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ABSTRACT

We consider the problem of enforcing a sparsity prior in under-
determined linear problems, which is also known as sparse signal
representation in overcomplete bases. The problem is combinato-
rial in nature, and a direct approach is computationally intractable
even for moderate data sizes. A number of approximations have
been considered in the literature, including stepwise regression,
matching pursuit and its variants, and recently, basis pursuit (`1)
and also `p-norm relaxations with p < 1. Although the exact no-
tion of sparsity (expressed by an `0-norm) is replaced by `1 and `p

norms in the latter two, it can be shown that under some conditions
these relaxations solve the original problem exactly. The seminal
paper of Donoho and Huo establishes this fact for `1 (basis pur-
suit) for a special case where the linear operator is composed of an
orthogonal pair. In this paper, we extend their results to a general
underdetermined linear operator. Furthermore, we derive condi-
tions for the equivalence of `0 and `p problems, and extend the
results to the problem of enforcing sparsity with respect to a trans-
formation (which includes total variation priors as a special case).
Finally, we describe an interesting result relating the sign patterns
of solutions to the question of `1-`0 equivalence.

1. INTRODUCTION

The topic of enforcing a sparsity prior in underdetermined linear
problems has many important applications including feature selec-
tion, signal restoration, super-resolution source localization, and
subset selection in linear regression, among many others. Math-
ematically, the basic version of the problem can be described as
follows. Given a signal y ∈ C

M , and a matrix A ∈ C
M×N

with M < N , we would like to recover an unknown sparse signal
x ∈ C

N , which satisfies y = Ax. The linear system has an infi-
nite number of solutions. The min-`2-norm solution is not sparse
in general. Instead, we would like to choose the sparsest solution,
the one with the smallest number of non-zero elements. We denote
the number of nonzero elements of a signal x by ‖x‖0

0. The sparse
representation problem (the `0 problem) is:

min ‖x‖0
0 subject to y = Ax (`0 problem) (1)

This problem is combinatorial in nature, and the solution requires
searching through all subsets of indices of x. This is not tractable
even for moderate values of M and N . It has been proposed to
consider `1-norm (Basis Pursuit) [1] and `p-norm approximations
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(with p < 1) which can be solved using continuous optimization
methods:

min ‖x‖1 subject to y = Ax (`1 problem) (2)

min ‖x‖p
p subject to y = Ax, p < 1 (`p problem) (3)

We consider the two cases (p = 1 and p < 1) separately, since the
problem is convex only when p = 1. The `1 problem can be solved
efficiently by linear programming for real data and by second order
cone (SOC) programming for complex data [2]. The `p problem
is nonconvex, but a locally optimal solution can be found by local
optimization; for some applications the resulting local minima are
observed to give excellent approximations [2].

According to empirical observations, `1 and `p problems lead
to sparse solutions. However, there are more convincing reasons
to use them instead of the exact sparsity approach in (1). The pio-
neering work of Donoho and Huo [3] establishes that the solution
of the `1 problem is the same as the solution of the `0 problem,
as long as the underlying x is sparse enough with respect to the
matrix A (these notions are to be defined shortly). They consider
the special case where A is composed of two orthogonal bases.

In this work, we extend their results to the case of a general
overcomplete basis1. Furthermore, we derive conditions for the
equivalence of global solutions to the `0 and `p problems, which
get less restrictive as p decreases to 0. In addition, we prove a
result which sheds light on the sign patterns of exact `1 solutions
to the `0 problem, which is most interesting when the sufficient
conditions for equivalence are not satisfied. Finally, we extend the
results to the problem of signal representations which are sparse af-
ter a linear transformation D ∈ C

J×N . The problem has the form
min ‖Dx‖1 subject to y = Ax. A special case of this problem,
where D is a representation of a discrete gradient operator, goes
under the name total variation, and has important applications in
image processing. The significance of the results on equivalence
of the `1, `p and `0 problems under specified conditions lies in be-
ing able to replace combinatorial optimization by the much easier
tasks of linear programming or continuous `p optimization.

Although we do not discuss it in this paper, the application of
these ideas typically requires handling noise, which can be simply
accomplished for Gaussian noise through the use of the following
cost function: arg min ‖y − Ax‖2

2 + λ‖x‖p
p, where λ is a pa-

rameter balancing the two terms. This problem is discussed in [2]
and [1]. The analysis in this paper, as well as simulations in [2]
provide a strong motivation for the use of `1 and `p penalties in
the noisy case as well.

1During the preparation of this manuscript we learned that very recent
work related to this extension has been done independently in [4], [5], and
[6].



2. `0 UNIQUENESS CONDITIONS

Before relating the `0, `1 and `p problems, we first address the
question of uniqueness of solutions of the `0 problem, to make sure
that `0 solutions are useful. To that end, we introduce a measure
of independence of sets of columns of A, index of unambiguity
K(A), which leads to a necessary and sufficient condition for the
uniqueness of solutions.

Let A ∈ C
M×N with columns ai, A = [a1, ..., aN ]. The

index of ambiguity K(A) of A is the largest integer such that any
set of K(A) columns of A is linearly independent. Hence, either
K(A) = N , and no additional columns exist, or there exists a
set of K(A) + 1 columns which is linearly dependent. Using this
definition, we can characterize the uniqueness of solutions to the
`0 problem through the following theorem:

Theorem 1 (Uniqueness of solutions to the `0 cost function) Let
A ∈ C

M×N with N > M . Also, suppose that for some x∗,
y = Ax∗, and ‖x∗‖0

0 = L. Then (1) has a unique solution
x̂ = x∗ for all such y and x∗ if and only if L < (K(A) + 1)/2.

We refer the reader to [2] for the simple proof, which is based on
the observation that there is a vector in the nullspace of A which
has K(A) + 1 non-zero entries. This condition is necessary and
sufficient, but due to its discontinuous nature it is hard to use it
to relate the `0, `1, and `p problems. To move on, we introduce
a different measure of independence of columns of A, maximum
absolute pairwise dot-product, M(A), which extends the measure
introduced in [3] to general overcomplete bases:

M(A) = max
i6=j

|a′
iaj |, where ‖ak‖2 = 1, ∀k. (4)

M(A) measures how spread-out the columns of A are. Due to
Schwartz inequality, 0 ≤ M(A) ≤ 1, and M(A) = 0 if and only
if A has orthogonal columns. Small values of M(A) mean that
the set of columns is almost orthogonal, whereas values close to
unity mean that there are at least two columns separated by a very
small angle. Although M(A) takes into account only the relations
between pairs of columns of A, it has a strong tie with linear de-
pendence structure of larger sets of columns, and in particular with
K(A), as described by the following theorem:

Theorem 2 (Relation of K(A) to M(A)) Let A ∈ C
M×N with

‖ai‖2 = 1, ∀i (thus A does not have 0 as a column), then

M(A) ≥
1

K(A)
(5)

The proof of the theorem (see [2]) involves the following fact from
geometry of polytopes2:

Lemma 1 (Optimality of the simplex for line packing in C
K ) Let

Ã ∈ C
K×(K+1). Then M(Ã) ≥ 1

K
. The equality is achieved for

the regular simplex (allowing rotations and reflections of vertices
around the origin).

Now using Theorems 1 and 2 we are led to a different condition
for the uniqueness of solutions to the `0 problem:

2There are close connections between the problem of characterizing
M(A), the problem of spherical code design, and the problem of ray and
line packing on Euclidean spheres, where we borrowed this result from.
We thank R. Blume-Kohout and P. Shor for a helpful discussion on the
subject, and the proof of Lemma 1.

Theorem 3 (Uniqueness of solutions for `0 through M(A)) Let
A ∈ C

M×N with N > M . Also, suppose that for some x∗,
y = Ax∗, and ‖x∗‖0

0 = L. Then (1) has a unique solution
x̂ = x∗ if L < 1/M(A)+1

2
.

This condition is sufficient only, and the `0 problem may have
unique solutions even when it is not satisfied. The reason for intro-
ducing a looser condition is that we next use M(A) to relate the
`0 and `1 problems, and the same sufficient condition leads to the
equivalence of the two problems.

3. EQUIVALENCE CONDITION FOR `0 AND `1
PROBLEMS FOR GENERAL OVERCOMPLETE BASES

Donoho and Huo [3], and later Elad and Bruckstein [7] give a
sufficient condition for the equivalence of solutions to the `0 and
`1 problems for the case when A is composed of two orthogonal
bases. We extend the condition to the general overcomplete basis
case using the measure M(A) introduced in (4):

Theorem 4 (Equivalence of `0 and `1 problems) Suppose that the
`0 problem (1) has a unique solution x̂ with ‖x̂‖0

0 = L. If L <
1+1/(M(A))

2
, then x̂ is also the solution of the `1 problem in (2).

Proof. In the beginning stages, the structure of the proof fol-
lows that of [3] and [7], generalizing some of the notions for a
general overcomplete basis. One novel aspect of the proof is the
derivation of Lemma 2. Suppose that x̂ is the optimal solution to
(1). To satisfy y = Ax̃, any other candidate x̃ must have the form
x̃ = x̂ + δ, where δ ∈ Null(A), the nullspace of A. In order for
x̂ to be the optimal `1 solution as well, we need:

‖x̂ + δ‖1 > ‖x̂‖1 for any δ ∈ Null(A), δ 6= 0 (6)

Let Ix denote the set of indices where the optimal `0 solution x̂

has non-zero values (the support of x̂). Also its complement, the
set of zero-valued indices of x̂, is denoted by IC

x . We can divide
the `1 norm into the components on and off the support of x̂ and
then use the triangle inequality to manipulate (6) as follows:

‖x̂ + δ‖1 − ‖x̂‖1 =





∑

i∈Ix

|x̂i + δi| +
∑

i∈IC
x

|δi|



 −
∑

i∈Ix

|x̂i|

(7)

≥
∑

i∈IC
x

|δi| −
∑

i∈Ix

|δi| = ‖δ‖1 − 2
∑

i∈Ix

|δi| > 0

So, for x̂ to be `1-optimal, it suffices to have
∑

i∈Ix
|δi|

‖δ‖1

< 1
2

.
This is a good start, but hard to test numerically. To move further,
similarly to [7], we consider a family of problems indexed by i:

min ‖δ‖1 subject to δ ∈ Null(A) and δi = 1 (8)

Suppose the minimum value is Qi, when index i is fixed. Define
Q(A) = mini Qi. Next, we use Lemma 2, which states that
Q(A) ≥ (1 + 1

M(A)
). Consider the condition that we are trying

to prove, (7):
∑

i∈Ix
|δi|

‖δ‖1
=

∑

i∈Ix

|δi|

‖δ‖1
≤

∑

i∈Ix

1

Qi
(9)

≤
∑

i∈Ix

1

Q(A)
= ‖x̂‖0

0
1

Q(A)
≤ ‖x̂‖0

0(1 +
1

M(A)
)−1



We need to have
∑

i∈Ix
|δi|

‖δ‖1

< 1
2

. In order for that to happen, it is

sufficient that ‖x̂‖0
0 < 1

2
(1 + 1

M(A)
). This proves the theorem. �

In the proof we used Lemma 2. Its derivation appears in [2].

Lemma 2 (Bound on Q(A) for a general overcomplete A) Q(A),
the minimum of the optimum values of the problems in (8) over all
i, can be bounded by Q(A) ≥ (1 + 1

M(A)
).

4. EQUIVALENCE CONDITION FOR `0 AND `P

The approximation of the `0 norm by an `p quasi-norm with p < 1
is more accurate than by the `1 norm. We show that under certain
conditions the global minimum of the `p problem also achieves
the minimum of the `0 problem, and moreover, as p → 0, the
sufficient condition for the equivalence of the two problems ap-
proaches the necessary and sufficient condition for the uniqueness
of solutions to the `0 problem, stated in Theorem 1.

To relate the `0 and `p problems, we consider a new measure
of A based on the order statistics of vectors in Null(A). For
any δ ∈ Null(A) define δ̃ to be a permutation of δ in which the
absolute values of the coordinates δi are sorted in decreasing order.
Thus, δ̃1 = maxi |δi|, δ̃N = mini |δi|. We define S(A) as:

S(A) = min δ̃K(A)+1 over all δ ∈ Null(A), with ‖δ‖∞ = 1
(10)

Note that we consider the (K(A) + 1)-st ranking element, hence
S(A) is strictly greater than zero (otherwise there would exist a
set of K(A) linearly dependent columns of A). Also S(A) ≤ 1,
since ‖δ‖∞ = δ̃1 = 1. Using the new measure of A, we are led
to the following theorem:

Theorem 5 (Equivalence of `0 and `p with p ≤ 1) Suppose that
the `0 problem (1) has a unique solution x̂ with ‖x̂‖0

0 = L. If
L < S(A)p(K(A)+1)

1+S(A)p , then x̂ is also the solution of the `p problem
in (3).

Proof outline. In order for x̂ to be the unique solution of (3), it
must be true that ‖x̂‖p

p < ‖x̂+δ‖p
p for any δ ∈ Null(A), δ 6= 0.

The triangle inequality holds for ‖ • ‖p
p with p < 1:

‖x̂‖p
p − ‖δ‖p

p ≤ ‖x̂ + δ‖p
p ≤ ‖x̂‖p

p + ‖δ‖p
p (11)

We again split x and δ according to indices on and off the support
of x, and similarly to the proof for `1, using (11), we obtain:

∑

i∈IC
x

|δi|
p −

∑

i∈Ix

|δi|
p > 0 (12)

Finally, considering the worst case scenario for x and δ (see [2]),
we have

∑

i∈IC
x
|δi|

p−
∑

i∈Ix
|δi|

p ≥ S(A)p(K(A)+1−L)−

L, which leads to the desired result in Theorem 5.
Now let us analyze the new condition. Since S(A) is below

unity except for degenerate cases, for p < 1 the bound is less
restrictive than for p = 1. As p goes to zero, the condition ap-
proaches (K(A) + 1)/2, as long as S(A) is non-zero. But this is
the necessary and sufficient condition for uniqueness of solutions
to the `0 problem which we have derived in Theorem 1! Thus the
`p problem with small p is a very good approximation of the `0

problem, which is quite intuitive.

5. SIGN PATTERNS OF EXACT SOLUTIONS

Now we describe an interesting observation that we have made re-
garding the optimal solutions to the `1 problem, (2). We consider
the case where the sufficient condition in Theorem 4 is not met.
Hence, some `0-optimal solutions are also `1-optimal, while oth-
ers are not. We would like to characterize these two sets of x’s.
We show that all `1-optimal solutions x̂ which are also `0-optimal
can be determined by considering a finite number of test cases, ac-
cording to the supports and sign patterns of x̂. We define the sign
pattern of x to be a vector s ∈ R

L, where ‖x‖0
0 = L, contain-

ing the signs of the elements of x on the support of x. Using this
definition, we get the following theorem:

Theorem 6 (Sign patterns of solutions) Let A ∈ R
M×N , M <

N , and K(A) = M . Suppose that ‖x̂‖0
0 < M+1

2
, and x̂ is the

optimal solution to both the `0 and `1 problems, for a given y, i.e.

x̂ = arg min
y=Ax

‖x‖0
0, and x̂ = arg min

y=Ax
‖x‖1 (13)

Then, if x̃ has the same support and sign pattern as x̂, then:

x̃ = arg min
ỹ=Ax

‖x‖0
0 and x̃ = arg min

ỹ=Ax
‖x‖1, where ỹ = Ax̃

Proof outline. The support of x̃ and x̂ is the same, so ‖x̃‖0
0 =

‖x̂‖0
0 < M+1

2
. By Theorem 1, since ỹ = Ax̃, and x̃ is sparse, x̃

is the optimal solution to its `0 problem. Also, since x̂ is the `1-
optimal solution, then ‖x̂‖1 < ‖x̂ + n‖1, ∀n ∈ Null(A),n 6=
0. It remains to show that since x̃ has the same sign pattern and
support as x̂ then ‖x̃‖1 < ‖x̃ + n‖1, ∀n ∈ Null(A),n 6= 0.
Suppose this is false, and for x̃, its `1 problem has a better solution:

∃ñ ∈ Null(A), ñ 6= 0, such that ‖x̃ + ñ‖1 ≤ ‖x̃‖1 (14)

We introduce some notation for indexing: let “Ion” be the set of
indices on the support of x̃, and Ioff = IC

on, indices off the sup-
port of x̃. Let “Iss” be the indices on the support of x̃ where x̃ and
ñ have the same sign, and “Ids” be the indices on the support of x̃

where x̃ and ñ have different signs. After some algebra, splitting
the vectors according to these indices, we have:

∑

i∈Ids

|ñi| ≥
∑

i∈Ioff ∪ Iss

|ñi| (15)

Using this inequality we now find a contradiction to the `1-optimality
of x̂. Since x̃ and x̂ have the same support and the same sign pat-
tern, then Ion, Ioff , Iss, and Ids have the same meaning for x̂ as
for x̃. That is to say, Ion is the support of x̃ and also of x̂. Signs
of ñ and x̃ are the same on Iss, and so are the signs of ñ and x̂.

Let ň = αñ, where α > 0 is selected such that |ňi| < |x̂i| for
all i ∈ Ids. This is possible since |x̂i| > 0 for all i ∈ Ids. Rewrit-
ing `1-optimality of x̂ in terms of our indices, it follows that ∀n ∈
Null(A),n 6= 0 we must have

∑

i∈Ids
|x̂i|−

∑

i∈Ids
|x̂i+ni| <

∑

i∈Ioff ∪ Iss
|ni|. However, for our particular ň ∈ Null(A):

∑

i∈Ids

|x̂i| −
∑

i∈Ids

|x̂i + ňi| =
∑

i∈Ids

|x̂i| −
∑

i∈Ids

|x̂i| +
∑

i∈Ids

|ňi| =

∑

i∈Ids

|ňi| ≥
∑

i∈Ioff ∪ Iss

|ňi| (16)

This is a contradiction, thus x̃ is the optimal solution to min ‖x‖1

subject to ỹ = Ax. This proves our theorem about sign patterns.
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Fig. 1. Sign patterns of exact solutions. Matrix A is 10 × 40.
Sparsity profile (support of x) is (10, 20, 30). (a) Sign pattern for
exact solutions: (+, +, +). Two signals along with exact recon-
structions. (b) Sign pattern for wrong solutions: (+,−,−). Two
signals, and the corresponding wrong reconstructions.

An example of sign patterns of solutions appears in Figure 1.
In (a), two signals sharing a sign pattern both equal their `1 recon-
structions. In (b), two different signals sharing another sign pattern
both yield incorrect reconstructions. In summary, whether or not
the `1 reconstruction will equal the original signal depends on the
support and the sign pattern, and not on the signal amplitudes.

6. SPARSITY AFTER A SPECIFIED TRANSFORMATION

Now we consider a more general problem, for a given D ∈ C
J×N :

min ‖Dx‖p
p subject to y = Ax (17)

where 0 ≤ p ≤ 1. This means that x does not have to be sparse,
but we would like the vector Dx to be sparse. We show how to
reduce (17) to the problem of representation with sparsity in the
standard basis. As a corollary, this reduction establishes the results
of Sections 2, 3 and 4 for the new problem in (17).

For the case where J = N , and D is invertible, this is trivial.
Let z = Dx. Then x = D−1z, and the problem (17) can be
rewritten as min ‖z‖p

p such that y = AD−1z. Let Ã = AD−1,
then this is exactly in the form of (2).

The case where D is rectangular, full-row rank and has a nullspace
(e.g. when D is a pairwise difference operator for Total Variation
(TV)) is more interesting. In order to have a unique solution, we
must have Null(A) ∩ Null(D) = {0}, which we now assume.
Using the same definition of z, we can rewrite the problem as

min ‖z‖p
p such that (∃δ ∈ Null(D) : y = A(D†

z + δ)) (18)

Let us take a basis N for Null(D), then this is equivalent to
min ‖z‖p

p subject to ∃η such that y = A(D†z + Nη). The set
{ANη | η ∈ C

N−J} forms a subspace, thus denoting Φ = AN,
we can split y into two parts: project y onto the range space of Φ,
y‖ = ΠΦy, and on the orthogonal complement, y⊥ = Π⊥

Φy. As
long as we can find z to approximate y in the subspace orthogonal
to the range space of Φ, then we can always find η to represent the
residual in the range space of Φ. That is to say, we need to solve

ẑ = arg min ‖z‖p
p subject to y

⊥ = Π⊥
ΦAD

†
z (19)
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Fig. 2. Total variation reconstruction of a piecewise constant sig-
nal. Matrix A is 10 × 40, and D is a 39 × 40 pairwise difference
operator. The original signal, and the `1-TV reconstruction match
exactly. The `2 reconstruction, however blurs the edges, and does
not recover the original signal.

and then we find η̂ = Φ†(y − AD†ẑ). To find x̂ we put the
two components back together: x̂ = D†ẑ + Nη̂. Now the theo-
retical results of preceding sections can be directly applied to the
problem in (17). The transformed conditions require checking if z

is sparse enough with respect to Ã = Π⊥
ΦAD†. An example of

exact reconstruction for the `1-case with D being a pairwise differ-
ence operator appears in Figure 2. The `1-TV reconstructed signal
matches exactly the original signal. For comparison, we plot the `2

solution, obtained by setting p = 2 in (17), which does not favor
sparsity. The `2 solution has blurred edges, and does not match the
original signal.

7. CONCLUSION

We have presented theoretical analysis justifying the use of `1 and
`p approximations to the problem of sparse signal representation
in general overcomplete bases. If signals are sufficiently sparse,
these approximations lead to exact solutions, and if not, we have
characterized subsets for which `1-`0 equivalence holds. Finally,
we have extended the results to sparsity in a transformed domain.
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