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Abstract—We advocate online modification of robot-assisted
task speed, based on continuously inferred motor imagery as an
effective rehabilitation protocol for increasing the involvement
levels of the patients in physical rehabilitation exercises. To
study efficacy of such Brain-Computer Interface (BCI) based
physical rehabilitation protocols, we conduct human subject
experiments on healthy volunteers, comparing several BCI-
based protocols with haptic and visual feedback with each other
and with conventional robot-assisted rehabilitation protocols,
in terms of intensity and sustainability of motor imagery. Our
results provide evidence that the online adjusted BCI-based
robotic protocol helps subjects produce stronger and more
sustained motor imagery throughout the motor task, compared
to other BCI-based protocols. We also show that BCI-assisted
robotic therapy can enable a level of motor cortical activity that
is similar to a scenario in which the subjects could actually
execute the motion. These results suggest that BCI-assisted
rehabilitation methods that provide online modification of the
task speed based on continuously inferred motor imagery have
potential in increasing the level of involvement of patients
during exercises and may lead to more effective recovery.

I. INTRODUCTION

In recent years, design methodologies for rehabilitation
robots have matured and robotic systems for rehabilitation
have become ubiquitous. Clinical trials on robotic rehabili-
tation provide evidence that robotic therapy is effective for
motor recovery and possesses high potential for improving
the functional independence of patients [1]–[3]. To increase
the efficacy of robot assisted therapies, there is still a
pressing need for evidence based therapy protocols and novel
systematic approaches to safely deliver these therapies.

State-of-the-art rehabilitation robots regulate the physical
interaction between the patient and the device to measure the
active involvement of patients and motivate them to actively
contribute for the therapy sessions. These “assist-as-needed”
protocols aim to minimize the assistance given to patients,
therefore they supply only required amount of assistance
to achieve safety and progress. Most of the rehabilitation
systems in the literature require the voluntary muscle control
as the contribution of the subject; however, patients with
severe disabilities (e.g. spinal cord injured patients) may
have difficulties to perform physical actions due to their
disability levels.

Bypassing the impaired neuromuscular system and mon-
itoring the current state of the brain activity, Brain-Computer
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Interface (BCI) based rehabilitation protocols can be applied
to patients with severe disabilities to effectively induce
activity-dependent brain plasticity and to restore neuromus-
cular function. BCI systems can create gateways between
the mental states of patients and rehabilitation protocols, by
measuring the brain activity and classifying the measured ac-
tivity to extract meaningful cues for physical rehabilitation.
Even though there are multiple ways to monitor the brain
activity, non-invasive electroencephalogram (EEG) is the
favored method for rehabilitation due to its portability and
ease of use [4], [5]. EEG signal measurements emphasize
sensorimotor rhythms that occur in a correlated fashion
with the user’s intent. Thanks to such correlation, a EEG-
based BCI system processes EEG signals and automatically
recognizes underlying patterns, such as intention of the users
to move.

Clinical studies show evidence that patients with disabil-
ities are capable of operating motor imagery (MI) based
BCI tasks as efficiently as healthy volunteers [6]. BCI
systems have been used as a part of physical rehabilitation
studies using virtual games [7], [8], the visual feedback
of the movement of robotic devices [9], [10] or haptic
feedback [6], [11], [12] where the BCI outputs are used
to trigger the movement of upper limb rehabilitation de-
vices. An experimental procedure has been designed in [13]
such that the users are either guided by the rehabilitation
device or to control the movements of the device through
attempting real/imaginary movement in every 300 ms to
synchronize the system with users’ intentions. Previously,
we proposed a novel, systematic approach to enable on-
line modification/adaptation of robot-assisted rehabilitation
exercises by continuously monitoring intention of users,
where the posterior probabilities of EEG data extracted
from Linear Discriminant Analysis (LDA) classifier are
used as continuous-valued outputs to control the speed of
a rehabilitation robot [14]. Passive Velocity Field Controller
(PVFC) is used to ensure coupled stability of the human-
robot system, while modifying the task speed of the haptic
device during the exercise with respect to intention levels of
users in an online manner. This protocol awards an increase
in the level of user “intention” with a higher task speed to
encourage active participation in therapies.

As the literature gets wider with different designs of BCI-
based rehabilitation protocols in terms of the feedback type
or integration method of the BCI systems, the necessity to
conduct comparison studies increases. The effect of haptic
feedback over virtual feedback in a BCI-based rehabilitation
system is studied in [13] with the results favoring the robotic



feedback for both training and testing blocks in terms of
ERD and motor task classification performance based on
EEG data. Experiments to compare different protocols such
as patient passive, patient active, BCI-with-feedback and
BCI-no-feedback have been presented in [15] for healthy
volunteers and in [16] with chronic stroke patients. The
results of these studies favor the use of BCI in a manner
similar to the protocol we use in this work. In our work, we
also compare several BCI-based protocols.

The focus of this paper is to study the efficacy of the
BCI-assisted robotic rehabilitation protocol [14] comparing
to other BCI-based protocols and conventional robot-assisted
rehabilitation protocols in a simple reaching exercise. For
this purpose, we conduct human subject experiments on
healthy volunteers, comparing several BCI-based protocols
with and without haptic feedback with each other, and with
conventional robot-assisted protocols, in terms of intensity
and sustainability of motor imagery during motor tasks. In
particular, we investigate

- the impact of robotic assistance with haptic feed-
back on BCI performance,

- the efficacy of online modification of assistance
based on continuously monitored BCI versus uti-
lizing BCI to trigger movements, and

- the impact of the presence of BCI in the rehabili-
tation protocol on the motor cortical activity of the
subjects.

II. REHABILITATION PROTOCOLS

In this study, six different rehabilitation protocols Pi

(i = 1, .., 4), PA and PP are compared:

P1 – BCI-assisted Robotic: Volunteers are asked to execute
right arm MI to move a robotic rehabilitation system. As
we proposed in [14], the BCI outputs are calculated by
averaging the binary outputs in moving windows of 1 s
length, in order to obtain continuous-valued outputs. The first
500 ms and the last 250 ms of a trial are not included in this
calculation. The obtained continuous-valued BCI outputs
determine the task speed of the robot movements.
P2 – BCI-assisted VR: Volunteers are asked to execute right
arm MI to move a virtual object displayed on a computer
screen. BCI outputs are calculated the same way as in P1

and used to determine the task speed of the virtual object.
P3 – BCI-triggered Robotic: Volunteers are asked to initiate
the movement of the robotic rehabilitation system through
right arm MI. During a waiting phase with a duration
between 500 ms and 10 s, the volunteers are asked to
perform right arm MI. Once the intention levels exceed a
predetermined threshold in the waiting phase, the robot is
moved with a constant speed until the end of the trial. The
intention of the volunteers are not evaluated for the rest of
the trial, once the motion is triggered.
P4 – BCI-triggered VR: Volunteers are asked to initiate the
movement of a virtual object displayed on a computer screen
through right arm MI. BCI outputs are calculated the same
way as in P3 and used to initiate the movement of a virtual

object with constant speed.
PA – Protocol Active: Volunteers are asked to complete the
same task by applying physical forces to the end-effector of
the rehabilitation robot. In this protocol, volunteers actively
take part in the task, physically executing the task without
any assistance. The BCI system is used only to measure the
intention levels of subjects for the following comparisons.
PP – Protocol Passive: The rehabilitation robot guides the
arm of the volunteer at a constant speed to complete the
same desired task. No physical and mental contribution is
required from the volunteer for the task to be completed.
The BCI system is used only to measure the intention levels
of subjects for the following comparisons.

III. BCI-BASED ROBOTIC REHABILITATION SYSTEM

Fig. 1. shows the BCI-based robot assisted rehabilitation
system setup which has already been detailed in [14]. This
system consists of:

Fig. 1. Experimental setup consisting of the Biosemi ActiveTwo EEG
measurement device and ASSISTON-MOBILE

Real-Time BCI System: A Biosemi ActiveTwo EEG
System is used to measure the electrical activity of the
brain to achieve the continuous, real-time processing of
user intention. The LDA algorithm is used to classify the
ERD/ERS patterns in EEG signals as “move” or “rest’.
The LDA classifier parameters are learned through training
blocks. In testing blocks, the real-time BCI system provides
binary classification outputs in every 250 ms by classify-
ing these patterns. These binary outputs are used directly
for “BCI-triggered” protocols. To obtain continuous-valued
outputs for “BCI-assisted” protocols, binary outputs of the
LDA classifier are averaged in a moving window of 1 s.
Nevertheless, the presence of training blocks, in which the
EEG signals are modelled for each subject, is a requisite
before testing blocks to recognize the ERD/ERS patterns.

Rehabilitation Robot: To administer robot assisted ther-
apies, ASSISTON-MOBILE [17], [18], a mobile rehabili-
tation robot with unlimited planar workspace, is used for
upper limb rehabilitation exercises. ASSISTON-MOBILE is
an active holonomic mobile platform based multi-DoF series
elastic actuator, designed to administer therapeutic table-
top exercises to patients. In particular, it consists of a 3
DoF planar, compliant parallel mechanism coupled to a
Mecanum-wheeled mobile platform to result in a multi-DoF
series-elastic actuator.



Contour Following Tasks and Passive Velocity Field Con-
troller: Contour following tasks are selected as the therapeu-
tic exercises, since they are favorable in rehabilitation due
to its property that decouples the task from the speed of the
task. Therefore, coordination and synchronization between
various degrees of freedom can be emphasized, while exact
timing along the path is left to the preference of the user. As
a contour following controller, PVFC is used, since it can
ensure coupled stability of the overall system throughout
the therapy, while providing a systematic way to modify
task parameters such as task speed, difficulty, and amount
of assistance [19]. For BCI integration, the intention levels of
subjects are mapped to the speed parameters used by PVFC
and synchronized to the speed of ASSISTON-MOBILE.

Visual Feedback Module: Visual feedback is provided to
users during BCI training and during therapy sessions to help
them visualize the desired contour and their current location
with respect to this contour.

IV. EXPERIMENTAL PROCEDURE

A human subject experiment is designed to compare
the efficacy of the six protocols presented in Section II.
13 right-handed healthy subjects participated voluntarily to
one session of the experiment, in which they experienced
all six rehabilitation protocols conducted sequentially, after
signing an informed consent form. The order of protocols
are randomized for each subject and regular breaks after
the administration of each protocol are scheduled to prevent
fatigue. Seven subjects among 13 have been extracted from
the analysis due to their low data quality for at least two
protocols. The remaining six subjects are five males and one
female with ages between 24 and 29 years.

Each BCI protocol is composed of independent training
and testing blocks, which consist of trials. The length of
each trial is 13 s, “idle” phase of 8 s and “operating”
phase of 5 s. The transition between these two phases is
indicated by visual/audio cues. EEG signals collected during
the idle phases do not affect the system performance and
are not evaluated. Hence, volunteers are allowed to execute
minor movements to prevent fatigue as long as they do not
disturb their connection with the robotic device or the BCI
system. During the operating phases of the training blocks,
volunteers are asked either to rest or to execute right arm
MI movements. On the contrary, during the operating phases
of the testing blocks, volunteers perform only right arm MI
movements, to result in a meaningful rehabilitation protocol.
Fig. 2. presents the schematic representation of trials during
training blocks (a) and testing blocks of BCI-assisted (b) or
BCI-triggered (c) protocols. For the BCI-triggered protocols,
a waiting phase with a duration between 500 ms and 10 s
is inserted between idle and operating phases. During the
waiting phase, volunteers are asked to perform right arm MI.
This phase transitions to operating phase once the intention
levels exceed a predetermined threshold.

The training and testing blocks have 11 and 15 trials,
respectively. The first trial of the training block contains a
MI task to remind the volunteer about the current protocol.
Nevertheless, data collected at this first trial is eliminated

from the analysis to ensure equal size of MI and rest trials
for each task.

Fig. 2. Idle, operating and waiting phase timing scheme in seconds for
a (a) training block, (b) testing block of BCI-assisted protocols, (c) testing
block of BCI-triggered protocols.

The quality of EEG training data directly affects the
performance of the classifier and consequently the efficacy of
the BCI system. Moreover, the positive impact of the robotic
assistance on the training data has been observed in [13].
Based on this result, training blocks of BCI-triggered robotic
and BCI-assisted robotic protocols provide haptic assistance
to the volunteers with a constant speed during the MI tasks.
In these robotic training trials, the device moves forward
during the MI tasks while turns back to the initial position
during the following idle phase. In contrast, there exists no
robotic motion in the training block of VR protocols.

V. EEG DATA RECORDING AND ANALYSIS

EEG signals were measured over C3, Cz , C4 locations of
the international 10-20 electrode placement system, at 2048
Hz sampling rate (see Fig. 3.) using a Biosemi ActiveTwo
EEG System. By subtracting the average of the data received
from their anterior and posterior channels (CP3, FC3 for
C3, CPz , FCz for Cz and CP4, FC4 for C4), three
referenced channels are obtained.

Fig. 3. Positions of the electrodes used in the experiments.

Our analysis focuses on data collected by the C3 channel,
since the right arm MI tasks are correlated with the left side
of the brain, due to the laterality of the brain [20], [21].

A. Feature Extraction

While performing MI, ERD, which is related to the
imagination of the motor tasks [21], occurs and changes the
amplitude of the signal. ERD is characterized by the power
spectral density (PSD) computed in the typical EEG α (8-
12 Hz) frequency band. In order to analyze the α frequency
band, Short Time Fourier Transform is applied to data
collected during each trial. Knowing that MI causes smaller
PSD values due to ERD phenomena, the active participation
level of the users can be achieved by investigating the PSDs
over time.



B. Evaluation Metrics

In order to compare rehabilitation protocols, testing
blocks have been analyzed using two metrics. Firstly, the
averaged PSD values obtained from the C3 channel across
the subjects as a function of time for each protocol have
been studied. In addition, one tailed t-tests, where results
less than 0.05 reported as statistically significant, are ap-
plied to PSD data of each volunteer for 4 time windows
(0 − 1, 1.25 − 2.25, 2.5 − 3.5, 3.75 − 4.75 s) in each trial.
Secondly, the average classification performance over all
time windows for each volunteer is calculated to support
the obtained inferences.

VI. RESULTS AND DISCUSSION

Fig. 4. presents the logarithm of averaged PSD values
between the second and the third seconds of the operating
phase as a function of frequency. The peak in the figure
indicates ERD in the α frequency band. It can be observed
from the figure that our proposed protocol (P1) achieves
ERD level as strong as actual active movement (PA) and
stronger than all of the other protocols. This observation
suggests that the proposed BCI-assisted robotic rehabilita-
tion protocol (P1) ensures active mental involvement of the
subjects in the motor task.

Fig. 4. Log power values of the protocols obtained from the C3 channel.

The testing blocks have been analyzed and compared
to each other using two metrics as defined in Section V-B.
Fig. 5. presents the averaged values from the C3 channel
across the subjects as a function of time for each protocol.
The results of t-tests applied to PSD data of each volunteer
for four time windows in each trial are given in Table I.
These results are discussed below from four different per-
spectives:

TABLE I. RESULTS OF ONE TAILED T-TESTS (P VALUES)
0–1 s 1.25–2.25 s 2.5–3.5 s 3.75–4.75 s

P1 < P2 2.17E-05 0.000801 0.008295 0.000103
P3 < P4 0.016046 6.64E-05 4.7E-08 5.2E-09
P1 < P3 0.12701 0.001001 0.012594 0.001346
P2 < P4 0.951512 0.000143 5.15E-06 1.06E-07
PA < P1 0.823217 0.797126 0.765011 0.978540
P1 < PP 0.002824 0.001112 0.00206 0.003573
PA < PP 0.040901 0.001749 0.008047 0.094319

A. Impact of Haptic Feedback on Cortical Activity

The impact of the haptic feedback provided by the robot
during the testing blocks have been investigated for BCI-
assisted protocols (P1 - P2) and BCI-triggered protocols (P3

to P4). Note that the protocols with robotic assistance (P1

and P3) employ the robot during both the training and testing
blocks as suggested in [13], while only visual feedback is
provided during the VR protocols (P2 and P4).

The log power values in the α frequency band of BCI-
assisted VR protocol (P2) have been observed to be greater
than BCI-assisted robotic protocol (P1) from Fig. 4. In
a similar manner, log power values of BCI-triggered VR
protocol (P4) have been greater than BCI-triggered robotic
protocol (P3). These results indicate that ERD suppression
is more effective for robotic protocols that involve haptic
feedback, implying better average concentration levels of
subjects.

Further analysis of PSD values for each protocol have
been presented as Fig. 5. From the figure, it is clear that the
suppression in α band have occurred earlier in BCI-assisted
robotic protocol (P1) than in BCI-assisted VR protocol (P2),
which indicates that the use of robot assistance in a rehabili-
tation protocol might have the potential to make the subjects
get involved in the tasks earlier. As the time progresses, the
suppression has been better sustained in (P1) as compared
to (P2). Similarly, the PSD plots in Fig. 5. indicate that the
ERD suppressing in the BCI-triggered robotic protocol (P3)
has been more intense and better sustained than that of the
BCI-triggered VR protocol (P4).

As the most compelling evidence of these observations
obtained from the averaged data, one tailed t-tests have been
applied to investigate the difference of the PSD values in
different protocols for each subject and each trial. The t-test
results in Table I show that, the PSD values of BCI-assisted
Robotic protocol (P1) have been statistically significantly
smaller than that of BCI-assisted VR protocol (P2) for all
time windows. Similarly, one tailed t-test results comparing
BCI-triggered Robotic protocol (P3) to BCI-triggered VR
protocol (P4) indicate that the PSD values of (P3) have
been statistically significantly smaller than those of (P4)
throughout the whole movement.

These results might imply that the robotic protocols
have stronger ERDs than virtual protocols due to the haptic
feedback provided to the subjects. Henceforth, the haptic
feedback provided through robotic movement appears to
enhance the MI activity observed in the motor cortex under
both BCI-assisted and BCI-triggered protocols. This finding
suggests the potential of haptic feedback in improving the
BCI performance.

B. Efficacy of Continuous vs Triggered BCI Protocols

Another investigation has been performed about the
effect of the continuous use of the BCI system throughout
the desired task compared to the triggered BCI protocols,
in terms of participation levels of subjects. With this mo-
tivation, robotic feedback protocols (P1 to P3) and virtual
feedback protocols (P2 to P4) have been compared sepa-
rately.

Fig. 4. shows that BCI-assisted Robotic protocol (P1) has
resulted lower log power values in the α band compared to
those of BCI-triggered robotic protocol (P3). Similarly, BCI-
assisted VR protocol (P2) has displayed better suppressing



P1 – BCI-assisted Robotic P3 – BCI-triggered Robotic PA – Protocol Active

P2 – BCI-assisted VR P4 – BCI-triggered VR PP – Protocol Passive

Fig. 5. PSD values of signals obtained from the C3 channel across time for all six rehabilitation protocols.

performance than BCI-triggered VR protocol (P4) in the α
band. These observations favor the continuous use of BCI
during MI with online modification of the task speed, rather
than employing BCI only to trigger motion, for both haptic
and visual feedback protocols.

Further analysis of PSD values and the one tailed t-test
results for each protocol have been presented as Fig. 5 and
Table I. From the figure, it is clear that ERD in BCI-assisted
Robotic protocol (P1) has been more intense than in BCI-
triggered robotic protocol (P3). Moreover, the t-test results
in the mentioned table quantify the difference between these
PSD values and indicate statistically significant difference
between the two protocols, in all but the first time window.
Similarly, ERD in the BCI-triggered VR protocol (P4)
has been discontinuous while PSD values in this protocol
have been larger compared to the case in BCI-assisted VR
protocol (P2), as time progresses. The t-test results show that
these two protocols are not significantly different for the
first time window, while they are statistically significantly
different in the other three time windows, with PSD values in
the continuous feedback protocol being significantly smaller
than in the triggered protocol. Even though both protocols
start of with similar ERD levels, the sustained ERD in BCI-
assisted protocols as time progresses provides evidence that
subjects tend to disengage from the task in BCI-triggered
protocols especially time progresses, while BCI-assisted
protocols are significantly more effective in engaging the
user in the physical therapy exercise.

Comparing the two different ways to use BCI for
rehabilitation (continuous use during the movement with
online modification of the task speed versus triggering the
movement) with haptic and virtual feedbacks leads us to
the conclusion that the continuous use of BCI might be
beneficial for subjects to remain continuously involved in
their tasks.

C. Impact of Adding BCI to Robotic Rehabilitation Pro-
tocols

The previous subsections indicate improved efficacy of
BCI-assisted Robotic protocol in terms of keeping users
active throughout the movement. Yet, the investigation of
the impact of such BCI-based rehabilitation protocol over
the conventional robot-assisted rehabilitation protocols are
required to complete the proposed study. Therefore, we
compare BCI-assisted Robotic protocol (P1) to Protocol
Active PA and Protocol Passive PP protocols.

Analysing Fig. 5. indicates that the averaged PSD values
of Protocol Passive PP have been greater than Protocol
Active PA and BCI-assisted Robotic protocol P1. Conse-
quently, these results imply that protocols P1 and PA lead
to more intense MI than PP . On the other hand, PSD
plots between PA and P1 do not display any difference.
Moreover, log power values of P1 have found similar to
those of PA as shown in Fig. 4. The one tailed t-test results
in Table I have quantified these observations, indicating that
PSD values of P1 are statistically significantly smaller than
those of PP for every time window. Furthermore, PSD
values of P1 and PA are not significantly different for all
time windows, except the last one.

Given that the Protocol Active PA is the golden standard
in robot-assisted rehabilitation in terms of ensuring the active
participation of subjects throughout the therapy, the t-test
results for the BCI-assisted Robotic protocol P1 suggest
that the proposed protocol with online modification of the
task speed of a rehabilitation device based on continually
monitored EEG signals has the potential to achieve uninter-
rupted active participation levels of users that are comparable
to active limb movements of the subjects. Overall, these
results suggest that BCI-assisted robotic therapy can enable
motor cortical activity, similar to a scenario in which the
users could actually execute the motion by themselves, and
much stronger than the activity produced in conventional



TABLE II. PERCENT CLASSIFICATION ACCURACY

P1 P2 P3 P4

S1 94.5098 92.15686 93.72549 61.56863
S2 98.03922 92.94118 97.64706 68.23529
S3 84.70588 85.09804 43.13725 81.96078
S4 95.29412 34.90196 90.19608 71.76471
S5 84.70588 93.72549 99.21569 71.76471
S6 68.23529 74.5098 78.82353 70.58824

Average 87.5817 78.88889 83.79085 70.98039

patient-passive rehabilitation protocols commonly employed
for severely injured patients.

D. Classification Accuracy
Average motor imagery (MI) classification performance

based on EEG data over all time windows for each subject
is presented in Table II, as the confirmation of the first two
analyses. Note that the features used in classification are the
PSDs, so the classification results are expected to support
the findings of the previous sections. According to Table II,
the classification accuracies (ACC) of the protocols might
be ordered as ACCP1>ACCP3>ACCP2>ACCP4 and this
order indicates the positive impact of haptic assistance
(ACCP1,P3>ACCP2,P4 ) and the online modification of the
task speed (ACCP1>ACCP3 , ACCP2>ACCP4 .

VII. CONCLUSION

We have presented the design and experimental eval-
uation of a BCI-based robotic rehabilitation protocol for
upper extremity and compared its performance on healthy
volunteers with conventional robotic rehabilitation protocols,
in terms of active involvement of the subjects in motor
tasks, as measured by the strength of MI. Of particular
interest is the efficacy of the proposed BCI-assisted Robotic
rehabilitation protocol that involves online modification of
the task speed. Our results provide statistical evidence that
such BCI-assisted Robotic rehabilitation protocol exhibits
significantly better performance than (a) protocols involving
only visual feedback, (b) BCI-triggered robotic rehabilitation
protocols and (c) conventional, patient-passive robot-assisted
rehabilitation protocols. Our work demonstrates the poten-
tial for using such BCI-based protocols for rehabilitation
purposes, while also motivating further experimentation and
analysis.
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