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ABSTRACT

We explore the application of a homotopy continuation-based
method for sparse signal representation in overcomplete dictio-
naries. Our problem setup is based on the basis pursuit frame-
work, which involves a convex optimization problem consisting
of terms enforcing data fidelity and sparsity, balanced by a regu-
larization parameter. Choosing a good regularization parameter
in this framework is a challenging task. We describe a homo-
topy continuation-based algorithm to efficiently find and trace all
solutions of basis pursuit as a function of the regularization pa-
rameter. In addition to providing an attractive alternative to ex-
isting optimization methods for solving the basis pursuit problem,
this algorithm can also be used to provide an automatic choice for
the regularization parameter, based on prior information about the
desired number of non-zero components in the sparse representa-
tion. Our numerical examples demonstrate the effectiveness of this
algorithm in accurately and efficiently generating entire solution
paths for basis pursuit, as well as producing reasonable regulariza-
tion parameter choices. Furthermore, exploring the resulting so-
lution paths in various operating conditions reveals insights about
the nature of basis pursuit solutions.

1. INTRODUCTION

Representing data in the most parsimonious fashion in terms of re-
dundant collections of generating elements is at the core of many
signal processing applications. However, finding such sparse rep-
resentations exactly in terms of overcomplete dictionaries involves
the solution of intractable combinatorial optimization problems.
As a result, work in this area has focused on approximate meth-
ods, based on convex relaxations [1] or greedy methods, lead-
ing recently to the development of conditions under which such
methods yield maximally sparse representations [2–6]. One such
method, involving a convex̀1 relaxation, is basis pursuit [1]. Its
noisy version (allowing for some residual mismatch to data) poses
the following optimization problem:

J(x; λ) = ‖y − Ax‖2
2 + λ‖x‖1, A ∈ R

M×N (1)

wherey denotes the data (signal whose representation we seek),
A is the overcomplete representation dictionary (M < N ), and
λ ≥ 0 is a scalar regularization parameter, balancing the tradeoff
between sparsity and residual error. For a fixedλ, the problem can
be solved by finding the minimizer̂x of (1), using e.g. quadratic
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programming. However choosing the regularization parameter is
a difficult task, and some prior knowledge, either of the desired
residual error (e.g. based on the noise level), or of the underlying
sparse vectorx, has to be exploited. One piece of information
aboutx might be the number of non-zero components. However,
even if such information is available, how to use it directly in the
basis pursuit framework is not straightforward.

Motivated by these observations, we describe a computation-
ally efficient approach for sparse signal representation based on
the homotopy continuation method of [7]. A related method has
also been developed in [8], and has been linked to greedy meth-
ods. The main focus in [7] is the solution of an overdetermined
least-squares problem with an`1-norm constraint. We are mostly
interested in the unconstrained formulation in (1), in the under-
determined (M < N ) case. In particular, we propose a simple
algorithm to find and trace all solutionŝx(λ) of basis pursuit as a
function of the regularization parameterλ. The functionJ(x; λ)
is convex and hence continuous, but it is not differentiable when-
everxi = 0 for somei, due to the term‖x‖1 =

P

i
|xi|. The

main idea of the approach is that‖x‖1, when restricted to the sub-
set of non-zero indices ofx, is locally a linear function ofx. This
allows one to solve the local problems (for a limited range ofλ)
analytically, and piece together local solutions to get solutions for
all regions ofλ. The resulting algorithm generates solutions for
all λ with a computational cost that is comparable to solving basis
pursuit with quadratic programming for a singleλ. This procedure
can also be used to select the regularization parameterλ based on
information about the number of non-zero components inx. In
particular, a reasonable choice is the minimumλ that produces
the desired number of non-zero components inx̂(λ). Our numer-
ical experiments demonstrate the effectiveness of this algorithm
in generating the solution path accurately. Furthermore, exploring
the structure of such solution paths reveals useful insights about
the sensitivity of the problem to measurement noise, as well as to
the nature of the overcomplete dictionary used.

2. NON-SMOOTH OPTIMALITY CONDITIONS

First we review non-smooth optimality conditions for convex func-
tions and their implications for the problem in (1).

The subdifferential of a convex functionf : R
N → R at

x ∈ R
N is defined as the following set:

∂f(x) = {ξ ∈ R
N |f(y) ≥ f(x) + ξ

T (y−x) ∀ y ∈ R
N} (2)

Each element of∂f(x) is called a subgradient off at x. The
subdifferential is a generalization of the gradient off . In fact, if f



is convexanddifferentiable at a pointx then

∂f(x) = {∇f(x)} (3)

i.e. the subdifferential consists of a single vector, the gradient off

atx (the only subgradient is the gradient).
The non-smooth optimality conditions state that the subdiffer-

ential off atx has to contain the0-vector forf to achieve a global
minimum atx:

Theorem 1 ( Non-smooth optimality conditions) If
f : R

N → R is convex, thenf attains a global minimum atx if
and only if0 ∈ ∂f(x).

The subdifferential ofg(x) = ‖x‖1 is the following set:

u(x) , ∂g =
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(4)

The interesting part of this subdifferential is when some of the
coordinates are equal to0, whereg is non-differentiable. Thenui

is not a scalar, it is a set.
The subdifferential off(x) = J(x; λ) from (1), for a fixed

λ = λ̃, is the set

∂f =
n

2A′(Ax − y) + λ̃u(x)
o

(5)

whereu(x) is defined above in (4). Suppose thatx̃ = arg minx J(x; λ̃).
Then, in order to have0 ∈ ∂f(x̃), the following equation must
have a solution for some vectorũ ∈ u(x̃):

2A′
Ax̃ + λ̃ũ = 2A′

y (6)

Let us consider an arbitrary vectorx more closely. LetIon be
the support ofx, i.e. the set of indicesi wherexi 6= 0. Also let
Ioff be the complement ofIon, i.e. Ioff = {i | xi = 0}. Put
all entriesxi on the support ofx into a vectorxon, and the ones
off the support ofx into xoff (that makesxoff = 0). Assume,
without loss of generality, thatx′ = [x′

on , x′

off ], i.e. the non-
zero components appear first. Let us splitu in the same fashion,
according to which indices lie on or off the support ofx, into uon

anduoff . Also, let us split the squareN ×N matrixG = 2A′A

into 4 parts (there are 4 possibilities of whether the row-index and
the column-index correspond to our setsIon andIoff ): Gon,on,
Gon,off , Goff,on, Goff,off . Due to symmetry of the matrixG,
we haveGon,off = G′

off,on. To simplify the notation further, let
us useΦ = Gon,on, Ψ = Gon,off , andΥ = Goff,off . Finally,
let z = 2A′y, and splitz in the same way intozon andzoff .

Returning to our fixed̃x and λ̃, using our new notation, we
can rewrite (6) as

„

Φ Ψ
Ψ′ Υ

« „

x̃on

0

«

+ λ̃

„

ũon

ũoff

«

=

„

zon

zoff

«

(7)

Suppose that we know̃x. The elements of̃uon are all determined:
they are equal to1 or −1, corresponding to the signs of elements
of x̃on. To determinẽuoff , split equation (7) into two parts to get:

Φx̃on + λ̃ũon = zon (8)

Ψ′
x̃on + λ̃ũoff = zoff

Thus we can find̃uoff = 1

λ̃
(zoff − Ψ′x̃on). Sincex̃ is optimal

(for someλ = λ̃), the elements of̃uoff are constrained to lie in
[−1, 1].

3. FINDING SOLUTIONS FOR ALL λ

In the last section we characterizedũ given that we know̃x, the op-
timal solution for a particular̃λ. Now starting withλ = λ̃, we in-
crementally changeλ to find and trace optimal solutionŝx(λ) for
all λ. This forms the basis of the homotopy continuation method.

Suppose that̃x is the unique solution for̃λ (whereλ̃ > 0),
then from (8) we have1

x̃on = Φ−1(zon − λ̃ũon) (9)

ũoff =
1

λ̃
(zoff − Ψ′Φ−1

zon) + Ψ′Φ−1
ũon (10)

No elements of̃xon are equal to zero, hence there exists a range of
λ, which includes̃λ, for which all entries ofxon(λ) = Φ−1(zon−
λũon) will be nonzero. That means that throughout this range the
support ofx(λ) will not be reduced. By larger changes inλ we
can force one of the components ofxon(λ) to zero. In addition,
there exists a range ofλ, which includes̃λ, for whichuoff (λ) =
1

λ
(zoff −Ψ′Φ−1zon)+Ψ′Φ−1ũon does not become equal to1 in

absolute value, i.e. all entries ofuoff (λ) belong to[−1, 1]. In the
intersection of these two ranges ofλ, the vectorsx(λ) andu(λ)
will satisfy the non-smooth optimality conditions forJ(x(λ); λ),
hencex̂(λ) = x(λ) for λ in the above region. The vectorx(λ)
is obtained by putting entries ofxon(λ) into the corresponding
entriesx̂i(λ), for i ∈ Ion, and zeros fori ∈ Ioff . The vector
u(λ) is obtained by putting̃uon (which does not change whileλ
is in the above region) into the components withi ∈ Ion, and
uoff (λ) for i ∈ Ioff .

In this way, we obtain all solutions for some range ofλ’s. The
range can be easily calculated by solving for critical values ofλ

closest tõλ, which make an entry of̂xon(λ) turn zero, or an entry
of uoff (λ) reach unity in absolute value. This requires solving a
set of scalar linear equations.

Now the next step is to find the support ofx̂(λ), asλ leaves
the region. We only need to search locally, sincex̂(λ) is contin-
uous forλ > 0 [7]. For the case where changingλ forces one
component ofxon(λ) to zero, recalculating the support is trivial:
we remove the indexi for whichxi was set to zero fromIon, and
put it intoIoff . For the case where an entry ofuoff (λ) becomes
equal to1 in absolute value, we transfer the corresponding indexi

from Ioff into Ion. The corresponding index ofuon is set to the
sign of the entry ofuoff (λ) which reached1 in absolute value.
Thus, after recomputing the support and the sign-pattern of so-
lutions, we can proceed in the same fashion as before, computing
the boundary of the new region forλ, finding the optimal solutions
inside it, and entering a new region.

To start the algorithm, it is easiest2 to considerλ0 = ∞, or
equivalentlyλ0 = 2‖A′y‖∞, which satisfieŝx(λ) = 0 for λ >

1In this case, it can be shown that the matrixΦ is invertible.
2Another possibility is to start withλ0 = 0, and increase it until̂x(λ)

becomes0. Assuming thatA has full row rank, this starting point requires
the solution of the problem:min ‖x‖1 subject toy = Ax. The solution
corresponds toλ = 0+. Whenλ = 0 there exist multiple solutions ifA
has a nontrivial null-space. Solving the linear program picks the sparsest
solution, which lies on the solution patĥx(λ).



λ0. Then, following the procedure described above, the algorithm
produceŝx(λ) for all λ ≥ 0, and terminates whenλ reaches0.

The algorithm can exploit prior information about the desired
number of non-zero elements in the representation to produce an
automatic choice for the regularization parameterλ for basis pur-
suit. In particular, among allλ for which x̂(λ) has the desired
sparsity, the smallest one can be a reasonable choice in many sce-
narios, as it leads to the smallest residual,‖y − Ax̂(λ)‖2. One
might also consider other choices forλ, guided by the structure of
the solution path, as we discuss in Section 4.

The computational complexity of the algorithm is dominated
by the inversion of the matrixΦ at each breakpoint, which is bounded
by O(M3), whereM is the number of rows ofA. However, at
each breakpoint the rank of the matrixΦ is changed by adding
(or removing) a row and a column, hence instead of computing
the inverse from scratch, rank-one updates can be done at the cost
of O(M2). Empirically, the number of breakpoints is aroundM ,
but more careful analysis is in order. Thus, the cost of finding
the whole solution path is roughly the same as for one iteration
of the Newton’s method to solve the problem in (1) for a fixedλ,
i.e. O(M3). In addition, if one does not need the full solution
path x̂(λ), but only the path from̂x(λ0) = 0 to a solution with
L components, then the complexity is bounded byO(L3), with L

instead ofM , and the number of breakpoints is typically aroundL.
Thus, the method is extremely efficient in computing very sparse
solutions starting from̂x(λ0) = 0.

To conclude the section, let us comment on the numerical sta-
bility of the algorithm. When we switch from one region to an-
other, the only information that is carried over is the support of the
new optimal solution, and the signs. Hence, if a small numerical
error due to finite precision is made in computing the optimal so-
lution for one region ofλ (small enough not to affect the support
and signs of the solution at the region boundary), then in the next
region this error has no effect at all. Thus, the algorithm has a
self-stabilizing property.

4. NUMERICAL EXAMPLES

4.1. Small Analytical Example

First we consider a very small example withA ∈ R
2×3:

A =

„

1 2 3
1 3 1.5

«

, and y =

„

6
6

«

We apply the algorithm from Section 3, and the resulting solution
path is shown in Figure 1. For this small problem, we are also
able to compute the entire solution path analytically, and observe
that the algorithm produces it accurately. The two triangles are the
intersections ofR+ with the planesx1 + 2x2 + 3x3 = 6, and
x1 + 3x2 + 1.5x3 = 6. The solution patĥx(λ) starts atλ = 60,
with x = 0. As λ starts to decrease, the solution path enters
a segment with one non-zero component:x2 = 30

13
− λ

26
, and

x1 = x3 = 0. The segment satisfies optimality conditions until
λ = 28.8, after whichx3 becomes non-zero. The solution path
from λ = 28.8, down toλ = 0+ is x2 = 3

2
− λ

96
, x3 = 1 − 5λ

144
,

andx1 = 0. The minimum-norm solution, corresponding toλ =
0, is x̂MN = [.4968, 1.3758, .9172], is not sparse.

4.2. Larger Numerical Examples

Now we demonstrate the application of the algorithm on larger
examples. We consider a problemy = Ax + n, whereA is an
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Fig. 1. Solution path for a small problem.

overcomplete20×100 discrete cosine transform (DCT) dictionary,
andn is zero-mean Gaussian noise. Dictionaries of this type arise
naturally in many signal processing applications, one example be-
ing source localization with sensor arrays, where the observation
model for linear arrays involves a discrete Fourier transform (DFT)
dictionary [9]. In the specific example we consider here,x has two
non-zero components, both equal to 1. In Figure 2 (top) we plot
the solution path for noiseless data (n = 0), in the middle plot for
small amounts of noise (SNR = 15 dB), and in the bottom plot for
moderate amounts of noise (SNR = 5 dB). Each piecewise-linear
curve in these plots corresponds to one componentx̂i(λ). We also
evaluate the solution at three intermediate values ofλ in each lin-
ear segment, and compare it to a solution of the corresponding
optimization problem in (1) using quadratic programming. The
solutions agree almost perfectly, up to negligible numerical errors
for all the examples.

Consider the top plot of Figure 2 which depicts the noiseless
scenario. The smallestλ which leads to two non-zero components
is λ = 0+, which is the best parameter choice in this case. The
corresponding solution found by homotopy-continuation has two
non-zero entries equal to1, and agrees with the original signalx.
In the middle plot, where the data are slightly noisy, the solution
path ends at a non-sparse vector, which is close to the optimal so-
lution of the noiseless problem (i.e. the other non-zero components
are small). The smallestλ yielding exactly two non-zero compo-
nents isλ = 1.4548. We note that the corresponding solution has
non-zero indices not exactly equal, but very close to the ones ofx.
The solution path suggests that an alternative to this choice ofλ is
to to pick a non-sparse solution forλ = 0+ and threshold it, which
would recover the exact indices in this mildly noisy scenario. In
the bottom plot, the noise is sufficient to substantially change the
solution path, but the smallestλ which leads to two non-zero el-
ements (λ = 0.6526) still produces a reasonable solution, which
is depicted in Figure 3 (we plot all components ofx̂i(λ) vs. i).
Note that the indices of non-zero elements ofx̂(λ) are very close
to those of the truex. This ’stability’ of indices of non-zero com-
ponents occurs due to the special structure ofA: nearby columns
of A are almost parallel for our overcomplete DCT matrixA, and
columns which are far apart are nearly orthogonal. This structure
is what allows sparse signal representation ideas to be applied to
source localization-type problems, even for highly overcomplete
dictionaries [9].
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The above set of experiments were done for a severely over-
complete dictionary (A is 20×100). Let us now consider a mildly
overcomplete,20 × 23 DCT dictionary,A. This problem is less
demanding than the previous scenario in the sense that the desired
signal representation is on a “coarser grid” of dictionary elements
(leading to smaller mutual coherence [2]). In Figure 4, we observe
that for noisy data the results exhibit excellent stability: even with
moderate amounts of noise, SNR = 5 dB, the two non-zero com-
ponents are clearly visible for any choice ofλ. We note that these
components exactly match the indices of non-zero elements ofx.

Some observations can be drawn from the above experiments.
The components of̂x(λ) tend to decrease asλ increases, but as
can be seen from the middle plot in Figure 2, a component which
was equal to0 may become non-zero asλ increases. We also ob-
serve that sparse representation is easier in dictionaries with well-
separated elements (in the sense of [2]). However, all hope is not
lost even for severely overcomplete dictionaries, as long as they
have certain structure.

5. CONCLUSION

We have described a simple and efficient algorithm to generate en-
tire solution paths (as a function of the regularization parameter) of
basis pursuit for sparse signal representation in overcomplete dic-
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Fig. 4. Solution pathŝx(λ) for all λ with varying levels of noise.
A is 20 × 23. Top: SNR = 15 dB. Bottom: SNR = 5 dB.

tionaries. The algorithm can also be used to identify good choices
for the regularization parameter. The ease in generating the solu-
tion paths make them a useful tool for empirical exploration of the
behavior of basis pursuit in various scenarios.
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