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J. Kim, J. W. Fisher, M. Çetin, and A. S. Willsky are with the Laboratory for Information and Decision Systems,

Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: junmo@mit.edu, fisher@ai.mit.edu,

mcetin@mit.edu, willsky@mit.edu).

J. W. Fisher is with the Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,

MA 02139 USA (e-mail: fisher@ai.mit.edu).

A. Yezzi is with the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,

GA 30332, USA (e-mail: ayezzi@ece.gatech.edu).

July 27, 2004 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 2

Abstract

In this paper, we present a new information-theoretic approach to image segmentation. We cast the

segmentation problem as the maximization of the mutual information between the region labels and the

image pixel intensities, subject to a constraint on the total length of the region boundaries. We assume

that the probability densities associated with the image pixel intensities within each region are completely

unknown a priori, and we formulate the problem based on nonparametric density estimates. Due to

the nonparametric structure, our method does not require the image regions to have a particular type of

probability distribution, and does not require the extraction and use of a particular statistic. We solve the

information-theoretic optimization problem by deriving the associated gradient flows and applying curve

evolution techniques. We use level set methods to implement the resulting evolution. The experimental

results based on both synthetic and real images demonstrate that the proposed technique can solve a

variety of challenging image segmentation problems. Futhermore, our method, which does not require

any training, performs as good as methods based on training.

Keywords

Image segmentation, curve evolution, level set methods, nonparametric density estimation, information

theory

I. Introduction

Image segmentation is an important problem in image analysis, appearing in many applica-

tions including pattern recognition, object detection, and medical imaging. Some previous

approaches to image segmentation, which provide the basis for a variety of more recent methods,

include boundary-based segmentation such as Canny edge detection [5], region-based segmen-

tation such as region growing [2], [25], and global optimization approaches such as those based

on the Mumford-Shah functional [28], [9], [39]. Recently there has been a considerable amount

of work on image segmentation using curve evolution techniques [6], [7], [8], [9], [27], [31], [34],

[35], [43], [44]. Some of these techniques, including the ones in [31], [44] have relations to the

approach we present here. In particular, Paragios et al. [31] developed a parametric model for

supervised segmentation of textured images. Yezzi et al. [44] developed a segmentation technique

using a particular discriminative statistical feature such as the mean or the variance of image

regions. These and many other recent methods (such as [35], [38]) have been inspired by the

region competition model of Zhu and Yuille [45].

Our strategy is different from those of previous curve evolution-based methods in three major
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ways. First, unlike the techniques mentioned above, our approach is based on nonparametric

statistics. The performance of parametric methods can be severely affected when the assumed

parametric model is not correct. This limits the class of images that can be segmented using such

methods with a particular parametric model. In response to the need for robustness and a larger

modeling capacity in statistical analysis, nonparametric methods [32] have been widely used in

machine learning problems. Nonparametric methods estimate the underlying distributions from

the data without making strong assumptions about the structures of the distributions. The

nonparametric aspect of our approach makes it especially appealing when there is little or no

prior information about the statistical properties of the regions to be segmented. Note that there

is a trade-off, namely, with a nonparametric approach we expect some performance loss when

the image fits a parametric model. However, we will give examples that clearly make the case

that there are rich classes of real images for which our method is advantageous. In particular,

we will show a compelling example where two regions of same means and same variances are

segmented.

The second aspect of our technique is that no training is required. Again this has advantages

and disadvantages. Obviously if one has training data from which to learn the distributions of

the image regions, one should take advantage of this, as in Paragios et. al. [31]. However, it is

also of practical interest to develop methods that do not require prior knowledge. We will see

that the method developed here can yield results as good as those of other methods which take

advantage of prior training (which our method does not, and simply must perform segmentation

based on the image presented to it without any prior training.)

The third aspect of our technique is that this is a principled information-theoretic framework

(using mutual information) that allows us to understand the several key quantities that drive

the resulting curve evolution. In particular, the first such term is a likelihood ratio (LR) term

that is similar to that used by Zhu et al. [45], the difference being that in [45] LR is computed

using parametric distributions whose parameters are estimated at each iteration, while ours uses

distributions that are learned and dynamically adapted in a nonparametric way. If the particular

parametric model is not well-matched to data, the nonparametric method will outperform the

parametric counterpart. Even though the image fits the parametric model, our distribution

estimates approach the quality achieved by parametric estimates. The formalism we describe

also includes two additional terms which capture the sensitivity of the estimated distributions

July 27, 2004 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 4

(and hence the LR) to changes in the segmenting curve as it evolves.

The technique proposed by Jehan-Besson et al. [21] is related to our work regarding these

additional terms. The work in [21] considers general region-based active contours, where the

energy functionals to minimize are given as region-integrals of so-called descriptors. In particular,

they consider the case where the descriptors themselves depend on the region, and formulate an

optimization method. Their formulation can also be applied to our energy functional, which

is also region-based. What is new with our method is that our energy functional is based on

mutual information and that our “descriptor” involves nonparametric density estimates, whereas

they consider means, variances, determinants of covariance matrices, and histograms (in their

subsequent work [3]) as the descriptors.

The curve evolution technique in [40], [41] also takes a nonparametric approach to the image

segmentation problem with an information-theoretic perspective. However, their approach is

different from ours in a number of ways. First, they implement their technique for polygonal

contours whereas we implement evolution of continuous curves. Furthermore, their approach only

utilizes the first few estimated moments as approximations of the non-parametric distributions

whereas our approach uses nonparametric estimates of the entire distributions.

There exists some other work aimed at building a framework for segmenting a large class of

images. In particular, the technique proposed by Heiler et al. [19] is motivated by recent work

on natural image statistics [33], [20], and is based on parametric modeling of filter responses by

generalized Laplacian distributions. Their energy functional involves a Kullback-Leibler diver-

gence between those parametric densities, and their method can segment both gray level natural

images and textured images in an unsupervised fashion. In addition, there exists some other

work pursuing a similar goal of segmenting multiple types of images, but using a framework

other than active contours. For example, Malik et al. [26] have proposed an approach that works

on a variety of both gray level images and textured images based on a graph-theoretic framework.

The remainder of this paper is organized as follows. Section II presents the information-

theoretic objective functional for two-region image segmentation. Section III contains our curve

evolution-based approach to minimizing this objective functional. Section IV presents an exten-

sion of the two-region version of the technique to the multi-phase segmentation problem. We

then present experimental results in Section V, using both synthetic images with a variety of

distributions and real images. Finally, we conclude in Section VI with a summary.
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II. Information-Theoretic Cost Functional for Image Segmentation

A. Problem Statement

In this section, we consider a two-region image segmentation problem. The two regions are

distinct in the sense that they have different probability density functions for the pixel intensities.

We assume that the pixel intensities in each region are independent, identically distributed (i.i.d.).

The associated probability density functions are unknown, and we impose no constraints on the

form of these densities. More formally, the image intensity at pixel x, denoted by G(x), is drawn

from the density p1 if x ∈ R1, and from p2 if x ∈ R2 as follows:

{G(x)|x ∈ R1} i.i.d.∼ p1

{G(x)|x ∈ R2} i.i.d.∼ p2, (1)

where R1 and R2 denote the two regions which are unknown, and the associated densities p1 and

p2 are also unknown. In other words, we model the observed pixel intensities as a spatial random

process G(x) with pixel index x. Note that the lower case x is not a random variable but a pixel

index. Later we will introduce a random variable X, which is written in a capital letter. The

left-hand side of Figure 1 illustrates this image model. Note that a region can be composed of

several topologically separate components, as shown in this figure. This image model is similar

to that of the region competition method of Zhu and Yuille [45] in that both models assume

that pixel intensities in each region are i.i.d. The difference is that here the distributions are

unknown, whereas the model in [45] uses a family of pre-specified probability distributions.

R+

R
−

~C

R1; p1

R1; p1

R1; p1

R2; p2

Fig. 1. Left: Illustration of the foreground region (R1), the background region (R2), and the associated

distributions (p1 and p2). Right: Illustration of the curve ( ~C), the region inside the curve (R+), and

the region outside the curve (R
−

).

The goal of two-region image segmentation by curve evolution is to move a curve ~C such that
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it matches the boundary between R1 and R2, i.e. the region inside the curve R+ and the region

outside the curve R− converge to R1 and R2 respectively or vice versa. The right-hand side of

Figure 1 illustrates two regions, R+ and R−. This partitioning of the image domain by the curve

~C gives us a binary label L ~C
: Ω → {L+, L−}, which is a mapping from the image domain Ω to

a set of two labeling symbols {L+, L−} defined as follows:

L ~C
(x) =







L+ if x ∈ R+

L− if x ∈ R−
(2)

By this correspondence between labels and curves, image segmentation is equivalent to the binary

labeling problem.

B. Mutual Information between the Image Intensity and the Label

We now introduce the mutual information (MI) between the image intensity and the label

and discuss its properties. Let us initially consider the case where p1 and p2 are known. As

mentioned before, we have a candidate segmenting curve ~C, and R1, R2 are the true unknown

regions. Now suppose that we randomly choose a point X in Ω such that X is a uniformly

distributed random location in the image domain. 1 In this case, the label L ~C
(X) is a binary

random variable that depends on the curve ~C. It takes the values L+ and L− with probability

|R+|
|Ω| and |R−|

|Ω| respectively, where |R+| denotes the area of the region R+.

On the other hand, the image intensity G(X) is a random variable that depends on the true

regions R1 and R2, and has the following density

pG(X)(z) = Pr(X ∈ R1)pG(X)|X∈R1
(z) + Pr(X ∈ R2)pG(X)|X∈R2

(z) (3)

=
|R1|
|Ω| p1(z) +

|R2|
|Ω| p2(z), (4)

where z is an argument for the densities. Note that this density pG(X) is a mixture of p1 and p2

due to the randomness of the pixel location X. As can be seen in (3), G(X) has two sources of

uncertainty, namely the uncertainty of pixel location being in R1 or R2, and the uncertainty of

the intensity given the pixel location. The binary label L ~C
(X) contains some information about

the former uncertainty, namely X being in R1 or R2. Therefore, intuitively speaking, the more

1This is similar to the work of Viola et al. [42], where they measure the amount of dependence between two

images u(x) and v(x) by mutual information I(u(X); v(X)), where X is a random variable, which ranges over the

domain of u(·) and v(·).
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accurately the label L ~C
(X) can determine whether X ∈ R1 or X ∈ R2, the less uncertainty

G(X) has, and the more information about G(X) the label will have. This motivates using the

mutual information I(G(X); L ~C
(X)) as a segmentation criterion.

Now let us consider more formally the mutual information I(G(X); L ~C
(X))

I(G(X); L ~C
(X)) = h(G(X)) − h(G(X)|L ~C

(X))

= h(G(X)) − Pr(L ~C
(X) = L+)h(G(X)|L ~C

(X) = L+)

− Pr(L ~C
(X) = L−)h(G(X)|L ~C

(X) = L−) (5)

where the differential entropy h(Z) of a continuous random variable Z with support S is de-

fined by h(Z) = −
∫

S
pZ(z) log pZ(z)dz. The three entropies in (5) are functionals of pG(X),

pG(X)|L~C
(X)=L+

, and pG(X)|L~C
(X)=L−

respectively. The two conditional distributions are given

as follows:

pG(X)|L~C
(X)=L+

(z) =

2∑

i=1

Pr(X ∈ Ri|L ~C
(X) = L+)pG(X)|X∈Ri,L~C

(X)=L+
(z)

=
|R+ ∩ R1|

|R+|
p1(z) +

|R+ ∩ R2|
|R+|

p2(z) (6)

pG(X)|L~C
(X)=L−

(z) =
|R− ∩ R1|

|R−|
p1(z) +

|R− ∩ R2|
|R−|

p2(z) (7)

Each conditional entropy measures the degree of heterogeneity in each region determined by

the curve ~C. In other words, the more homogeneous the segmented regions, the less the con-

ditional entropies, and the higher the mutual information is, which is a desirable property for

segmentation.

We can show that the mutual information I(G(X); L ~C
(X)) is maximized if and only if ~C is the

correct segmentation, i.e. if R+ = R1, R− = R2 (or equivalently R+ = R2, R− = R1). The proof

is given in Appendix-A. This result suggests that mutual information is a reasonable criterion

for the segmentation problem we have formulated.

However, in practice, we really cannot compute the mutual information I(G(X); L ~C
(X)) for

two reasons. First, the computations above involve the regions R1 and R2, which are actually

unknown to us (otherwise the segmentation problem would be solved). Second, unlike what we

assumed in the above discussion, we would like to solve the segmentation problem when p1 and

p2 are unknown.
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We thus need to estimate the mutual information as follows:

Î(G(X); L ~C
(X)) = ĥ(G(X)) − Pr(L ~C

(X) = L+)ĥ(G(X)|L ~C
(X) = L+)

− Pr(L ~C
(X) = L−)ĥ(G(X)|L ~C

(X) = L−) (8)

This in turn requires us to estimate the densities pG(X), pG(X)|L~C
(X)=L+

, and pG(X)|L~C
(X)=L−

.

The way we estimate these densities are presented in Section III.

C. The Energy Functional

Finally, we combine the mutual information estimate with the typical regularization penalizing

the length of the curve in order to construct our overall energy functional to be used for segmen-

tation. This regularization prevents the formation of a longer jagged boundary. Depending on

the prior information one might have about the region boundaries, constraints other than the

curve length penalty can also be used in our framework.

In the energy functional, the mutual information should be weighted by the area of the image

domain in order to represent the total amount of information between the label and the image,

since I(G(X); L ~C
(X)) corresponds to the contribution of a single pixel to the total information.

The resulting energy functional to minimize is then given by

E( ~C) = −|Ω|Î(G(X); L ~C
(X)) + α

∮

~C

ds, (9)

where
∮

~C
ds is the length of the curve and α is a scalar parameter. The statistical interpretation

of this energy functional is given in Appendix-B.

III. Nonparametric Density Estimation and Gradient Flows

This section contains the derivation of the curve evolution formula for minimizing the energy

functional E( ~C) of (9) using nonparametric Parzen density estimates. First, we present the way

the nonparametric Parzen density estimates are used in estimating the conditional entropy terms

in (8). This results in the expression of the energy functional E( ~C) in the form of nested region

integrals. We then calculate the gradient flow for E( ~C) and discuss the properties of the curve

evolution formula.
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A. Estimation of the Differential Entropy

The expression (8) involves differential entropy estimates, and we use nonparametric Parzen

density estimates in order to estimate the differential entropies. For a review of nonparametric

entropy estimation, we refer the reader to [4].

Since ĥ(G(X)) in (8) is independent of the curve, we just consider ĥ(G(X)|L ~C
(X) = L+) and

ĥ(G(X)|L ~C
(X) = L−) as follows:

ĥ(G(X)|L ~C
(X) = L+)

= − 1

|R+|

∫

R+

log p̂+(G(x)) dx (10)

= − 1

|R+|

∫

R+

log

(
1

|R+|

∫

R+

K(G(x) − G(x̂))dx̂

)

dx, (11)

Note that h(G(X)|L ~C
(X) = L+) involves the expected value of the logarithm of p+ , pG(X)|L~C

(X)=L+
,

and we approximate this expected value by the sample mean of log p+ in (10). We then use

a continuous version of the Parzen density estimate [32] of p+ in (11). We use the kernel

K(z) = 1√
2πσ2

e
− z

2

2σ2 , where σ is a scalar parameter. Similarly, we have:

ĥ(G(X)|L ~C
(X) = L−)

= − 1

|R−|

∫

R−

log

(
1

|R−|

∫

R−

K(G(x) − G(x̂))dx̂

)

dx (12)

B. Gradient Flows for General Nested Region Integrals

Note that (11) and (12) have nested region integrals. Let us consider a general nested region

integral of the form

∫

R

f(ε(x, t)) dx where ε(x, t) =

∫

R

g(x, x̂) dx̂, and g does not depend on ~C, (13)

where R is the region inside the curve ~C and t is a time index for the evolution of ~C (which we

often drop for notational convenience as in R = R(t) and ~C = ~C(t) ). For such integrals we have

derived the gradient flow (the negative of the gradient so that the region integral decreases most

rapidly), which is given by

∂ ~C

∂t
= −

[

f
(
ε( ~C)

)
+

∫

R

f ′(ε(x)
)
g(x, ~C) dx

]

~N, (14)

where ~N is the outward unit normal vector. The detailed derivation can be found in Appendix-C.
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The second term appears in (14) because the integrand f(ε(x, t)) in (13) depends on the curve

~C.

C. The Gradient Flow for the Information-Theoretic Energy Functional

Now that we have the nonparametric estimates of the mutual information in the form of

nested region integrals as in (11) and (12), it is straightforward to calculate the gradient flow

for the energy functional E( ~C) using the result of Section III-B. We provide the details of this

computation in Appendix-D. Here, we state the main result, namely the overall gradient flow

for E( ~C) of (9):

∂ ~C

∂t
=

[

log
p̂+(G( ~C))

p̂−(G( ~C))
+

1

|R+|

∫

R+

K
(
G(x) − G( ~C)

)

p̂+(G(x))
dx

− 1

|R−|

∫

R−

K
(
G(x) − G( ~C)

)

p̂−(G(x))
dx

]

~N − ακ ~N, (15)

where κ is the curvature of the curve and −ακ ~N is the gradient flow for the curve length penalty,

whose derivation can be found in [16]. We implement the curve evolution for the gradient flow

in (15) using the level set method [30], [36] together with the narrow band approach [11], [1].

A direct computation of this gradient flow is expensive. In particular, the bottleneck is in

the computation of the second and the third terms. If we use a direct computation, it takes

O((# of pixels)2) time per each iteration, which we now explain. Since the evaluation of the

density estimate in the form of p̂+(G(x)) = 1
N

∑N
i=1 K(G(x) − G(xi)) at each pixel x on the

curve takes O(N) time, evaluation of p̂+(G( ~C)) at each pixel on the curve takes O(|R+|) time,

where |R+ | is the number of pixels in region inside the curve. Thus the computation of the first

term at all the points on the curve takes O(M(|R+| + |R−|)) time, where M is the number of

pixels along the curve (i.e. the size of the narrow band). In order to compute the second term,

we compute and store p̂+(G(x)) for all x ∈ R+, which takes O(|R+|2) time and then compute

the integral using the stored values of p̂+(G(x)). The computation of this integral at all the

points on the curve takes O(M |R+|) time. Therefore, the complexity of a direct computation of

the gradient flow is O(M(|R+|+ |R−|) + |R+|2 + M |R+|+ |R−|2 + M |R−|) ∼ O((# of pixels)2)

per each step.

However, we reduce the complexity by using an approximation method based on the fast Gauss

transform (FGT) [18], [37], [17]. FGT can evaluate density estimates based on N data points

in the form of P̂ (x) = 1
N

∑N
i=1 K(x − xi) at M different points in O(c(M + N)) time instead
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of O(MN) time, where c is the precision number which grows with the required precision of

the approximation. The precision number c is the order of the Taylor series expansions used

in FGT, and c less than 10 is often sufficient in most cases. Furthermore, in evaluating p̂+, we

observe that using only a randomly selected subset of R+ is sufficient instead of using all the

pixel intensities in R+. If we select N points from R+ in order to estimate p̂+ and another N

points from R−, the computational cost using FGT per each iteration is O(c(M + N + N) +

c(N +N)+ c(M +N)+ c(N +N)+ c(M +N)), where the integral in the second and third term

in (15) takes O(c(M +N)) time by FGT. Given the size of the narrow band, a reasonable choice

of N will be a linear function of M . This results in the overall complexity of O(M), i.e. linear

in the size of the narrow band.

In general, FGT is also possible for estimation of multi-dimensional density functions, which

will allow us to extend our framework to color and vector-valued images. For d dimensional data,

the complexity of FGT is now O(cd(M + N)) [17], with the same M and N as the above. The

only difference in computational complexity from the case of gray level images is in the constant

factor cd. Therefore, the computational complexity is still linear in the size of the narrow band,

if our method is extended to vector-valued images.

Since our energy functional involves a curve length penalty term, we have a curvature flow term

in (15). If we replace the curve length penalty term by
∮

~C
g( ~C(s))ds as in the geodesic active

contours [7], the evolution equation (15) will have div(g(x, y) ∇φ
|∇φ|)|∇φ| replacing the curvature

flow, where φ is the corresponding level set function. In this case, the fast geodesic active contours

proposed by Goldenberg et al. [14] can be combined with our framework, just as the simplified

Mumford Shah model of Chan and Vese [9] has been combined with the fast geodesic active

contours in Kimmel et al. [24]. For further information on the fast geodesic active contours, we

refer the readers to [29].

D. Discussion on the Gradient Flow

The first term of the gradient flow expression in (15) is a log-likelihood ratio which compares

the hypotheses that the observed image intensity G( ~C) at a given point on the active contour

~C belongs to the foreground region R+ or the background region R− based upon the current

estimates of the distributions p+ and p−. By this log-likelihood ratio term, the pixel on the

boundary is merged to either the region R+ or the region R− such that the updated regions are

more homogeneous.
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To understand the second and third terms in (15), let us consider the analogy to the generic

flow in (14). We have the second term of (14) because the integrand ε(·) in (13) depends on

the curve. Similarly, we have the second and third terms in the gradient flow (15) because

the integrands of the entropy estimates (11) and (12), which are logarithms of Parzen density

estimates, depend on the curve.

These second and third terms reinforce and refine what the first term does. The first term

alone does not take into account the fact that a deformation of the curve results in updating the

data samples used for the two density estimates. It is the two additional terms that compensate

for the change of density estimates.

These second and third terms, as well as the use of the nonparametric density estimates dis-

tinguish this active contour model from the region competition algorithm of Zhu and Yuille [45],

which involves alternating iterations of two operations: estimating the distribution parameters

inside and outside the curve; and likelihood ratio tests to evolve the curve. In that algorithm,

changes in the distributions are not directly coupled with likelihood ratio tests. In contrast,

the changes in the nonparametric density estimates are built directly into our curve evolution

equation through these two terms.

IV. Extension to Multi-phase Segmentation

In this section, we provide an extension of the two-region version of our technique to images

with more than two regions. To this end, we incorporate the multi-phase segmentation formula-

tion of [10] into our information-theoretic, nonparametric segmentation framework. Our method

uses m level set functions to segment up to 2m regions, and the resulting curve evolution equation

(motion equation) turns out to be a natural generalization of nonparametric region competition.

A. n-ary Segmentation Problem and Mutual Information

We extend the two-region image segmentation problem to an n-ary (i.e. n-region) version,

where R1, . . . , Rn denote the true unknown regions, and the image intensity at pixel x, denoted

by G(x), is drawn from the density pi if x ∈ Ri, where pi’s are unknown. Figure 2(a) illustrates

this image model when n = 4.

The goal of n-ary image segmentation by curve evolution is to move a set of curves { ~C1, . . . , ~Cm}
(equivalently, a set of level set functions {φ1, . . . , φm}) such that these curves partition the image

domain into the true regions R1, . . . , Rn. Each curve Ci partitions the image domain into the
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R3; p3

R3; p3

R4; p4

R1; p1 R2; p2

R
−−

~C1
~C2

R++ R
−+

φ1 < 0
φ2 < 0

φ2 > 0
φ1 > 0

φ1 < 0
φ2 > 0

R+−

φ2 < 0
φ1 > 0

(a) (b)

Fig. 2. Multi-phase segmentation image model. (a) Illustration of the case where n = 4: true regions

R1, . . . , R4, with the associated distributions p1, . . . , p4. (b) Illustration of the two curves ( ~C1, ~C2)

and the regions R++, R+−, R
−+, R

−−
partitioned by the curves .

two regions, the region inside the curve and the region outside the curve (φi does the same thing

by its sign). Thus the m level set functions partition the image domain into 2m regions, each of

which we label by the signs of the level set functions in that region. For instance, when m = 2,

we have 4 regions, R++, R+−, R−+, R−− as illustrated in Figure 2(b).

Given the partitioning by the curves C , { ~Ci}m
i=1, we can label each pixel x by its label LC(x).

For instance, if x ∈ R++, LC(x) = L++. More formally, this partitioning of the image domain

by the curves C gives us a label

LC : Ω → {L++···+, . . . , L−−···−},

which is a mapping from the image domain Ω to a set of 2m labeling symbols {L++···+, . . . , L−−···−}
defined as follows:

LC(x) = Ls(i) if x ∈ Rs(i), 1 ≤ i ≤ 2m, (16)

where s(i) is the ith element in the set {+ + · · ·+, . . . ,−− · · ·−}. By a straightforward gener-

alization of (9), we propose the following energy functional for multi-phase segmentation:

E(C) = −|Ω|Î(G(X); LC(X)) + α

m∑

i=1

∮

~Ci

ds, (17)

where the mutual information estimate is naturally extended to:

Î(G(X); LC(X)) = ĥ(G(X)) −
2m

∑

i=1

Pr(LC(X)=Ls(i))ĥ(G(X)|LC(X)=Ls(i)) (18)
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B. The Gradient Flows

We now compute the gradient flow to minimize E(C) of (17). For notational convenience, we

consider the case where m = 2, but the development could easily be generalized to any m.

In (18), we have 2m = 4 conditional entropies to estimate, namely,

ĥ(G(X)|LC(X) = L++), . . . , ĥ(G(X)|LC(X) = L−−) . We compute these estimates in a way

that is analogous to what we did for the two-region case. For example, ĥ(G(X)|LC(X) = L++)

is given by

ĥ(G(X)|LC(X) = L++) = − 1

|R++|

∫

R++

log p̂++(G(x)) dx (19)

= − 1

|R++|

∫

R++

log

(
1

|R++|

∫

R++

K(G(x) − G(x̂))dx̂

)

dx,

and the other entropy estimates are obtained in a similar way.

Generalizing our results from Section III, and using the multi-phase segmentation formulation

of [10], we compute the first variation of the energy functional E(C) in (17), and obtain the

following coupled motion equations:

∂ ~C1

∂t
= ~N1

[

−ακ1 + H(φ2( ~C1))

(

log
p̂++(G( ~C1))

p̂−+(G( ~C1))
+

1

|R++|

∫

R++

K(G(x) − G( ~C1))

p̂++(G(x))
dx

− 1

|R−+|

∫

R−+

K(G(x) − G( ~C1))

p̂−+(G(x))
dx

)

+ (1 − H(φ2( ~C1))

(

log
p̂+−(G( ~C1))

p̂−−(G( ~C1))

+
1

|R+−|

∫

R+−

K(G(x) − G( ~C1))

p̂+−(G(x))
dx − 1

|R−−|

∫

R−−

K(G(x) − G( ~C1))

p̂−−(G(x))
dx

)]

(20)

∂ ~C2

∂t
= ~N2

[

−ακ2 + H(φ1( ~C2))

(

log
p̂++(G( ~C2))

p̂+−(G( ~C2))
+

1

|R++|

∫

R++

K(G(x) − G( ~C2))

p̂++(G(x))
dx

− 1

|R+−|

∫

R+−

K(G(x) − G( ~C2))

p̂+−(G(x))
dx

)

+ (1 − H(φ1( ~C2))

(

log
p̂−+(G( ~C2))

p̂−−(G( ~C2))

+
1

|R−+|

∫

R−+

K(G(x) − G( ~C2))

p̂−+(G(x))
dx − 1

|R−−|

∫

R−−

K(G(x) − G( ~C2))

p̂−−(G(x))
dx

)]

(21)

where H(·) is the Heaviside function (H(φ)=1 if φ ≥ 0 and H(φ) = 0 if φ < 0).

Equations (20), (21) involve log-likelihood ratio tests comparing the hypotheses that the ob-

served image intensity G( ~Ci) at a given point on the active contour ~Ci belongs to one region or

the other.

As illustrated in Figure 2(b), ~C1 delineates either the boundary between R++ and R−+, or

the boundary between R+− and R−−, when ~C1 lies inside or outside curve ~C2, respectively.
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(a) initial (b) intermediate (c) intermediate (d) final

Fig. 3. Evolution of the curve on a synthetic image; the different mean case.

Equation (20) exactly reflects this situation and reveals the region competition between regions

adjacent to curve ~C1. Similarly, Equation (21) expresses the region competition between regions

adjacent to curve ~C2.

V. Experimental Results

(a) initial (b) intermediate (c) intermediate (d) final

Fig. 4. Evolution of the curve on a synthetic image; the different variance case.

We present experimental results on synthetic images of geometric objects, and a number of real

images. In all the examples, the regularization parameter α in (9) or (17) is chosen subjectively

based upon our qualitative assessment of the segmented imagery. In cases where prior information

is available about the objects in the scene, it may be possible to learn an appropriate distribution

of regularizers based upon the known smoothness characteristics of the object boundaries coupled

with the signal-to-noise ratios of the images to be segmented.

We use synthetic images generated by several sets of distributions. Figure 3 shows the result

produced by our technique for the case where the two distributions for the foreground and the

background are Gaussian with different means and the same variance. Figure 4 shows the result
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(a) initial (b) intermediate (c) intermediate (d) final

Fig. 5. Evolution of the curve on a synthetic image without the additional two terms; the different

variance case.

for the case where the two distributions for the foreground and the background are Gaussian

with different variances and the same mean. For these two cases, the method of Yezzi et al. [44]

would require the selection of the appropriate statistic (i.e. mean and variance for the first and

second cases respectively) a priori, whereas our method solves the segmentation problem without

that information.

For the result in Figure 3, we measured the run time for both our nonparametric method and

parametric counterpart in [44]. On an Intel Xeon 2.2 GHz cpu, the nonparametric method took

167 seconds (image size is 126 by 121), whereas the parametric method took 26 seconds. The

parametric method is of less computational cost when the parametric method is well-matched to

the problem here. However, if there is a mismatch between the image and the parametric model,

there will be losses in terms of both the accuracy of the segmentation and the computational

cost.

As we mentioned in Section III-D, the motion equation for the curve (15) contains three

data-driven terms and a curvature term. We now provide an empirical analysis of the relative

contribution of the first data-driven term (the log-likelihood ratio) versus the other two data-

driven terms, to the overall curve evolution. To this end, we consider the example in Figure 3.

We compute the numerical values of the log-likelihood ratio, the second term, and the third term

of the gradient flow (15) at each point on the curve, for multiple snapshots during the iterative

curve evolution process. In order to analyze the general behavior of these terms, we combine

all those data obtained throughout the curve evolution process and show their histograms in

Figure 6. Figure 6(a) and Figure 6(b) show histograms of the values taken by the second term
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(c) histogram of the first term (d) histogram of (2nd term - 3rd term)
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(e) histogram of log10
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Fig. 6. Histograms of the three terms of the gradient flow for the points on the boundaries of Figure 3.

and the third term respectively. We observe that the values of both terms are often close to

1, and lie in a limited range (mostly between 0 and 1.5). We analyze this observation in more

detail in Appendix-E. Figure 6(c) and Figure 6(d) show histograms of the values taken by the

first term and the other two terms (i.e. the second term minus the third term). Since both

the second and the third term have a limited range, their difference (which is their overall

contribution to the evolution) is also in a limited range (mostly between -1.5 and 1.5), as is

shown in Figure 6(d). Finally, Figure 6(e) shows a histogram of log10
|2nd term - 3rd term|

|1st term| . We

can observe that mostly the first term has a larger magnitude than the other two terms, hence it
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(a) image (b) with boundary (c) p1 (d) p2

Fig. 7. Example image with two regions (boundaries marked in (b)), where the foreground has a unimodal

density p1, and the background has a bimodal density p2. The two densities p1 and p2 have the same

mean and the same variance.

(a) initial (b) intermediate (c) intermediate (d) final

Fig. 8. Evolution of the curve on a synthetic image; unimodal versus bimodal densities.

is the dominant contributor to the curve evolution. Consequently, for the experiment in Figure 3,

we obtain a similar segmentation results without including the two additional terms.

However, for other types of images, the log-likelihood ratio can be small, and the other two

terms can become more important affecting the performance of the segmentation. For instance,

if we do not include the additional two terms for the segmentation of the image in Figure 4(a),

we observe a loss in the accuracy of the segmentation as illustrated in Figure 5. We observe that

the sharp corners of the rectangle are missed. A similar performance loss due to excluding these

additional terms is also pointed out by Jehan-Besson [21]. Based on these empirical observations,

we believe this is an issue that requires further analysis in future works.

The next synthetic example we consider involves a more challenging image shown in Figure 7(a).

The underlying distributions of the foreground and the background are a unimodal Gaussian

density and a bimodal density with two Gaussian components as illustrated in Figure 7(c) and
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(a) initial curves

(b) corresponding segmentation results

Fig. 9. Segmentations of the image in Figure 7(a) with various initializations. (a) Eight different initial-

izations with varying number of seeds. (b) Corresponding segmentation results.

Figure 7(d) respectively. The two distributions have the same mean and same variance, so it is

hard even for a human observer to separate the foreground from the background. In order to let

the readers see the foreground, we show the actual boundaries by a curve in Figure 7(b). For this

kind of image, the methods based on means and variances such as that proposed by Yezzi et al.

[44] would no longer work. Figure 8 shows our segmentation results. As shown in Figure 8(a),

we have used an automatic initialization with multiple seeds. The power of the multiple-seed

initialization is that it observes entire regions, and the evolution of the curve occurs globally.
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(a) image (b) with boundary (c) p1 (d) p2

Fig. 10. Example image with two regions (boundaries marked in (b)), where the foreground has a uniform

density p1, and the background has a bimodal density p2. The two densities p1 and p2 have the same

mean and the same variance.

(a) initial (b) intermediate (c) intermediate (d) final

Fig. 11. Evolution of the curve on a synthetic image; uniform (foreground) versus bimodal (background)

densities.

Figure 8(b) and Figure 8(c) show the intermediate stages of the evolution, where the seeds in

the background region gradually shrink at each iteration, whereas those in the foreground region

grow. The final result shown in Figure 8(d) appears to be an accurate segmentation. Similarly,

the next synthetic example in Figure 10 involves two distributions with the same mean and the

same variance, where the foreground distribution is uniform and the background one is bimodal

with two Gaussian components. As shown in Figure 11, our method can detect the foreground

objects without any prior knowledge about the probability densities involved.

We empirically analyze the sensitivity of our segmentation results to initialization. In Figure 9,

we run our algorithm on the same image as the one generated from unimodal and bimodal

densities in Figure 7 with different initializations. Figure 9(a) shows various initializations with

different number of seeds, and Figure 9(b) shows the corresponding segmentation results. As the
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(a) original (b) initial (c) intermediate (d) final

Fig. 12. Evolution of the curve on a leopard image.

(a) original (b) initial (c) intermediate (d) final

Fig. 13. Evolution of the curve on a zebra image. (Input image: courtesy of Nikos Paragios)

upper row of Figure 9(b) shows, the segmentation can be suboptimal if we have a small number

of seeds indicating that the segmentations depend on the initializations. However, the lower row

of Figure 9(b) shows that as long as the number of seeds is large enough, the segmentation result

is stable with respect to initializations even for this challenging example. It will be a worthwhile

future work to analyze the dependence of the curve evolution on the initializations. At this point

we can give a rule of thumb for initializations with multiple seeds that the seeds need to cover

the entire region such that they intersect with both the foreground and the background with

high probability and that the number of seeds need to be large enough in order to avoid local

minima.

Let us now consider the challenging examples in Figure 8 and Figure 11. If we did not have

access to the underlying truth (as shown in Figure 7 and Figure 10), then based on the data

and the results in Figure 8 and Figure 11, one might naturally ask the question of whether there

are really two regions (i.e. foreground and background) here as the segmentations suggest, or

whether there is only a single region. This raises the issue of statistical significance of a given

result. We can address this issue by considering the null hypothesis H0 that there is only one

region versus the alternative hypothesis H1 that there are two regions. We present the details of
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this analysis in Appendix-B.2, where we observe that the key quantity involved here is again the

mutual information. Specifically, the log-likelihood ratio log p({G(x)|x∈Ω}|H1)
p({G(x)|x∈Ω}|H0) is given by the size of

data times the mutual information estimate, i.e. |Ω|Î(G(X); L ~C
(X)), which leads to the following

interpretations: First, the higher the mutual information, the more different the density estimates

p̂+, p̂− are, and thus the more confidence we have. Second, the larger the size of data, the more

accurate those density estimates are. Based on these observations, we take Î(G(X); L ~C
(X)) as

a statistic, and generate samples of this statistic under the null hypothesis H0 that there is a

single region. The procedure for generating these samples is described in Appendix-B.3. Next we

compute the sample mean E[Î|H0] and the sample variance V ar[Î|H0] of Î(G(X); L ~C
(X)) under

H0. Finally, we evaluate whether the mutual information estimate Îseg(G(X); L ~C
(X)) produced

by our segmentation result is a likely outcome under the null hypothesis. For this evaluation,

we simply use the Z-value, Z ,
Îseg−E[Î|H0]√

V ar[Î|H0]
, which measures the distance between the observed

value Îseg and the mean under H0, in terms of the number of standard deviations. Large values

indicate that the result is significant, hence the null hypothesis can be rejected. For the result

shown in Figure 8(d) and Figure 11(d) the Z-values are 4.24 and 5.63, respectively. These values

are unlikely to occur under the null hypothesis, which thereby indicates that the segmentation

results we have are statistically significant.

We now report the result for a leopard image and a zebra image shown in Figure 12 and

Figure 13 respectively. Both of these are challenging segmentation problems, where methods

based on single statistics may fail. Figure 12(d) shows the segmentation result for the leopard

image. The final curve captures the main body of the leopard and some parts of its tail and legs.

The parts of the tail and the legs that are missing look similar to the background, which makes

a perfect segmentation difficult. Figure 13 shows the success of our method in segmenting the

zebra image, which is the identical zebra image used in Paragios et al. [31]. Their supervised

texture segmentation algorithm requires an image patch taken from the object and an image

patch taken from the background in advance as an input to the algorithm. In contrast, the merit

of our method is that we do not have to know or choose which feature to use and that the method

non-parametrically estimates probability density functions and use that as a statistical feature.

It is noticeable that our method, which is unsupervised, can segment this complex image as

accurately as their supervised algorithm. Regarding the computational costs, on an Intel Xeon

2.2 GHz cpu, the nonparametric method took 211 seconds for segmenting the zebra image, whose
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size is 115 by 115.

Although our method can segment textured images without a prior training, there are some

classes of images where our framework breaks down. For instance, if one region has a texture with

a marginal distribution p1, and the other region has a different texture with the same marginal

distribution p1, then such an image can not be segmented without using a preprocessing such as

one based on filter banks.

(a) initial (b) intermediate (c) intermediate (d) final

Fig. 14. Evolution of the curve on a synthetic image; three regions with different mean intensities.

(a) initial (b) intermediate (c) intermediate (d) final

Fig. 15. Evolution of the curve on a synthetic image; three regions with different mean intensities.

Now we present the results of our information-theoretic, multi-phase segmentation method on

synthetic images of geometric objects, as well as real images. The image shown in Figure 14(a)

contains four regions (circle, ellipse, hexagon, and background) with Gaussian distributions with

different means. Hence, in this case we have m = 2, n = 4. The initial, intermediate, and

final stages of our curve evolution algorithm are shown in Figure 14, where the four regions

R++, R+−, R−+, R−− determined by the two curves capture the circle, the background, the

hexagon, and the ellipse, respectively. Note that, methods such as that of [44] would also work

for this simple example, but would require the selection of an appropriate statistic (in this case the
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(a) initial (b) intermediate (c) intermediate (d) final

Fig. 16. Evolution of the curve on an aircraft image.

(a) initial (b) intermediate (c) intermediate (d) final

Fig. 17. Evolution of the curve on a brain image.

mean) a priori, whereas our method does not. The Mumford Shah-based multi-phase technique

of [10], would also work in this case. Figure 15(a) contains an example with three regions having

Gaussian distributions with different variances, hence m = 2, n = 3. In this case, R+−, R−+, and

R−− capture the background, the hexagon, and the ellipse, respectively, whereas R++ shrinks

and disappears.

Figure 16(a) shows an image of an airplane. The two curves in the final segmentation in

Figure 16(d) capture the four regions, the airplane, the sky, the white clouds, and the darker

clouds.

Figure 17(a) shows a brain pathology image, which has three regions, the background, the

white matter, and the gray matter. This kind of brain images involve not only complex bound-

aries but also a topological constraint that the white matter is inside the gray matter. The

proposed multiphase segmentation method can handle this topology and the three regions cap-

ture the white matter, the gray matter, and the background.
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VI. Conclusion

We have developed a new information-theoretic image segmentation method based on non-

parametric statistics and curve evolution. We have formulated the segmentation problem as one

of maximizing the mutual information between the region labels and the pixel intensities, subject

to curve length constraints. We have derived the curve evolution equations for the optimization

problem posed in our framework. Due to the nonparametric aspect of our formulation, the pro-

posed technique can automatically deal with a variety of segmentation problems, in which many

currently available curve evolution-based techniques would either completely fail or at least re-

quire the a priori extraction of representative statistics for each region. We use fast techniques

for the implementation of nonparametric estimation, which keep the computational complexity at

a reasonable level. Our experimental results have shown the strength of the proposed technique

in accurately segmenting real and synthetic images.

Appendix

A. Proof of the Fact about Mutual Information

In this appendix, we prove a statement from Section II, namely that the mutual information

I(G(X); L ~C
(X)) is maximized if and only if ~C is the correct segmentation, i.e. if R+ = R1,

R− = R2 (or equivalently R+ = R2, R− = R1). We remind the readers that this analysis

makes use of the knowledge of R1, R2, p1, p2 so that we can compute the MI. Since I(G(X); X)

is independent of the label L ~C
(·), it is sufficient to show that

I(G(X); L ~C
(X)) ≤ I(G(X); X) (22)

and that equality holds if and only if R+ = R1, R− = R2 (or equivalently R+ = R2, R− = R1).

Proof: The inequality is basically the data processing inequality [12]. We will follow the

proof in [12].

By using the chain rule, we can expand the mutual information between G(X) and {X, L ~C
(X)},

namely I(G(X); X, L ~C
(X)) in the following two different ways:

I(G(X); X, L ~C
(X)) = I(G(X); L ~C

(X)) + I(G(X); X|L ~C
(X)) (23)

= I(G(X); X) + I(G(X); L ~C
(X)|X) (24)
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Note that given X = x, L ~C
(X) is just a constant L ~C

(x). Thus G(X) and L ~C
(X) are conditionally

independent given X, and we have I(G(X); L ~C
(X)|X) = 0. Since I(G(X); X|L ~C

(X)) ≥ 0, we

have

I(G(X); X) ≥ I(G(X); L ~C
(X)). (25)

The equality holds if and only if I(G(X); X|L ~C
(X)) = 0, i.e. G(X) and X are conditionally

independent given L ~C
(X). Now it suffices to show that pG(X)|L~C

(X) = pG(X)|X,L~C
(X) if and only

if R+ = R1, R− = R2 (or equivalently R+ = R2, R− = R1). The remainder of the proof is based

on the fact that pG(X)|L~C
(X) is not homogeneous, (i.e. it is a mixture of p1 and p2) unless L ~C

(·)
gives a correct segmentation, whereas pG(X)|X,L~C

(X) is always homogeneous.

Note that the conditional densities pG(X)|L~C
(X)=L+

and pG(X)|L~C
(X)=L−

are mixtures of p1 and

p2 as given in (6) and (7):

pG(X)|L~C
(X)=L+

=
|R+ ∩ R1|

|R+|
p1 +

|R+ ∩ R2|
|R+|

p2 (26)

pG(X)|L~C
(X)=L−

=
|R− ∩ R1|

|R−|
p1 +

|R− ∩ R2|
|R−|

p2 (27)

On the other hand, the conditional density pG(X)|X=x,L~C
(X)=L~C

(x) is p1 if x ∈ R1 and p2 if

x ∈ R2.

Suppose that R+ = R1, R− = R2. Then (26) and (27) give us that pG(X)|L~C
(X)=L+

= p1

and pG(X)|L~C
(X)=L−

= p2. Similarly, if R+ = R2, R− = R1, then pG(X)|L~C
(X)=L+

= p2 and

pG(X)|L~C
(X)=L−

= p1. In either case, we have pG(X)|L~C
(X) = pG(X)|X,L~C

(X).

However, unless R+ = R1, R− = R2 (or equivalently R+ = R2, R− = R1), at least one of

pG(X)|L~C
(X)=L+

and pG(X)|L~C
(X)=L−

is a mixture of p1 and p2, thus pG(X)|L~C
(X) 6= pG(X)|X,L~C

(X).

Therefore, pG(X)|L~C
(X) = pG(X)|X,L~C

(X) if and only if R+ = R1, R− = R2 (or equivalently

R+ = R2, R− = R1), and this completes the proof.

Remark: The inequality (22) is also true for the case where LC(·) is an n-ary label, and the

equality holds if and only if pG(X)|LC(X) = pG(X)|X,LC(X). Consequently, the equality holds if the

label LC(·) gives a correct segmentation. Now we prove that the equality does not hold if the label

gives an incorrect segmentation. Since pG(X)|X,LC(X) is always homogeneous, the equality holds

only if pG(X)|LC(X) is homogeneous. However, if the segmentation is incorrect, pG(X)|LC(X)=Ls(i)

is a mixture for at least one Ls(i) thus pG(X)|LC(X) 6= pG(X)|X,LC(X). This proves the same fact

for the n-ary label case.
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B. Statistical Interpretation and Analysis

B.1 MAP Estimation Interpretation of the Energy Functional

The curve that minimizes the energy functional is given by

arg min
~C

E( ~C) = arg min
~C

|Ω|ĥ(G(X)|L ~C
(X)) + α

∮

~C

ds. (28)

Now the conditional entropy term corresponds to the negative logarithm of the likelihood as

follows:

|Ω|ĥ(G(X)|L ~C
(X)) = |Ω|Pr(L ~C

(X) = L+)ĥ(G(X)|L ~C
(X) = L+)

+ |Ω|Pr(L ~C
(X) = L−)ĥ(G(X)|L ~C

(X) = L−)

= −|Ω| |R+|
|Ω|

1

|R+|

∫

R+

log p̂+(G(x))dx − |Ω| |R−|
|Ω|

1

|R−|

∫

R−

log p̂−(G(x))dx

= −
∫

Ω
log p̂G(X)|L~C

(X)=L~C
(x)(G(x)|L ~C

(X) = L ~C
(x))dx, (29)

where the last expression is the negative log-likelihood of the data {G(x)|x ∈ Ω} in terms of

the estimated density. On the other hand, the curve length term can be interpreted as the

negative logarithm of prior probability for the curve,
∮

~C
ds = − log p( ~C). Therefore, minimizing

the energy functional corresponds to finding the maximum a posteriori estimate of the label.

B.2 MI as a Confidence Measure

We express the question of whether the image has only a single region or two regions as the

following hypothesis testing problem:

H0 : p1(x) = p2(x) (single region) (30)

H1 : p1(x) 6= p2(x) (two regions) (31)

Under the null hypothesis H0, the data {G(x)|x ∈ Ω} have a single unknown density p1 = p2,

and in this case pG(X) = p1 = p2, whose estimate is p̂G(X). Thus the log-likelihood is given by

log p({G(x)|x ∈ Ω}|H0) =

∫

Ω
log p̂G(X)(G(x))dx (32)

= −|Ω|ĥ(G(X)) (33)

Under the alternative hypothesis, the data have two unknown densities p1 and p2, and their

estimates are p̂+ and p̂−. Thus (29) gives the negative of the log-likelihood of the data under H1.

July 27, 2004 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 28

Therefore, we have the log-likelihood ratio in terms of the data size and the mutual information

estimate as follows:

log
p({G(x)|x ∈ Ω}|H1)

p({G(x)|x ∈ Ω}|H0)
= −|Ω|ĥ(G(X)|L ~C

(X)) + |Ω|ĥ(G(X)) (34)

= |Ω|Î(G(X); L ~C
(X)) (35)

This gives a quantitative measure of the belief that H1 is true.

B.3 Computing the Z-value

To evaluate the significance of a segmentation result (indicating the existence of two regions

in the image), we need to generate samples of the statistic under the null hypothesis that there

is a single region. We obtain such samples through random permutations of the binary label.

More formally, we define the permutation of the binary labels L
π, ~C

(·) induced by a permutation

of the pixels π : Ω → Ω as follows:

L
π, ~C

(x) , L ~C
(π(x)).

In a similar way to [15], we perform the following procedure:

• Repeat M times (with index m = 1 to M):

– sample a random permutation πm from a uniform distribution over the set of all permutations,

– compute the MI statistic Im = Î(G(X); L
πm, ~C

(X))

• compute sample mean and sample variance of {I1, . . . , IM}.
These sample mean and sample variance are used as estimates of E[Î|H0] and V ar[Î|H0].

C. Gradient Flows for “Nested” Region Integrals

In Section III-B, we stated the gradient flow for a general nested region integral. In this

section, we provide a derivation of the gradient flow (via the first variation) of a curve ~C(t) for

minimizing an energy integral E, which is a region integral over the curve’s interior R( ~C(t)) (we

have used a shorthand notation R for R( ~C(t)) in the main body of the paper). In our derivation,

we use the results of Delfour and Zolesio [13]. Alternative derivations for this type of region

integrals can be found in [3], [21].

For a simple region integral in the form of

E( ~C(t)) =

∫

R( ~C(t))
f(x) dx, (36)
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where the integrand does not depend on the curve or time t (dependence on the curve ~C(t)

implies dependence on time t), we have the following expression for the time derivative:

dE

dt
=

∮

~C(t)

〈

~Ct, f ~N
〉

ds (37)

where we use subscript t to denote partial derivative as in ~Ct = ∂ ~C
∂t

. From the above derivative,

the form of the gradient flow for ~C (the negative of the gradient so that the region integral

decreases most rapidly) is revealed to be [45]

∂ ~C

∂t
= −f ~N. (38)

We now consider a general class of region-based energy functionals E where the integrand f

depends upon another family of region integrals ε(x, t) over R( ~C(t)). Note that the “nested”

region integrals ε(x, t) depend on t, since R( ~C(t)) (the interior of ~C(t)) changes as the curve

evolves over time. More precisely, we assume as in (13)

E( ~C(t)) =

∫

R( ~C(t))
f(ε(x, t)) dx where ε(x, t) =

∫

R( ~C(t))
g(x, x̂) dx̂ (39)

If we let ϕ(x, t) , f(ε(x, t)), our energy functional can be written as

E( ~C(t)) =

∫

R( ~C(t))
ϕ(x, t)dx (40)

where ϕ depends on time t. Delfour and Zolesio [13] have considered region integrals in the form

of (40), and Theorem 4.2 in [13](page 352) provides derivatives of such region integrals w.r.t.

time t. Using their results, the derivative of (40) is given by:

∂E( ~C(t))

∂t
=

∫

R( ~C(t))
ϕt(x, t)dx +

∮

~C(t)

〈
ϕ(x, t) ~N,

∂ ~C

∂t

〉
ds (41)

where ϕt(x, t) = ∂
∂t

f(ε(x, t)) = f ′(ε(x, t))εt(x, t). Since ε(x, t) in (39) does have the form of a

simple region integral (36) for each x, whose integrand g does not depend on ~C. As such, we can

write εt as follows:

εt(x, t) =

∮

~C(t)

〈
~Ct, g(x, ~C) ~N

〉
ds (42)
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Plugging this into the above expression for dE
dt

yields

dE

dt
=

∮

~C(t)

〈
~Ct, (f ◦ ε) ~N

〉
ds +

∫

R( ~C(t))
f ′(ε(x, t)

)

[
∮

~C(t)

〈
~Ct, g(x, ~C) ~N

〉
ds

]

dx (43)

=

∮

~C(t)

〈
~Ct, (f ◦ ε) ~N

〉
ds +

∫

R( ~C(t))

∮

~C(t)

〈

~Ct, f
′(ε(x, t)

)
g(x, ~C) ~N

〉

ds dx (44)

=

∮

~C(t)

〈

~Ct,

[

f ◦ ε +

∫

R( ~C(t))
f ′(ε(x, t)

)
g(x, ~C) dx

]

~N

〉

ds (45)

(46)

revealing the following gradient flow for ~C (where t is omitted as an argument for simplicity):

∂ ~C

∂t
= −

[

f
(
ε( ~C)

)
+

∫

R( ~C(t))
f ′(ε(x)

)
g(x, ~C) dx

]

~N, (47)

which is the result we stated in (14).

D. Derivation of the Curve Evolution Formula

This section presents the derivation of the curve evolution formula (15) given in Section III-C.

We begin by rewriting the energy functional (9) as follows:

E( ~C) = −|Ω|ĥ(G(X)) + E+( ~C) + E−( ~C) + α

∮

~C

ds, (48)

where the components E+( ~C) and E−( ~C) are given by

E+( ~C) = |Ω|Pr(L ~C
(X) = L+)ĥ(G(X)|L ~C

(X) = L+) (49)

= −
∫

R+

log

(
1

|R+|

∫

R+

K(G(x) − G(x̂))dx̂

)

dx (50)

E−( ~C) = |Ω|Pr(L ~C
(X) = L−)ĥ(G(X)|L ~C

(X) = L−) (51)

= −
∫

R−

log

(
1

|R−|

∫

R−

K(G(x) − G(x̂))dx̂

)

dx. (52)

We now proceed with a calculation of the gradient flow for E+ noting that the flow for E− will

have a similar form (but with an opposite sign). Since 1
|R+| in (50) also depends on the curve,
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we start by breaking E+ into two integrals:

E+ = −(E1
+ + E2

+) (53)

E1
+ = −

∫

R+

log |R+|dx = −|R+| log |R+| (54)

E2
+ =

∫

R+

f(ε(x,t))
︷ ︸︸ ︷

f(·)
︷︸︸︷

log









∫

R+

g(x,x̂)
︷ ︸︸ ︷

K(G(x) − G(x̂)) dx̂

︸ ︷︷ ︸

ε(x,t)









dx, (55)

where the second integral E2
+ exhibits the structure of the general nested form given in (13) (with

the integrand f(), the nested integral ε(), and the nested integrand g() labeled accordingly).

Using (14), the gradient flow for E2
+, which we denote by ∇

~C
E2

+, is given by

∇
~C
E2

+ = −








f(ε( ~C))
︷ ︸︸ ︷

log
(∫

R+

K
(
G( ~C) − G(x̂)

)
dx̂
)

+

∫

R+

1
(∫

R+
K
(
G(x) − G(x̂)

)
dx̂
)

︸ ︷︷ ︸

f ′(ε(x))

g(x, ~C)
︷ ︸︸ ︷

K
(
G(x) − G( ~C)

)
dx











~N (56)

= −
[

log |R+| + log p̂+(G( ~C)) +
1

|R+|

∫

R+

K
(
G(x) − G( ~C)

)

p̂+(G(x))

]

~N, (57)

while the gradient flow for E1
+ is given by

∇
~C
E1

+ = −(∇
~C
|R+|) log |R+| − ∇

~C
|R+| = (1 + log |R+|) ~N. (58)

Adding these gradients yields

∇
~C
E+ = −(∇

~C
E1

+ + ∇
~C
E2

+) =

[

−1 + log p̂+(G( ~C)) +
1

|R+|

∫

R+

K
(
G(x) − G( ~C)

)

p̂+(G(x))

]

~N. (59)

The gradient for E− has a similar structure (but with an opposite sign since the outward normal

with respect to R− is given by − ~N rather than ~N)

∇
~C
E− = −

[

−1 + log p̂−(G( ~C)) +
1

|R−|

∫

R−

K
(
G(x) − G( ~C)

)

p̂−(G(x))

]

~N. (60)
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Finally, the overall gradient flow for E( ~C) of (9) is obtained as follows:

∂ ~C

∂t
=

[

log
p̂+(G( ~C))

p̂−(G( ~C))
+

1

|R+|

∫

R+

K
(
G(x) − G( ~C)

)

p̂+(G(x))
dx

− 1

|R−|

∫

R−

K
(
G(x) − G( ~C)

)

p̂−(G(x))
dx

]

~N − ακ ~N. (61)

E. Approximations of the Second and Third Terms

In Section V, we have empirically observed that the second and third terms in the curve

evolution expression in (15) have a limited range. Here we show that under certain assumptions,

the values of these terms approach 1. In particular, provided that |R+ ∩ R1| >> 1 and |R+ ∩
R2| >> 1, we have

1

|R+|

∫

R+

K
(
G(x) − G( ~C)

)

p̂+(G(x))
dx ≈ 1. (62)

Similarly, provided that |R− ∩ R1| >> 1 and |R− ∩ R2| >> 1, we have

1

|R−|

∫

R−

K
(
G(x) − G( ~C)

)

p̂−(G(x))
dx ≈ 1. (63)

Derivation

Let λ = |R+∩R1|
|R+| , then p̂+ ≈ λp1 + (1 − λ)p2.

Now the approximation is as follows:

1

|R+|

∫

R+

K
(
G(x) − G( ~C)

)

p̂+(G(x))
dx

=
|R+ ∩ R1|

|R+|

[

1

|R+ ∩ R1|

∫

R+∩R1

K
(
G(x) − G( ~C)

)

p̂+(G(x))

]

+
|R+ ∩ R2|

|R+|

[

1

|R+ ∩ R2|

∫

R+∩R2

K
(
G(x) − G( ~C)

)

p̂+(G(x))

]

(64)

≈ λEp1

[

K
(
Y − G( ~C)

)

p̂+(Y )

]

+ (1 − λ)Ep2

[

K
(
Y − G( ~C)

)

p̂+(Y )

]

(65)

≈ λ

∫
p1(y)K(y − G( ~C))

λp1(y) + (1 − λ)p2(y)
dy + (1 − λ)

∫
p2(y)K(y − G( ~C))

λp1(y) + (1 − λ)p2(y)
dy (66)

=

∫

K(y − G( ~C))dy (67)

= 1 (68)

The derivation of (63) is similar to that of (62).
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