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Given a probabilistic graphical model with both hidden abdervation nodes, common inference problems
include solving for the maximum a-posteriori (MAP) and nraxim-posterior-marginal (MPM) estimates

(i.e., the modes of, respectively, the joint distributidrath hidden nodes or the marginal distributions of

every hidden node upon conditioning on any realization bblgervation nodes). Belief propagation (BP)

and related algorithms [6], [11] are popular methods forisgl such inference problems. BP originates
as an exact solution on tree-structured graphs, convetgirige optimal solution after a finite number

of iterations. Though convergence is not guaranteed on g@meral graphs, there is empirical (e.g., [5])

and theoretical (e.g., [10]) evidence that BP can convesgecteptable approximate solutions.

Conceptually, the message-passing formulation of BP dstemturally to a distributed network setting:
associating to each node and edge in the graph a distinatgsocand communication link, respectively,
the algorithm is equivalent to a sequence of purely-locahmatations interleaved with only nearest-
neighbor communications. Specifically, each computatienecorresponds to all nodes simultaneously
evaluating a locamessage functigror a mapping from all messages received in the precedingneem
nication event to the messages that must be transmitteceingkt communication event. Practically, the
viability of BP in a distributed network setting appears &strupon an implicit assumption that online
communication resources are abundant. In a general netlwedause mere termination of the algorithm
is in gquestion, the required communication resources grgoa- unbounded. Even in a tree-structured
network, iterative reliable transmission of the exact mges presumes communication channels with
infinite capacity (in bits per observation), or at least dfisiently high bandwidth such that the resulting
finite message precision is essentially error-free.

In some distributed settings (e.g., power-constrainedga@enetworks with voluminous local observa-
tions), it may be prohibitively costly or simply infeasibie justify such idealized online communication
assumptions. Fortunately, there is evidence to suggeat aenmunication is not essential for BP-like
algorithms to achieve acceptable performance. A messagtidan by which nodes can decide to discard
certain messages is examined in [2], where empirical res$ndticate such a “communication-sensitive”
message-passing algorithm (if it converges) achieves aaabfe performance given low-to-moderately
frequent occurrences of discarded messages. The analy§kstudies the effect of multiplicative errors
in BP message computations, establishing bounds on thenatation of these errors as the algorithm
proceeds and, in turn, implying “small-enough” messagersrwill not alter the behavior of BP. A
converse of the evidence in [2] and [3], however, is that BB-hlgorithms may perform poorly when
communication resources become severely constrained.

Assuming communication constraints are severe, we exath@eextent to which alternative message
functions can serve to minimize the unavoidable loss inguerdnce. Our analysis begins with a very
specific inference objective and severely constrained caenication scheme: we wish to solve for MAP
estimates in a discrete-variable tree-structured grapmwdel, where (i) all edges correspond to low-
capacity communication links (e.g., one bit per observatand (ii) the message schedule is restricted to
exactly one directed sweep through the tree network. Wethasproblem within a variational inference
formulation [4], [12], viewing the message functions as degrees-of-freedom subject to the constrained
information flow implied by the stipulated link capacitiesdarestricted message schedule.



The resulting variational problem turns out to be equivatenthe optimization problem underlying the
well-studied decentralized detection paradigm [7], [8], [1]. Known necessary optimality conditions in
decentralized detection immediately provide a finite pa@mzation for the message functions, clearly
distinct from the traditional BP counterpart, as well as terative algorithm to be executeaffline
(i.e., before observations are realized). This offline pduwre serves to couple the parameters of all
local message functions, in a manner that depends noaflyivan global problem statistics, in order
to (at least partially) mitigate the loss in MAP performarthee to the stipulated online communication
constraints. The same variational analysis applies forMR inference objective, where we discover
an added advantage with respect to the distributed netvetting: the global offline procedure can itself
be expressed as an iterative message-passing algorithmfawvdrable convergence properties.

The proposed variational approach for distributed infeeeminder severe communication constraints
illuminates upon a number of design principles that merithfer exploration. Firstly, we articulate a
distinction between the graph that defines the probalilisiddel and the graph that defines the online
communication constraints—do they need to be commensagtssumed above? Secondly, mitigating
the performance loss that results from an imposed commtimicgraph requires some type of offline
preprocessing to globally couple the local message funstitndeed, such an offline procedure is itself
a tax on distributed network resources—under what circant&s does the potential for improved online
inference justify this offline resource expenditure? Hinahnalogous to the success demonstrated by
traditional BP when applied to inference problems beyormbéhfor which it was originally derived,
we conjecture that the offline message-passing algorithaetdefor MPM inference on a tree-structured
probabilistic/communication graph will find success in mmgeneral communication-constrained inference
problems.
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