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Abstract—Estimating covariance matrices in high-dimensional
settings is a challenging problem central to modern finance. The
sample covariance matrix is well-known to give poor estimates in
high dimensions with insufficient samples, and may cause severe
risk underestimates of optimized portfolios in the Markowitz
framework. In order to provide useful estimates in this regime,
a variety of improved covariance matrix estimates have been
developed that exploit additional structure in the data. Popular
approaches include low-rank (principal component and factor
analysis) models, banded structure, sparse inverse covariances,
and parametric models. We investigate a novel nonparametric
prior for random vectors which have a spatial ordering: we assume
that the covariance is monotone and smooth with respect to this
ordering. This applies naturally to problems such as interest-
rate risk modeling, where correlations decay for contracts that
are further apart in terms of expiration dates. We propose a
convex optimization (semi-definite programming) formulation for
this estimation problem, and develop efficient algorithms. We
apply our framework for risk measurement and forecasting with
Eurodollar futures, investigate limited, missing and asynchronous
data, and show that it provides valid (positive-definite) covariance
estimates more accurate than existing methods.

Index Terms—High-dimensional covariance estimation,
Smooth-monotone regularization, Semi-definite programming.

I. INTRODUCTION

M ODELING statistical dependence among a collection of
random variables is a fundamental problem in statistics,

engineering, and finance [1]. Practical problems in finance have
grown increasingly high-dimensional, with tens of thousands
of domestic and global equities, bonds and futures contracts,
and other instruments. This renders the estimation and fore-
casting problems needed for trading strategies and risk man-
agement very challenging. The jointly-Gaussian model, and its
extensions to elliptic distributions and Gaussian copulas, use
the covariance matrix to describe the strength of interaction
between the random variables, and remains a dominant tool in
practice. However, estimating and forecasting the covariance
matrix is very difficult in high-dimensions when one is faced
with limited data [2].
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We consider the problem of estimating large covariance
matrices in the context of modeling risk for Markowitz portfo-
lio selection [3]. Finance practitioners [4], [5] and researchers
in random matrix theory [6] are painfully aware that using the
sample covariance matrix is a disastrous choice when one is
modeling large portfolios. For example, when faced with fewer
historical samples than the dimension, the sample covariance
matrix is rank-deficient which creates an illusion of risk-free
linear combinations of financial instruments. More generally,
the sample covariance matrix with scarce data produces an
inconsistent estimate of the eigenvalue spectrum, and when it is
used to create optimized portfolios, the solution tends to prefer
those components which have underestimated risk. The end-
result tends to be a vast understatement of risk of the Markowitz
portfolio [6].

To alleviate this problem, one has to rely on some prior
knowledge of structure in the data. One such widely used
assumption stipulates that the data lie close to a low-
dimensional subspace, which, for covariance estimation trans-
lates into principal component analysis (PCA) or factor analysis
models [7], [8]. The covariance matrix is assumed to be com-
posed of a low-rank term plus a diagonal noise term, thus reduc-
ing the number of parameters from O(N2) to O(NK), with
dimension N and assumed rank K. This approach is popular in
fixed income modeling, where the three main factors have the
interpretation of level-shift, slope, and curvature changes of the
interest rate curve [9]. Another popular assumption on covari-
ance structure is the sparsity of the information matrix, i.e.,
the inverse of the covariance matrix. This is known as covari-
ance selection in statistics and as Gaussian graphical model or
Gaussian Markov Random Field (MRF) in machine learning
[10]–[12]. The pattern of nonzero elements of the informa-
tion matrix captures the conditional independence structure,
with their number often assumed to be bounded by a small
constant K per row, again reducing the total number of param-
eters to O(NK). Banded covariance matrices that allow only
a few non-zero diagonals (bands) have been investigated in
[13], [14]. Parametric models assume a functional form for the
covariance, e.g., exponential or a power-law decay. Gaussian
Processes (GP) provide a general framework for such models
[15]. Shrinkage estimates [16] take a weighted combination of
the sample covariance matrix and a strongly-regularized model
(such as low-rank). While they do improve the expected mean-
squared-error, they do not introduce any new structure beyond
the one inherited from the regularized model. All of the above
models have successful domains of applications, but in gen-
eral they manage to reduce the required number of samples by
imposing very strict assumptions on the data.
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In this paper we instead allow all the elements of the covari-
ance matrix to be treated as separate parameters, but we require
the covariance matrix to be smooth1 and monotone with respect
to some ordering of the variables. An example of such order-
ing comes from interest-rate risk models and general term-rate
models, where the ordering is given by the expiration date
(or maturity) of the contract: we expect correlations between
pairs of contracts with maturities further apart to be lower.
The non-parametric approach, while not directly limiting the
number of parameters, reduces the complexity of the space of
their joint configurations: this is a regularization approach to
covariance estimation. Related approaches have been studied
in nonparametric statistics for applications including mono-
tone density and function estimation, spline smoothing, etc.
[19]. However, to our knowledge, our work is the first to apply
this structure to covariance estimation. We presented initial
ideas of smooth-monotone covariance estimation at the IEEE
statistical signal processing workshop [20]. We also inves-
tigated the use of smooth-covariance estimation for elliptic
distributions in [21]. The focus of this paper is on efficient
smooth-monotone optimization and eigenvalue spectrum cor-
rection. We formulate the covariance smoothing problem as an
instance of semidefinite programming (SDP), and describe a
fast first-order approach that can be used for large-scale set-
tings: we adapt the dual projected gradient method of [22], [23],
develop a dual coordinate-descent extension for the smoothed
cost, and accelerate it following the ideas in [24] and [25].
We also describe extensions to problems with missing data
and asynchronous measurements, where the sample covariance
matrix may be invalid (non positive definite). The well-known
approach of [26] used an optimization approach to fix a mis-
specified (non-p.d.) covariance matrix by finding the closest
valid one. In our approach we use smooth and monotone regu-
larization which provides valid (p.d.) covariance matrices with
significantly improved out-of-sample accuracy. We apply our
approach to interest-rate curve risk modeling for the Eurodollar
futures curve, and obtain promising estimation and forecasting
results.

We start in Section II with an outline of the challenges
of high-dimensional covariance estimation, and the distortion
of the eigenvalue spectrum. In Section II-A we describe the
term-rate modeling problem to be used for our experiments.
Our framework is presented in Section III. In Section IV we
describe the optimization formulation and propose an algorithm
based on optimal first-order methods. We present experimental
results with historical data for the Eurodollar futures contracts
in Section VI.

II. PRELIMINARIES: HIGH-DIMENSIONAL COVARIANCE

ESTIMATION

Suppose we have a collection of financial instruments
{1, . . . , N} and let x(t) ∈ R

N denote their returns, or linear

1Prior work in [17] used smoothness of covariance functions via local-cosine
basis expansions. [18] used smoothness of the covariance function to efficiently
approximate variances in large-scale Gaussian MRFs.

Fig. 1. Marcenko-Pastur law closely approximates the eigen-spectrum of the
sample covariance matrix. Samples are from N (0, I), so eigenvalues of the
true covariance matrix are all 1.

changes in prices.2 We would like to estimate the covariance
matrix P ∗ = E[x(t)x(t)T ]. The sample covariance P̄ �
1
T

∑
i x(ti)x(ti)

T is an unbiased and consistent estimate in
the high-sample regime, where the number of samples T far
exceeds the dimension N , i.e. T/N → ∞, but with scarce data
it has well-documented failures [6]. In particular, the eigenvalue
spectrum is biased with T/N held fixed, even as T → ∞. This
can be described as spectral blurring, and can be understood
through the lens of random matrix theory. Consider a sam-
ple covariance matrix obtained from T i.i.d. samples from the
multivariate standard normal N (0, I) in N -dimensions, with
zero-mean and an N ×N identity matrix I as the covariance
matrix. Let ρ = N/T . The true eigenvalues are all 1. The sam-
ple eigenvalue spectrum, i.e., the distribution of the eigenvalues
of P̄ , asymptotically follows the Marcenko-Pastur law [27], as
illustrated in Figure 1:

fρ(x) =
1

2π

√
(y+ − x)(x− y−)

x
,

where y± = (1±√
ρ)2. Hence, the smallest eigenvalue of P̄

(corresponding to the direction which allegedly has the least
risk) is a severe underestimate of its true value 1 for small
or moderate T . A similar spectrum “blurring” effect happens
for samples from multivariate Gaussian distributions with arbi-
trary covariance matrices [6]. This poses significant problems
when the sample covariance matrix is used for risk-modeling
in Markowitz portfolios: the optimized portfolio gets aligned
with the most underestimated components of risk, but has
less weight in over-estimated ones, causing severe overall risk
underestimates [4]–[6]. We will see in Section VI that our
smooth-monotone covariance estimate gives a much more accu-
rate eigen-spectrum than the sample covariance, thus dramati-
cally mitigating the problem of bad risk forecasts in optimized
portfolios.

A. Term-Structure Risk Modeling

We now briefly describe the interest-rate risk modeling prob-
lem that we will use to illustrate our smooth-monotone covari-
ance estimation framework. An interest rate curve describes the
available interest rate as a function of the duration for which
the investment is locked in. There are a variety of interest-rate

2This choice depends on whether we use log-normal or normal model for
prices (geometric Brownian motion or the Ornstein-Uhlenbeck model), which
in turn depends on the instrument class, and holding time (trading frequency).
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Fig. 2. Sample ED curve settle-prices for several days, linearly interpolated.

curves: US treasury curve, curves for bonds issued by other
sovereign nations, municipal bonds, corporate bonds at differ-
ent credit-ratings, swap-curves, inter-bank lending curves, etc.3

[28]. For simplicity we consider a generic interest-rate curve
and will use the example of Eurodollar futures throughout the
paper. The curve changes with time and takes on a variety of
different shapes. We expect the correlations between variables
in the curve to be monotonic with respect to the difference
in the expiration dates of the contracts, and also expect not
to have persistent discontinuities in the correlation structure –
thus fitting well with monotone and smooth assumptions for the
framework in this paper.

In Figure 2 we illustrate interest-rate curves based on the
Eurodollar (ED) futures contracts, with 40 quarterly expira-
tions, i.e., up to 10 years ahead. For historical reasons ED
contracts are priced as 100− x where x is the interest rate. We
plot the curves for a few different dates (the curve of available
rates will change from day to day) with linear interpolation in
between the contracts4. A popular model for term-rate curves
is based on principal component analysis (PCA), and approx-
imates the covariance by three main principal components,
having informal interpretation of level, slope, and curvature
[9]. However, for some applications such as statistical arbitrage
and portfolios with high leverage, a more accurate covariance
matrix estimate may be desired. Simply increasing the num-
ber of principal components typically does not produce good
results, as higher-order principal components tend to be much
less stable. Next, we formally describe the smooth-monotone
covariance estimation framework, and study its performance for
modeling risk of the Eurodollar curve movements in Section VI.

III. SMOOTH ISOTONIC REGRESSION

We now introduce our setting for covariance matrix esti-
mation. Our starting assumption is that the random variables
of interest have an explicit ordering – in our example for
interest rate risk the ordering will be by contract expiration5.
We aim to estimate the spatial (cross-sectional over contracts)
covariance matrix for these random variables from a scarce

3Also it is common to look at several views of the interest-rate curve: yield-
curve vs. spot curve vs. the forward curve. Similar modeling techniques also
apply to futures curves.

4Data used with permission from the Wall Street Journal online.
5We note that the approach does not directly apply to the equity space, as

there is no natural way to order equities.

number of samples. We consider a non-parametric approach
which stipulates that the desired correlation structure “respects”
the variable ordering – namely – the covariance matrix is
well-behaved with the distance between the variables – it is
monotonic and smooth. Both of these are natural assumptions
when dealing with spatial data. For our interest-rate example:
if the expiration date of the i-th contract is closer to that of the
j-th contract than to the k-th one, then we expect the corre-
lation Pi,j to be higher than Pi,k (e.g., we expect the January
and February contracts to be more correlated than January and
October of the same year). Also, there is rarely any economic
reason to expect discontinuities in the correlation structure of
contracts having expiration dates many months or years in the
future, thus justifying our second assumption of smoothness.

We now formulate the regularization problem for smooth iso-
tonic covariances with a linear (one-dimensional) ordering of
random variables. Suppose we have a zero-mean random vec-
tor x(t), where x(t) = (x1(t), . . . , xN (t))T . We are interested
in the spatial covariance matrix of x, P ∗ = E[xxT ], and also

in the matrix of the correlation coefficients, C∗
ij ∝ P∗

ij√
P∗

iiP
∗
jj

.

Suppose that only a small number of samples x(t1), . . . ,x(tT )
is available with T comparable or even smaller than N . We do
not model temporal dynamics in this paper, so we assume that
the samples are i.i.d. We aim to leverage the assumptions of
monotonicity and smoothness to get a better estimate of P ∗ than
the ordinary sample covariance matrix P̄ . Let M be the class
of monotone positive-definite (p.s.d.) covariance matrices:

M = {P |P � 0, Pij ≥ Pik for i < j < k}. (1)

Then, we can obtain an improved estimate of the covariance
by finding the monotone covariance matrix in class M that is
closest to the sample covariance matrix P̄ :

min
P

D(P, P̄ ) such that P ∈ M (2)

where D(P, P̄ ) is a convex error metric of our choice: we will
use the Frobenius norm, but KL-divergence and the operator
norm are also applicable. Note that the constraint set M is a
convex set, with linear and positive definite constraints, and for
natural choices of the metric D the objective will also be con-
vex. When D is either the operator norm or the Frobenius norm,
our regularizer can be found as a solution to a semi-definite
programming problem (SDP) [29].

Remark: If the true covariance P ∗ indeed belongs to M,
then projecting the sample covariance onto M is guaranteed
to decrease the error6 due to the contraction property of projec-
tions onto convex sets: ‖ΠMP̄ −ΠMP ∗‖ ≤ ‖P̄ − P ∗‖. Here,
we use ΠMP̄ to denote the projection of P̄ onto the set M, i.e.,
the solution argminM D(P, P̄ ) of (2).

We preview a computational example that we describe in
detail in Section VI. In Figure 3 we plot (a) a ground-truth
smooth-monotone covariance, and (b) the sample estimate
(based on samples drawn from the ground-truth) exhibiting
finite-sample noise. In plot (c) we solve (2) and see that

6If the projection is done with respect to the same metric with which we
evaluate errors, and we use either the Frobenius or the spectral norm.
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Fig. 3. Term-rate covariances: (a) true and (b) sample estimate. Covariance
regularization: (c) monotone (d) monotone and smooth.

simply restricting the covariance matrices to be monotone pro-
duces a significantly improved covariance estimate. However it
appears to suffer from a “staircase”-like piecewise-continuous
effect. We do not expect natural phenomena to exhibit such
discontinuous behavior, and so we further require that the
covariance matrices have some degree of smoothness. To that
end we penalize the curvature over the surface of the covariance
function, namely:

S(P ) =

∫ ∫
U

(∇2P (x1, x2))
2dx1dx2 (3)

where U = {(x1, x2)|x2 > x1} is the upper-triangular part of
the covariance function. This means that we encourage smooth-
ness in the upper-triangular part (and by symmetry in the
lower-triangular part) but we do not impose the smoothness
constraint over the diagonal entries, which may include idiosyn-
cratic effects such as fluctuations in liquidity and bid-ask
spreads, etc. To implement this numerically, over a discrete grid
that corresponds to available expiration days, we use the dis-
crete version of the Laplacian operator on the grid at the point
of interest v, square and sum over all v:

S(P ) =
∑
v

(∇2
vP

)2
, where ∇2

vP =
∑

u∈N(v)

(P (u)− P (v))

(4)
Here, N(v) is the set of neighbors of point v: for the vertex
v = (i, j) that corresponds to the entry Pij of the covariance
matrix, the neighbors can be taken as the 4 neighboring entries,
i.e., (i± 1, j), and (i, j ± 1). The optimization problem is now:

min
P

D(P, P̄ ) + λ
∑
v

(∇2
vP )2, (5)

such that P ∈ M

where the parameter λ trades off smoothness with data-fidelity,
and should ideally be chosen automatically, e.g., via cross-
validation. The problem is still convex: the objective is convex
quadratic, and the constraint set is semi-definite, keeping the
problem an SDP. To see the benefit of enforcing smoothness
we contrast covariance estimates in Figure 3(c) and (d) and we
see that (5) produces much smoother, and, as we will see in
Section VI, more accurate estimates.

IV. NUMERICAL SOLUTION

The optimization problem in (5) is not only convex, it also
can be represented as a semidefinite optimization problem [29]:

min ‖P − P̄‖2f + λ‖D2V ec(P )‖22, (6)

such that P � 0, D V ec(P ) ≥ 0

where the operation V ec(P ) denotes stacking the columns of P
into a vector, ‖P‖2f =

∑
i,j P

2
ij denotes the squared Frobenius

norm, and ‖x‖22 =
∑

i x
2
i is the squared �2-norm. The matrices

D2 and D compute differences of relevant entries of P encod-
ing smoothness and monotonicity constraints, respectively. The
resulting problem for small N can be readily solved via an
interior point method using one of the standard SDP optimiza-
tion packages, e.g., SDPT3 [30]. Note that it is straightforward
to add additional constraints, e.g., positivity of correlations, or
Pii = 1 to deal with correlation coefficient matrices.

Solving SDP via an interior point method can become unduly
computationally expensive for large covariance matrices, as it
involves computing the Hessian matrix. Alternatively, the prob-
lem can be solved via optimal first-order methods, an exciting
recent development in optimization, generalizing classical gra-
dient projection by a clever use of smoothing and acceleration
techniques [24], [31], [32]. An important requirement to use
such methods is that the projection onto the constraint set can be
done efficiently. This can be achieved by considering the dual
of the problem in (6) where these projections correspond to sin-
gular value thresholding. In Section V we first describe a dual
first-order method for our monotone problem based on gradi-
ent projection [22], and then develop a faster optimal first-order
version based on acceleration ideas of [24]. The monotone and
smooth version of the problem follows the same lines, and
a dual projected gradient descent solution has been described
in [33].

V. EFFICIENT SOLUTION FOR LARGE-SCALE

COVARIANCES

We now describe fast first-order optimization algorithms for
the smooth and monotone covariance regularization that do not
require computing the Hessian matrix.

A. Projected Gradient Solution

We adapt the approach of [22] and outline a dual projected
gradient solution for the monotone version of our problem
in (2). The primal version of the monotone problem can be
written as:
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min
1

2
‖P − P̄‖2f such that P � 0, (7)

and Tr(DjP ) ≥ 0, j = 1, ..,M.

Here Tr(DjP ) represents the j-th row of the constraint
D V ec(P ) in (6), and M is the number of these linear
constraints. Introducing dual variables μ for the inequality
constraints, and Z for the p.s.d. constraint, the dual problem is:

max−1

2
‖ −D(μ) + Z + P̄‖2f , (8)

such that Z � 0, μ ≥ 0,

where D(μ) = −∑
μjDj . Strict duality holds for this problem

as a strictly feasible solution exists with P � 0. Given μ∗, the
primal solution can then be found as P = (P̄ −D(μ∗))+. A
closed form solution for optimization over Z simplifies the dual
further:

max−1

2
‖(−D(μ) + P̄ )+‖2f , μ ≥ 0, (9)

where (W )+ is the positive definite part of the matrix W .
As described in [22], the gradients of this objective can be
evaluated:

1

2
∇‖(W )+‖2f = W+. (10)

A dual projected gradient algorithm for the problem alternates
steps along the gradient direction with projections onto the
constraint set (initially we set μ to 0, and choose a step-size α):

i. Compute D(μ) = −∑
μjDj , and set P =

(P̄ −D(μ))+.
ii. Compute gradients: ∂f

∂μi
= Tr(DjP ), and set μj →

(μj + α(Tr(DjP )))+.
The smooth and monotone problem can be solved in a sim-

ilar fashion, except that the step corresponding to (8) does not
allow a closed form solution over Z. Instead we use a projected
coordinate descent algorithm, alternating descent over Z and
descent over μ.

B. Optimal First Order Methods

The projected gradient algorithm avoids computing the
Hessian, but it is plagued by slow convergence, with error
decreasing as O(1/k), where k is the iteration number.
Nesterov [31] has shown that it is possible to obtain O(1/k2)
convergence for a multi-step first-order method by a careful
combination of the current and previous gradients. An exten-
sion of Nesterov’s method to projected gradients was developed
in [24], called FISTA. Convergence of the FISTA algorithm
is guaranteed with step size α = 1

L , where L is the Lipschitz
constant for ∇f (see [22]). Applying FISTA to the dual of our
objective, we obtain the following algorithm:
Init: Set μ = 0, P = P̄ . Compute the Lipschitz constant L.

Iterate:
i. Let ηj → (μj +

1
L (Tr(DjP )))+, compute D(η) and set

P → (P̄ −D(η))+.

ii. Let tk+1 =
1+

√
1+4t2k
2 and let μk+1 = ηk + tk−1

tk+1
(ηk −

ηk−1).

Fig. 4. Convergence speed (in terms of log-error from the interior-point solu-
tion) for projected gradient, FISTA, and FISTA with momentum restarts.
Momentum restarts dramatically improve convergence of FISTA and rectify
the problematic oscillations.

The main complexity per iteration is evaluating the singular
value decomposition (SVD) in (P̄ −D(η))+. In comparison
with interior point methods, our dual FISTA implementation is
on average 30 times faster than SDPT3 [30] with 1e−3 toler-
ance, N = 40. We obtain similar speedups for the accelerated
dual coordinate descent method for the smooth and mono-
tone problem, which was mentioned in Section V-A. However,
FISTA has to be modified to reach higher accuracy solu-
tions. As many researchers noticed, plain FISTA suffers from
an oscillation phenomenon in practice, and a heuristic using
momentum restarts can provide a dramatic improvement as we
describe next.

C. Adaptive Restarts for Optimal First Order Methods

The development of FISTA was met with a lot of excitement,
but in practice the algorithm does not achieve the promised fast
convergence rate due to oscillations where the momentum term
grows too large and the algorithm overshoots. An analysis of
these oscillations [25] had shown them to be due to the diffi-
culty of estimating the local Lipschitz constants and the local
strong-convexity parameters of the smooth part of the objec-
tive function. The authors also proposed a heuristic approach
to restart the momentum term in FISTA (to erase the mem-
ory of past gradients) when an early onset of the overshooting
phenomenon is detected. We use the following simple rule
from [25] to restart the momentum term in the algorithm in
Section V-B. We use the update μk+1 = ηk + tk−1

tk+1
(ηk − ηk−1)

provided that (μk−1 − ηk−1)
′(ηk − ηk−1) < 0, and otherwise

we set μk+1 = ηk to restart the momentum. In Figure 4 we
show that adding these momentum restarts provides a dramatic
convergence speed improvement compared to plain FISTA,
and removes its oscillations due to momentum overshooting.
We reach the accuracy of the interior point methods after a
few hundred iterations as opposed to plain projected gradients
and FISTA which do not reach this accuracy even after 5000
iterations.
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Fig. 5. (a) MRF estimate (b) PCA estimate. (c) Errors of sample covariance,
monotone, smooth, GM and PCA estimates.

VI. EXPERIMENTAL RESULTS

We now apply our smooth and monotone regularization
to interest rate risk modeling. We focus on the Eurodollar
(ED) curve, and specifically look at ED spreads: if yi(t) is the
price of the i-th ED contract at time t, then the i-th spread is
xi(t) = yi(t)− yi+1(t). Focusing on spreads is akin to immu-
nizing the portfolio to parallel shifts of the ED-curve, and it
makes covariance estimation more challenging by removing the
dominant first principal component. The risk for a portfolio of
ED spreads is defined via the covariances for daily changes in
prices of the spreads.

In our first experiment we generate a number of samples from
a ground-truth known7 smooth monotone covariance P ∗, and
use them to generate a covariance estimate P̂ . In Figure 3 we
show (a) the true covariance, and (b) the sample estimate, for
the case of N = 40, T = 40. We apply (c) our monotone and
(d) smooth-monotone regularization8 from (2) and (5), respec-
tively. We can see that while the monotone version suffers from
the staircase effect, the smooth version looks qualitatively close
to the true covariance.

For comparison we compute the PCA estimate with
K = 3 principal components, and a Markov random field
(MRF) model estimate where the information matrix is
restricted to have K = 5 non-zero diagonals9. Figure 5(a),
(b) shows that the estimated covariance matrices exhibit only
a rough similarity to the original. We compute the aver-
age Frobenius error over 25 trials and present the results
in Figure 5(c) for all the methods, as a function of the

7In practice one never has the ‘true’ covariance – here we took a sample
covariance matrix from ED data, and applied smoothing to it, as a proxy for the
true one.

8For simplicity λ was set by trial and error and fixed for all experiments.
9The MRF is learned by maximum likelihood via iterative proportional

fitting (IPF) optimization [34].

Fig. 6. (a) Sample covariance with missing data. (b) Recovered smooth-
monotone covariance.

number of available samples. The Gaussian MRF and the PCA
methods are not consistent for fixed K: the estimates do not
improve with more samples. However, the monotone and the
smooth-monotone estimates provide a significant improvement
in accuracy over the sample covariance. We present additional
evidence on out-of-sample correlation structure forecasting
experiments in Section VI-C.

A. Missing Data

Missing data plagues all of applied science and also has
many incarnations in finance, such as illiquid instruments,
mismatches in expirations and holiday schedules for for-
eign markets. We consider an example where some entries
in the sample covariance matrix are missing (unknown).
Suppose that we have P̄ for only some subset I of entries:
(i, j) ∈ I ⊂ {1, .., N}2, and no observations for the rest. Our
smooth-monotone regularization formulation can be immedi-
ately extended to this setting:

min
P

DI(P, P̄ ) + λ
∑
v

(∇2
v(P ))2, (11)

such that P ∈ M,

where, e.g., in the Frobenius case, we define DI(P, P̄ ) =∑
(i,j)∈I(Pi,j − P̄i,j)

2. This does not affect the convexity of
the problem, and can be solved using the same optimization
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Fig. 7. (a) True, sample, and smooth-monotone eigen-spectra. (b) Detail (c) log-scale of true and smooth-monotone eigen spectra.

methods. We continue our interest-rate curve example, with
N = 40, and T = 50 samples, and 10-percent of the entries
missing in Figure 6. The approach is very robust against mod-
erate missing data and recovers a practically indistinguishable
estimate compared to the fully observed case.

B. Spectral Correction

As we mentioned, one of the symptoms of the catastrophic
breakdown of the sample covariance estimate in the high-
dimensional setting with limited data is the inconsistency of the
eigenvalue spectrum. A particularly important and challenging
case for correcting the eigenvalue spectrum is the asynchronous
setting where different entries of the covariance matrix are
obtained from distinct samples, for example in intraday high-
frequency trading. Estimating volatility and correlations from
high-frequency data is an active field of research [35], [36].
When several time series occur at different temporal resolu-
tions, it is easiest to consider each pair of time series, align
them10, and compute the pairwise covariance. However, once
this is done for each pair, the covariance matrix is no longer
guaranteed to be positive definite. An existing solution to fix
this defect projects the covariance matrix onto the space of p.d.
matrices [26]:

minD(P, P̄ ) such that P � 0 (12)

A closed form solution based on the eigen-decomposition
applies with the Frobenius norm error D(P, P̄ ) = ‖P − P̂‖2f .
Compute the eigen-value decomposition P̄ = UΛUT , where U
is orthogonal, and Λ is diagonal. Then the solution to (12) sim-
ply sets the negative eigenvalues to zero, P̂ = U max(Λ, 0)UT ,
i.e., P̄ is projected onto the boundary of the p.s.d. cone. In con-
trast, our approach uses the side-information of smoothness and
monotonicity, and guides the solution into the interior of the
p.s.d. cone and closer to the correct solution.

We consider a numerical example with N = 36, and T =
40 asynchronous samples: each P̄ij is estimated from a pair-
wise sample {xi(t), xj(t)}t∈1,..,T , drawn independently of
other pairs. We normalize P̄ to be unit-diagonal, and use our
approach in (5) with the asynchronous covariance estimate P̄ .
In Figure 7 we plot eigenvalues of the (i) true covariance matrix,
(ii) asynchronous sample covariance (iii) smooth-monotone fit

10For example one can re-sample the time series to include time points from
both. This would be very costly for much more than two series together.

to the sample covariance. The left plot shows the spectra, with
the detail shown in the middle plot. The sample-covariance
spectrum breaks down completely, with about half of the eigen-
values negative. Projection onto the p.s.d. cone would simply
set the negative eigenvalues to zero, leaving the positive mis-
estimated eigenvalues intact. However, the smooth-monotone
eigenvalue spectrum follows the true one closely. A log-plot
of the true and smooth-monotone spectra appears in the right-
most plot, and we see that indeed our proposed approach
matches the spectrum very closely! This experiment suggests
that smooth-monotone regularization can be very effective in
spectral correction for covariance estimation, and is especially
valuable for asynchronous settings.

C. Out-of-Sample Covariance Prediction

We now present a study of forecasting future correlation
coefficient matrices over several years of historical data of ED
prices. The accuracy of this prediction is crucial for portfolio
selection methods, such as Markowitz portfolios, to optimally
allocate assets. We estimate the correlation coefficient matrix
using our proposed method as well as alternative methods over
a training window of TTR business days. For the purposes of
this paper we use a very simple forecast assuming that the
correlation structure is slowly changing – by extending the cor-
relation estimate on the training window to the test window and
not modeling dynamics. We compute the realized matrix of cor-
relation coefficients over a test window of TTEST business days
immediately following the training window, and compare it to
our forecasts. We use running windows with shifts of 5 business
days over the course of five years ending in December 2010.

In Figure 8(a) we show the forecast error (in Frobenius
norm) for the sample correlation coefficient matrix and our
smooth-monotone estimate over the course of five years. In
plot (b) we show the forecast error as a function of the run-
ning window size TTR with TTEST set to 50. We observe
that PSM produces significantly smaller errors than both the
sample correlation coefficient matrix estimate and the PCA-
based estimate. Smooth and monotone regularization appears
especially valuable for small TTR, demonstrating robustness
in forecasting risk in scenarios with severely limited data. We
aim to extend this simple forecast to incorporate dynamics for
both variances, through multivariate variations of GARCH [37],
[38], and for correlations [2].
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Fig. 8. (a) Absolute Frobenius error over running windows. (b) Average
Frobenius error vs. the training window length.

VII. CONCLUSION

We have described a simple and effective framework to esti-
mate covariance matrices satisfying monotonicity and smooth-
ness, with applications to interest-rate-curve risk modeling in
econometrics. We formulated the problem as an SDP, and
described a dual projected gradient and an optimal first-order
method for its solution. We applied our approach to exam-
ples with limited, missing, and even asynchronous data, and
showed a significant performance improvement over existing
methods. This is valuable in constructing and managing risk
with optimized portfolios of interest-rate products. The frame-
work can be directly extended from simple linear orderings to
two-dimensional grids, for example to model volatility surfaces
for equity options. In future work we aim to analyze conver-
gence rates, and study temporally-correlated and time-varying
settings, along the lines of ideas in [2], [37], [38].
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