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Given a probabilistic graphical model with both hidden and observation nodes, common inference problems
include solving for the maximum a-posteriori (MAP) and maximum-posterior-marginal (MPM) estimates
(i.e., the modes of, respectively, the joint distribution of all hidden nodes or the marginal distributions of
every hidden node upon conditioning on any realization of all observation nodes). Belief propagation (BP)
and related algorithms [6], [11] are popular methods for solving such inference problems. BP originates
as an exact solution on tree-structured graphs, convergingto the optimal solution after a finite number
of iterations. Though convergence is not guaranteed on moregeneral graphs, there is empirical (e.g., [5])
and theoretical (e.g., [10]) evidence that BP can converge to acceptable approximate solutions.

Conceptually, the message-passing formulation of BP extends naturally to a distributed network setting:
associating to each node and edge in the graph a distinct processor and communication link, respectively,
the algorithm is equivalent to a sequence of purely-local computations interleaved with only nearest-
neighbor communications. Specifically, each computation event corresponds to all nodes simultaneously
evaluating a localmessage function, or a mapping from all messages received in the preceding commu-
nication event to the messages that must be transmitted in the next communication event. Practically, the
viability of BP in a distributed network setting appears to rest upon an implicit assumption that online
communication resources are abundant. In a general network, because mere termination of the algorithm
is in question, the required communication resources are a-priori unbounded. Even in a tree-structured
network, iterative reliable transmission of the exact messages presumes communication channels with
infinite capacity (in bits per observation), or at least of sufficiently high bandwidth such that the resulting
finite message precision is essentially error-free.

In some distributed settings (e.g., power-constrained sensor networks with voluminous local observa-
tions), it may be prohibitively costly or simply infeasibleto justify such idealized online communication
assumptions. Fortunately, there is evidence to suggest ideal communication is not essential for BP-like
algorithms to achieve acceptable performance. A message function by which nodes can decide to discard
certain messages is examined in [2], where empirical results indicate such a “communication-sensitive”
message-passing algorithm (if it converges) achieves comparable performance given low-to-moderately
frequent occurrences of discarded messages. The analysis in [3] studies the effect of multiplicative errors
in BP message computations, establishing bounds on the accumulation of these errors as the algorithm
proceeds and, in turn, implying “small-enough” message errors will not alter the behavior of BP. A
converse of the evidence in [2] and [3], however, is that BP-like algorithms may perform poorly when
communication resources become severely constrained.

Assuming communication constraints are severe, we examinethe extent to which alternative message
functions can serve to minimize the unavoidable loss in performance. Our analysis begins with a very
specific inference objective and severely constrained communication scheme: we wish to solve for MAP
estimates in a discrete-variable tree-structured graphical model, where (i) all edges correspond to low-
capacity communication links (e.g., one bit per observation) and (ii) the message schedule is restricted to
exactly one directed sweep through the tree network. We castthe problem within a variational inference
formulation [4], [12], viewing the message functions as thedegrees-of-freedom subject to the constrained
information flow implied by the stipulated link capacities and restricted message schedule.
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The resulting variational problem turns out to be equivalent to the optimization problem underlying the
well-studied decentralized detection paradigm [7], [8], [9], [1]. Known necessary optimality conditions in
decentralized detection immediately provide a finite parameterization for the message functions, clearly
distinct from the traditional BP counterpart, as well as an iterative algorithm to be executedoffline
(i.e., before observations are realized). This offline procedure serves to couple the parameters of all
local message functions, in a manner that depends non-trivially on global problem statistics, in order
to (at least partially) mitigate the loss in MAP performancedue to the stipulated online communication
constraints. The same variational analysis applies for theMPM inference objective, where we discover
an added advantage with respect to the distributed network setting: the global offline procedure can itself
be expressed as an iterative message-passing algorithm with favorable convergence properties.

The proposed variational approach for distributed inference under severe communication constraints
illuminates upon a number of design principles that merit further exploration. Firstly, we articulate a
distinction between the graph that defines the probabilistic model and the graph that defines the online
communication constraints—do they need to be commensurateas assumed above? Secondly, mitigating
the performance loss that results from an imposed communication graph requires some type of offline
preprocessing to globally couple the local message functions. Indeed, such an offline procedure is itself
a tax on distributed network resources—under what circumstances does the potential for improved online
inference justify this offline resource expenditure? Finally, analogous to the success demonstrated by
traditional BP when applied to inference problems beyond those for which it was originally derived,
we conjecture that the offline message-passing algorithm derived for MPM inference on a tree-structured
probabilistic/communication graph will find success in more general communication-constrained inference
problems.
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