the shape model: the
number of polytopes, N, and the number of discriminants
per polytopes, M. Here we investigative the effects of N
and M on the segmentation accuracy and the computational
time. Figure 5 shows the segmentation of an artificial image
with varying numbers of polytopes (N) and discriminants (M).
As can be seen from the figure, a smooth and accurate DNLS
shape representation can be achieved by increasing the number
of polytopes (N) and (or) by increasing the discriminants
per polytope (M). Increasing these parameters results in an
increase in computational cost. However, there is an upper
limit on the M and N parameters after which any further
increase in their values does not result in any meaningful gain
in accuracy, as can also be seen from Table I. For instance,
in Fig. 5 there is no noticeable accuracy difference by using
N = 64 with M =8, or by using N = 100 with M = 16.

Table I shows both the CPU time (T in seconds) required
and the DICE coefficient (DC in %) [40] of the segmentation
results for images shown in Fig. 5. We can see from the table
that the rate at which the CPU time increases as the N and M
parameter values increase is relatively small. This is mainly
because although a single iteration now takes longer time,
the segmentation converges faster and hence fewer iterations
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TABLE I

QUANTITATIVE EVALUATION OF THE EFFECT OF N AND M
PARAMETERS (PAR.) FOR IMAGES IN FIG. 5. DICE (DC)
IN % AND TIME (T) IN SECONDS

Par. M=4 M=8 M=16

DC T DC T DC T
N=25 89.68 | 0.073 95.31 | 0.097 96.00 | 0.113
N=64 95.57 | 0.093 98.02 | 0.110 98.59 | 0.130
N=100 97.23 | 0.107 98.57 | 0.127 98.91 | 0.150

are required as the N and M parameter values increase.
In addition, since we use only a fixed number of neighboring
polytopes at each pixel point (as discussed in section II),
the increase in N has less effect on the CPU time. In the
rest of the experiments, we use N = 100 and M = 16 values,
unless explicitly specified.

B. Two-Phase Segmentation Results

Figure 6 shows segmentation results of four two-phase
images using DNLS (second column) and CV (third col-
umn) [38] methods. For both DNLS and CV, we used a
regularly distributed initialization similar to the one shown
in Fig. 5, with N = 100 and M = 16. For the CV method,
the use of regularly distributed level sets is suggested in
[20] and [41] as a better initialization for good segmentation
quality and reduced computational time. As can be seen from
Fig. 6, the proposed DNLS results in better (clean) segmen-
tation compared to the CV method. We tune the smoothness
term (length constraint) of the CV method to obtain the highest
possible DICE score for the results in Fig. 6. By using a larger
smoothness coefficient (larger penalty for the length of the
contour), some of the tiny noisy fragments can be removed;
however, a large increase in the smoothness coefficient makes
the contour stiff and decreases the overall DICE score. On the
other hand, the proposed DNLS results are free from any
tuning of the smoothness term or parameter (since large
enough N and M values can be chosen and fixed for all the
images, as discussed in Section VI-A).

In addition, DNLS achieves these results at a much smaller
computational time. Table II shows both the CPU time
required and the DICE score of the segmentation results for
images shown in Fig. 6. The computational time for the
CV level set is shown for both the dense and the sparse
implementations available in ITK [39]. It can be seen from
the table that DNLS achieves equivalent or better DICE scores
with a computational speed of around 10 times compared to
even the fastest sparse implementation of the CV method.
Notice that two-phase images can have multiple objects as
long as all the objects have the same phase (intensity level),
as can be seen in columns (a) and (b) of Fig. 6.

C. The Effect of Noise Level on the Segmentation

In Fig. 7, we compare the segmentation performance
of the proposed DNLS with CV method in the presence
of various amounts of additive Gaussian noise. The first
row in Fig. 7 shows the synthetic image with noise levels
of 80, 100, 120, 140, and 160 standard deviations (SD) from
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Ground Truth

Fig. 6. On the first column (left) are the images to be segmented. The second
column gives the segmentation results using the proposed DNLS. The third
column gives the results obtained using the CV method, and the last column
is the ground truth segmentation result.

TABLE 11

QUANTITATIVE COMPARISON OF DNLS AND CV METHODS FOR IMAGES
IN FIG. 6. IM1 TO IM4 DENOTE IMAGES ON FIRST TO LAST Row,
RESPECTIVELY. DICE (DC) IN % AND TIME (T) IN SECONDS

CV Dense CV Sparse DNLS

DC T DC T DC T
M1 98.2 | 10.2 || 98.1 | 1.91 984 | 0.19
IM2 || 933 | 2.82 || 93.2 | 053 95.1 | 0.05
IM3 874 | 153 87.2 | 290 || 90.2 | 0.31
M4 87.1 | 29.9 87.0 | 5.63 96.4 | 0.40

left to right (columns). The original image has an intensity
range between 0 and 250. For the CV level set, we choose
the smoothness coefficient that gives the best DICE score.
A larger smoothness coefficient can be used to get results
with less noisy fragments; however, as the smoothness coef-
ficient increases, the contours become too stiff and reduce
the DICE score. It is clear from the figure that the proposed
DNLS method is less sensitive to noise and it has a smoothing
property. This is mainly because the polytopes in the DNLS
cannot capture extremely tiny fragments such as noise blobs
of a radius less than 2 pixels. Note that no internal energy
term (that controls the length of the contour) is used in our
DNLS to generate the results, as mentioned in section III.

In Fig. 8, we give a quantitative comparison of the DNLS
(solid line) and the CV method (dashed line) at varying noise
levels for the image shown in Fig. 7. The figure shows the
robustness of the proposed DNLS method when segmenting
noisy images.

D. Comparison of Different State-of-the-Art Level Set
Methods on Large Dataset With Four Noise Types

In this section, we compare the performance of the DNLS
with three other popular level set based segmentation tech-
niques using walking person data set (obtained from [41].
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Fig. 7. On the first row are images with varying noise levels. The second
row shows the segmentation results using the proposed DNLS method. The
third and fourth rows give the results using the conventional CV method, with

the different initializations shown on the first columns of both rows.
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Fig. 8. Demonstration of the effect of noise level on the segmentation quality.
Comparison of the DNLS with the conventional level set method. Regularly
distributed initialization is used for both methods.

The three level sets methods we use for comparison are CV by
Chen and Vese [38], DRLSE by Li et al. [14], and RD method
by Zhang et al. [15]. We add four different noise types:
Gaussian, Poisson, Speckle, and Salt & pepper to the images
in order to compare the performance of the different level
sets. Figure 9 shows an example of the four noise types and
their corresponding segmentation using the different level set
methods. From the figure it is clear that the RD method [15]
and our DNLS have less sensitivity to noise.

Table III shows the average CPU time per image and
the average DICE score of the segmentation results of the
four different level set methods using fifty walking person
images [41] corrupted with four different noise types. The
table shows the proposed DNLS has the least sensitivity
to noise while also having the smallest computational time
compared to all the other three level set methods. We used
publicly available Matlab implementations of CREASEG [42]
for the Chen and Vese [38] and DRLSE [14] methods, and
code shared online by the authors of RD method [15].

Note that, the DRLSE [14] and RD [15] methods have
relatively fast evolution and are robust to noise compared to
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TABLE III

QUANTITATIVE COMPARISON OF FOUR LEVEL SET METHODS WITH
DIFFERENT NOISE TYPES. AVERAGE DICE (DC) IN % AND
AVERAGE TIME (T) IN SECONDS

Poisson Gaussian Speckle Salt&Pepper

DC T DC T DC T DC T
Ccv 98.3 | 6.43 88.3 | 6.27 87.6 | 6.51 89.4 | 6.07
DRLSE | 98.4 | 4.21 90.1 | 4.53 88.2 | 4.60 90.6 | 4.37
RD 98.7 | 3.03 922 | 3.34 91.4 | 3.42 92.8 | 3.14
DNLS 98.5 | 092 || 94.6 | 0.95 93.8 | 0.97 94.7 | 0.94
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Fig. 9. Comparison of segmentation results using four different level set

methods on image corrupted by four noise types.

the original (direct application) of level set method. However,
DRLSE and RD methods, like all the other non-parametric
level set methods, represent contours by embedding them in
a higher dimensional space (for instance a signed distance
function) which results in higher computation time. On the
other hand, our DNLS uses a parametric shape representation
which only needs a limited number of parameters to repre-
sent any shape (and hence decreases the dimension of the
problem) resulting in significantly reduced computation time.
In addition, in order to handle noise corruption, DRLSE and
RD methods still require tuning of parameters. For instance,
choosing larger weight for the boundary length term can make
the contours stiff resulting in lack of flexibility to handle
complex shapes, while choosing smaller weight results in
fitting of the contours to noise fragments. In comparison, our
DNLS handles significant noise corruption without the need
for using the length term or any parameter tuning.

E. Comparison With Other Parametric Level Set Method

In Fig. 10, we show some segmentation comparisons of
the proposed DNLS with B-spline based parametric level set
method of Bernard et al. [3]. We use CREASEG [42], which
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Bernard h = 1 Bernard h = 2 DNLS Ground Truth

Fig. 10. Segmentation using the Bernard et. al. [3] parametric level set with
h = 1 on the first column (left) and with 2~ = 2 on the second column. Third
column gives segmentation using DNLS, and ground truth segmentation on
the last column (right).

is a publicly available Matlab implementation of [3]. The
B-spline coefficient parameter 7 determines the smoothness
of the Bernard er al. [3] segmentation. We can see from the
figure that & = 1 results in noisy segmentation. On the other
hand, & = 2 can be too strong and limits the smoothness of
the segmentation, which can be seen from Fig. 10 horse and
walking person segmentations. For instance, with 7 = 2 we
can see the inability of the contour to get between the two
back legs of the horse and back hand of the person. Note that
h can only be an integer in [3], hence we cannot choose an
intermediate value to get better results. On the other hand,
the proposed DNLS parametric level set method has a good
balance of smoothness and gives better segmentation, as can
be seen from Fig. 10 and Table IV. From Table IV, we can
also see that DNLS achieves better segmentation results in
less computational time compared to the Bernard et al. [3].
In addition, DNLS does not require tuning of the smoothness
parameters for every image (since a large enough number of
polytopes N and discriminants M can be chosen and fixed,
as discussed in Section VI-A). It should be noted that both
the Bernard et al. [3] method (with the proper choice of the
smoothness parameter) and our DNLS are less sensitive to
noise compared to the conventional non-parametric level set
methods. This can be seen by comparing the segmentation
results of the noisy image in Fig. 10 third and fourth rows with
that of Fig. 7 and Fig. 9. However, unlike the proposed DNLS
method, the parametric level set of Bernard et al. [3] requires
re-normalization of the level set function during the evolution
process. In addition, [3] has the same drawbacks as the
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TABLE IV

QUANTITATIVE COMPARISON OF DNLS AND BERNARD et al. [3]
METHODS FOR IMAGES IN FIG. 10. IM1 TO IM4 DENOTE IMAGES
FrROM ToP TO BOTTOM ROWS IN THE FIGURE, RESPECTIVELY.
DICE (DC) IN % AND TIME (T) IN SECONDS

Bernard h =1 | Bernard h =2 | DNLS

DC T DC T DC T
M1 96.2 | 3.21 96.5 | 3.15 98.4 | 0.76
M2 90.3 | 6.82 92.2 | 6.55 96.3 | 140
M3 834 | 431 94.8 | 3.89 95.7 | 0.78
M4 87.1 | 3.94 90.3 | 3.64 944 | 0.95

a) b) ) d)

Fig. 11. Column (a) shows the images to be segmented, column (b) gives
the multi-Otsu initialization used, column (c) shows the segmentation using
DNLS-multiphase, and column (d) gives the result using the CV-multiphase
method.

conventional (nonparametric) level set methods when applied
to multiphase and local region-based image segmentations.

F. Multiphase Segmentation Results

In this section, we present the results of two experiments.
In the first experiment, we present the effect of initialization
using three images shown in Fig. 11 column (a), and compare
the performances of the proposed DNLS-multiphase with the
standard CV-multiphase level set [20]. Figure 11 shows the
segmentation results using a multi-Otsu threshold method [43]
to first obtain good initialization. As can be seen from the
figure, both the proposed DNLS and CV-multiphase methods
give good comparable segmentations (except for the horse
image where the CV-multiphase resulted in noisy segmen-
tation). However, good initialization using methods such as
multi-Otsu is computationally expensive and less robust as
the number of phase increases. Therefore, it is crucial to have
a multiphase segmentation method that is less sensitive to
initialization.

Figure 12 gives the segmentation comparison of
DNLS-multiphase and the CV-multiphase when random
internalization is used. It can be seen from Fig. 12 that when
the level sets are randomly initialized, the CV-multiphase
level set frequently converges to bad segmentation; whereas,
our DNLS-multiphase still converges to a good segmentation.
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a) b) c) d)

Fig. 12. Comparison of the DNLS-multiphase segmentation results on
column (b), with the CV-multiphase result on column (c), using a random
initialization. Column (d) shows the ground truth segmentation.

TABLE V

QUANTITATIVE COMPARISON OF DNLS AND CV METHODS FOR IMAGES
IN FIG. 11 AND FIG. 12. IM1 TO IM3 DENOTE IMAGES ON THE FIRST
TO THIRD ROW IN THE FIGURES, RESPECTIVELY. WE CONSIDER
BOTH THE RANDOM AND OTSU INITIALIZATIONS. DICE (DC)

IN % AND TIME (T) IN SECONDS

DNLS-Otsu | CV-Otsu DNLS-Random | CV-Random

DC T DC T DC T DC T
M1 96.3 | 1.8 942 | 21.9 96.1 | 2.3 83.1 | 253
M2 945 | 2.5 89.2 | 26.7 943 | 2.9 88.7 | 28.2
M3 90.7 | 2.6 91.5 | 315 86.3 | 2.7 78.4 | 35.7

Because of the label assignment energy term discussed in
section V-.3, the proposed DNLS-multiphase is less sensitive
to initialization, when compared to the CV-multiphase
level set.

Note that for the brain MRI image segmentation, the non-
brain structures (the outer circular ring) surrounding the brain
tissues are classified wrongly by both the CV-multiphase and
our DNLS-multiphase methods in both Fig. 11 and Fig. 12.
However, these nonbrain structures are usually removed by
using simple techniques such as [44] before starting segmen-
tation of brain tissues. Therefore, by using a preprocessing step
to first remove the nonbrain structures, the proposed DNLS-
multiphase can easily give a good segmentation of the brain
tissues, even if random initialization is used.

Table V shows both the CPU time required and the DICE
score of the segmentation results for images shown in Fig. 11
and Fig. 12. It can be seen from the table that DNLS-
Multiphase achieves better DICE scores (except for the brain
image with multi-Otsu initialization) with a much lower com-
putational time compared to CV-multiphase [20]. For all the
multiphase experiments we used N = 225 polytopes. Note
that using even larger number of polytopes can help improve
the quality of the brain image (which has very fine details)
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Fig. 13.  Multiphase example (left) and segmented result (right).

DNLS-Multiphase Vs. CV-Multiphase: As the number of phases increase
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Fig. 14.
segmented.

Computation time as a function of the number of objects to be

segmentation, at the expense a slight increase in computational
cost.

In the second experiment, we show the effect of the
number of objects (phases) to be segmented on the compu-
tation time. For this purpose, we generate phantom images
with various numbers of object phases; one example with
12 objects is shown in Fig. 13. Figure 14 shows the com-
putation time as a function of the number of objects (with
different phases) in the images: using the CV-Multiphase with
sparse implementation (dashed line), and using the DNLS-
multiphase (solid line). The time in the graph is obtained with
similar segmentation quality of around 98.5% in DICE. The
graph shows that the proposed DNLS-Multiphase requires an
almost constant computation time independent of the number
of objects to be segmented. The memory required also remains
constant (not shown in the graph) in the proposed DNLS-
multiphase, because the number of polytopes is fixed, and only
their labeling changes as the number of objects in the image
increases.

G. Inhomogeneous Image Segmentation Results

Finally, we show results of local region-based segmentation
for inhomogeneous images. Figure 15 gives the segmentation
of inhomogeneous images using the proposed DNLS local
region-based method. Figure 15 column (a) shows the original
homogenous images; column (b) shows the bias field added
to the images on column (a) to obtain the inhomogeneous
images shown on column (c). Column (d) shows the final
segmented images using the proposed DNLS local region-
based method for the inhomogeneous images of column (c).
The figure gives the segmentation results for both two-phase
(on the first two rows) and multiphase (the bottom row)
piecewise smooth images.

It should be noted that, in local-region based segmentation,
the size of the local region considered and the initialization
have significant impact on the quality of the segmentation.
The radius of the local region chosen determines how local the
resulting segmentation will be, and hence it should be chosen
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Fig. 15.

Inhomogeneous image segmentation using DNLS.

based on the scale of the object of interest and properties
of the surrounding area [22]. In Figure 15, we tune the
radius parameter to get good results (radius ranging from 5 to
15 pixels are tested,and the results in the figure are generated
with pixel radius of 10). In addition, the inhomogeneous
image segmentation using the proposed method is sensitive
to initialization (similar to the other level set based methods
in the literature). On the other hand, the homogenous version
of our DNLS is less sensitive to initialization due to the
fact that we use clustering of the polytopes as part of the
energy. But for inhomogeneous images, we can not cluster
the polytopes by using a simple K-means, hence our level
set acts similarly to the conventional level set method in
terms of sensitivity to initialization. We refer the reader to
Lankton and Tannenbaum [22] for an extensive discussion
of the challenges of local-region size and initialization for
inhomogeneous image segmentations.

VII. CONCLUSION

In this paper, we presented a novel parametric level set
method that naturally keeps the level set function regu-
lar all the time, and that does not need any form of
re-initialization or the use of any regularizing term. Due to
its parametric nature, the DNLS method also reduces the
dimensionality of the problem, and its time step is not limited
by the standard CFL condition, resulting in much faster
computational speed. The proposed DNLS is also less sensitive
to noise. In addition, we presented the DNLS-multiphase
framework for simultaneous segmentation of multiple objects.
The proposed DNLS-multiphase approach has the highly
desired properties that it is less sensitive to initialization,
and its computational cost and memory requirement remain
almost constant as the number of objects to be segmented
grows, while also representing each object with a unique level
set. We formulated the segmentation algorithm in a Bayesian
framework and used a variational approach to minimize the
energy with respect to the discriminant parameters of the
model. The proposed DNLS can be considered as an open
framework that can be used with different active contour meth-
ods, and it also allows the use of different appearance models
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and shape priors. Although we have shown the application of
our algorithm using only intensity, other descriptors such as
texture, color, and motion vectors also can be used with the
proposed segmentation method. The DNLS also has unique
location information (due to its use of polytopes and discrimi-
nants) that can be used for powerful local appearance modeling
and for local region-based segmentation of inhomogeneous
images.
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