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Abstract

In this paper, we present a new information-theoretic approach to image segmentation. We cast the
segmentation problem as the maximization of the mutual information between the region labels and the
image pixel intensities, subject to a constraint on the total length of the region boundaries. We assume
that the probability densities associated with the image pixel intensities within each region are completely
unknown a priori, and we formulate the problem based on nonparametric density estimates. Due to
the nonparametric structure, our method does not require the image regions to have a particular type of
probability distribution, and does not require the extraction and use of a particular statistic. We solve the
information-theoretic optimization problem by deriving the associated gradient flows and applying curve
evolution techniques. We use level set methods to implement the resulting evolution. The experimental
results based on both synthetic and real images demonstrate that the proposed technique can solve a
variety of challenging image segmentation problems. Futhermore, our method, which does not require

any training, performs as good as methods based on training.

Keywords

Image segmentation, curve evolution, level set methods, nonparametric density estimation, information

theory

I. INTRODUCTION

Image segmentation is an important problem in image analysis, appearing in many applica-
tions including pattern recognition, object detection, and medical imaging. = Some previous
approaches to image segmentation, which provide the basis for a variety of more recent methods,
include boundary-based segmentation such as Canny edge detection [5], region-based segmen-
tation such as region growing [2], [25], and global optimization approaches such as those based
on the Mumford-Shah functional [28], [9], [39]. Recently there has been a considerable amount
of work on image segmentation using curve evolution techniques [6], [7], [8], [9], [27], [31], [34],
[35], [43], [44]. Some of these techniques, including the ones in [31], [44] have relations to the
approach we present here. In particular, Paragios et al. [31] developed a parametric model for
supervised segmentation of textured images. Yezzi et al. [44] developed a segmentation technique
using a particular discriminative statistical feature such as the mean or the variance of image
regions. These and many other recent methods (such as [35], [38]) have been inspired by the
region competition model of Zhu and Yuille [45].

Our strategy is different from those of previous curve evolution-based methods in three major
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ways. First, unlike the techniques mentioned above, our approach is based on nonparametric
statistics. The performance of parametric methods can be severely affected when the assumed
parametric model is not correct. This limits the class of images that can be segmented using such
methods with a particular parametric model. In response to the need for robustness and a larger
modeling capacity in statistical analysis, nonparametric methods [32] have been widely used in
machine learning problems. Nonparametric methods estimate the underlying distributions from
the data without making strong assumptions about the structures of the distributions. The
nonparametric aspect of our approach makes it especially appealing when there is little or no
prior information about the statistical properties of the regions to be segmented. Note that there
is a trade-off, namely, with a nonparametric approach we expect some performance loss when
the image fits a parametric model. However, we will give examples that clearly make the case
that there are rich classes of real images for which our method is advantageous. In particular,
we will show a compelling example where two regions of same means and same variances are
segmented.

The second aspect of our technique is that no training is required. Again this has advantages
and disadvantages. Obviously if one has training data from which to learn the distributions of
the image regions, one should take advantage of this, as in Paragios et. al. [31]. However, it is
also of practical interest to develop methods that do not require prior knowledge. We will see
that the method developed here can yield results as good as those of other methods which take
advantage of prior training (which our method does not, and simply must perform segmentation
based on the image presented to it without any prior training.)

The third aspect of our technique is that this is a principled information-theoretic framework
(using mutual information) that allows us to understand the several key quantities that drive
the resulting curve evolution. In particular, the first such term is a likelihood ratio (LR) term
that is similar to that used by Zhu et al. [45], the difference being that in [45] LR is computed
using parametric distributions whose parameters are estimated at each iteration, while ours uses
distributions that are learned and dynamically adapted in a nonparametric way. If the particular
parametric model is not well-matched to data, the nonparametric method will outperform the
parametric counterpart. Even though the image fits the parametric model, our distribution
estimates approach the quality achieved by parametric estimates. The formalism we describe

also includes two additional terms which capture the sensitivity of the estimated distributions
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(and hence the LR) to changes in the segmenting curve as it evolves.

The technique proposed by Jehan-Besson et al. [21] is related to our work regarding these
additional terms. The work in [21] considers general region-based active contours, where the
energy functionals to minimize are given as region-integrals of so-called descriptors. In particular,
they consider the case where the descriptors themselves depend on the region, and formulate an
optimization method. Their formulation can also be applied to our energy functional, which
is also region-based. What is new with our method is that our energy functional is based on
mutual information and that our “descriptor” involves nonparametric density estimates, whereas
they consider means, variances, determinants of covariance matrices, and histograms (in their
subsequent work [3]) as the descriptors.

The curve evolution technique in [40], [41] also takes a nonparametric approach to the image
segmentation problem with an information-theoretic perspective. However, their approach is
different from ours in a number of ways. First, they implement their technique for polygonal
contours whereas we implement evolution of continuous curves. Furthermore, their approach only
utilizes the first few estimated moments as approximations of the non-parametric distributions
whereas our approach uses nonparametric estimates of the entire distributions.

There exists some other work aimed at building a framework for segmenting a large class of
images. In particular, the technique proposed by Heiler et al. [19] is motivated by recent work
on natural image statistics [33], [20], and is based on parametric modeling of filter responses by
generalized Laplacian distributions. Their energy functional involves a Kullback-Leibler diver-
gence between those parametric densities, and their method can segment both gray level natural
images and textured images in an unsupervised fashion. In addition, there exists some other
work pursuing a similar goal of segmenting multiple types of images, but using a framework
other than active contours. For example, Malik et al. [26] have proposed an approach that works
on a variety of both gray level images and textured images based on a graph-theoretic framework.

The remainder of this paper is organized as follows. Section II presents the information-
theoretic objective functional for two-region image segmentation. Section III contains our curve
evolution-based approach to minimizing this objective functional. Section IV presents an exten-
sion of the two-region version of the technique to the multi-phase segmentation problem. We
then present experimental results in Section V, using both synthetic images with a variety of

distributions and real images. Finally, we conclude in Section VI with a summary.
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II. INFORMATION-THEORETIC COST FUNCTIONAL FOR IMAGE SEGMENTATION
A. Problem Statement

In this section, we consider a two-region image segmentation problem. The two regions are
distinct in the sense that they have different probability density functions for the pixel intensities.
We assume that the pixel intensities in each region are independent, identically distributed (i.i.d.).
The associated probability density functions are unknown, and we impose no constraints on the
form of these densities. More formally, the image intensity at pixel z, denoted by G(x), is drawn

from the density p; if z € Ry, and from ps if x € Ry as follows:

(G@)|z € R} & p

{G(2)|z € Ry} " s, (1)

where R; and Rs denote the two regions which are unknown, and the associated densities p; and
po are also unknown. In other words, we model the observed pixel intensities as a spatial random
process G(z) with pixel index x. Note that the lower case x is not a random variable but a pixel
index. Later we will introduce a random variable X, which is written in a capital letter. The
left-hand side of Figure 1 illustrates this image model. Note that a region can be composed of
several topologically separate components, as shown in this figure. This image model is similar
to that of the region competition method of Zhu and Yuille [45] in that both models assume
that pixel intensities in each region are i.i.d. The difference is that here the distributions are

unknown, whereas the model in [45] uses a family of pre-specified probability distributions.

R c

I Ra;pa

Fig. 1. Left: Illustration of the foreground region (R;), the background region (Rs), and the associated

—

distributions (p; and p2). Right: Illustration of the curve (C), the region inside the curve (R, ), and

the region outside the curve (R_).

The goal of two-region image segmentation by curve evolution is to move a curve C such that
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it matches the boundary between R; and Rp, i.e. the region inside the curve R4 and the region
outside the curve R_ converge to Ry and Ry respectively or vice versa. The right-hand side of
Figure 1 illustrates two regions, R, and R_. This partitioning of the image domain by the curve
C gives us a binary label Lg:Q— {Ly,L_}, which is a mapping from the image domain €2 to

a set of two labeling symbols {L,, L_} defined as follows:

L ifze R
La)=4 = "0 2)
L_ ifze R_

By this correspondence between labels and curves, image segmentation is equivalent to the binary

labeling problem.

B. Mutual Information between the Image Intensity and the Label

We now introduce the mutual information (MI) between the image intensity and the label
and discuss its properties. Let us initially consider the case where p; and ps are known. As
mentioned before, we have a candidate segmenting curve c , and Rj, Ry are the true unknown
regions. Now suppose that we randomly choose a point X in ) such that X is a uniformly
distributed random location in the image domain. ! In this case, the label Ls(X) is a binary
random variable that depends on the curve C. Tt takes the values Ly and L_ with probability
% and % respectively, where |R| denotes the area of the region R,.

On the other hand, the image intensity G(X) is a random variable that depends on the true

regions R; and Ro, and has the following density

pax)(2) = Pr(X € Ri)pax)xer, (?) + Pr(X € Ro)pg(x) xer,(?) (3)
| | Ro|

where z is an argument for the densities. Note that this density pg(x) is a mixture of p; and py
due to the randomness of the pixel location X. As can be seen in (3), G(X) has two sources of
uncertainty, namely the uncertainty of pixel location being in Ry or Rs, and the uncertainty of
the intensity given the pixel location. The binary label L (X ) contains some information about
the former uncertainty, namely X being in R; or Rs. Therefore, intuitively speaking, the more

1This is similar to the work of Viola et al. [42], where they measure the amount of dependence between two
images u(z) and v(z) by mutual information I(u(X);v (X)), where X is a random variable, which ranges over the

domain of u(-) and v(-).
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accurately the label L5(X) can determine whether X € Ry or X € Ry, the less uncertainty
G(X) has, and the more information about G(X) the label will have. This motivates using the
mutual information I(G(X); L5(X)) as a segmentation criterion.

Now let us consider more formally the mutual information I(G(X); L5(X))

HG(X); La(X)) = WMG(X)) = M(G(X)|La(X))
= WG(X)) = Pr(La(X) = L)h(G(X)|La(X) = Ly)

— Pr(Lg(X) = L)W(G(X)|La(X) = L) (5)

where the differential entropy h(Z) of a continuous random variable Z with support S is de-
fined by h(Z) = — [¢pz(2)logpz(2)dz. The three entropies in (5) are functionals of pg(x),
PG(X)|La(X)=Ly and pg(x),| La(X)=L_ respectively. The two conditional distributions are given

as follows:

2
PG(X)|La(X)=Ly (2) > Pr(X € Ri|La(X) = L)pa(x)|XeRLa(X)=L: (2)

=1
R.NR RiNR
= P+ R ) )
R_NR R_NR
pocoian-e () = Pl )+ FEE ) )

Each conditional entropy measures the degree of heterogeneity in each region determined by
the curve C. In other words, the more homogeneous the segmented regions, the less the con-
ditional entropies, and the higher the mutual information is, which is a desirable property for
segmentation.

We can show that the mutual information (G (X); L5(X)) is maximized if and only if C'is the
correct segmentation, i.e. if Ry = Ry, R_ = Ry (or equivalently Ry = Ry, R— = R;). The proof
is given in Appendix-A. This result suggests that mutual information is a reasonable criterion
for the segmentation problem we have formulated.

However, in practice, we really cannot compute the mutual information I(G(X); L (X)) for
two reasons. First, the computations above involve the regions R; and Re, which are actually
unknown to us (otherwise the segmentation problem would be solved). Second, unlike what we
assumed in the above discussion, we would like to solve the segmentation problem when p; and

po are unknown.
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We thus need to estimate the mutual information as follows:

HGX);La(X)) = MG(X)) = Pr(La(X) = L)h(G(X)|La(X) = Ly)

— Pr(La(X) = LO)MGX)|La(X) = L-) (8)

This in turn requires us to estimate the densities pg(x), PG(X)|La(X)=L> and PG(X)|La(X)=L_

The way we estimate these densities are presented in Section III.

C. The Energy Functional

Finally, we combine the mutual information estimate with the typical regularization penalizing
the length of the curve in order to construct our overall energy functional to be used for segmen-
tation. This regularization prevents the formation of a longer jagged boundary. Depending on
the prior information one might have about the region boundaries, constraints other than the
curve length penalty can also be used in our framework.

In the energy functional, the mutual information should be weighted by the area of the image
domain in order to represent the total amount of information between the label and the image,
since I(G(X); Ls(X)) corresponds to the contribution of a single pixel to the total information.

The resulting energy functional to minimize is then given by

E(C) = —|Q\f(G(X);LC~(X))+a%éds, (9)

where 3%, ds is the length of the curve and « is a scalar parameter. The statistical interpretation

of this energy functional is given in Appendix-B.

III. NONPARAMETRIC DENSITY ESTIMATION AND GRADIENT FLOWS

This section contains the derivation of the curve evolution formula for minimizing the energy

—

functional E(C) of (9) using nonparametric Parzen density estimates. First, we present the way

the nonparametric Parzen density estimates are used in estimating the conditional entropy terms

—

in (8). This results in the expression of the energy functional F(C') in the form of nested region

integrals. We then calculate the gradient flow for E(C) and discuss the properties of the curve

evolution formula.
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A. Estimation of the Differential Entropy

The expression (8) involves differential entropy estimates, and we use nonparametric Parzen
density estimates in order to estimate the differential entropies. For a review of nonparametric
entropy estimation, we refer the reader to [4].

Since A(G(X)) in (8) is independent of the curve, we just consider H(G(X)|LC~(X) = Ly) and
h(G(X)|Ls(X) = L) as follows:

h(G(X)|La(X) = Ly)

1 A

= g ), e PG (10)
1 1 . .

~ R4 R+10g (ﬁ R+K(G($)_G(x))dx) e )

Note that h(G(X)|Ls(X) = Ly) involves the expected value of the logarithm of p; £ PG(X)|La(X)=Ly >
and we approximate this expected value by the sample mean of log p+ in (10). We then use
a continuous version of the Parzen density estimate [32] of py in (11). We use the kernel

2
_ 1 - . . ]
K(z)= Tor3 ¢ 202 where o is a scalar parameter. Similarly, we have:

MGOILE(X) = L)
— i o (i [ K@) - G@)ar) do (12

B. Gradient Flows for General Nested Region Integrals

Note that (11) and (12) have nested region integrals. Let us consider a general nested region

integral of the form
/ f(e(z,t))dx  where e(z,t) = / g(x,2)d, and g does not depend on C, (13)
R R

where R is the region inside the curve C and t is a time index for the evolution of C (which we
often drop for notational convenience as in R = R(t) and C = C(t) ). For such integrals we have
derived the gradient flow (the negative of the gradient so that the region integral decreases most

rapidly), which is given by

X [f(g(é)) + /R 1 (e(@))g(z, C) de| N, (14)

where N is the outward unit normal vector. The detailed derivation can be found in Appendix-C.
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The second term appears in (14) because the integrand f(e(x,t)) in (13) depends on the curve
C.
C. The Gradient Flow for the Information-Theoretic Energy Functional

Now that we have the nonparametric estimates of the mutual information in the form of

nested region integrals as in (11) and (12), it is straightforward to calculate the gradient flow

—

for the energy functional E(C') using the result of Section III-B. We provide the details of this

computation in Appendix-D. Here, we state the main result, namely the overall gradient flow

—

for E(C) of (9):

00 _ [, =GO 1 [ K(Gw)-G(@)
ot p_(GO))  |IRelJr,  p(G(x)
1 K(G(z) — G(0)) oo
Rl e pG@)y  “ ]N N, (15)

where £ is the curvature of the curve and —axN is the gradient flow for the curve length penalty,
whose derivation can be found in [16]. We implement the curve evolution for the gradient flow
in (15) using the level set method [30], [36] together with the narrow band approach [11], [1].

A direct computation of this gradient flow is expensive. In particular, the bottleneck is in
the computation of the second and the third terms. If we use a direct computation, it takes
O((# of pixels)Q) time per each iteration, which we now explain. Since the evaluation of the
density estimate in the form of p,(G(z)) = + Zfil K(G(z) — G(x;)) at each pixel = on the
curve takes O(N) time, evaluation of p, (G(C)) at each pixel on the curve takes O(|R|) time,
where |R+ | is the number of pixels in region inside the curve. Thus the computation of the first
term at all the points on the curve takes O(M (|R+| + |R—])) time, where M is the number of
pixels along the curve (i.e. the size of the narrow band). In order to compute the second term,
we compute and store py(G(z)) for all x € Ry, which takes O(|R,|?) time and then compute
the integral using the stored values of p;(G(x)). The computation of this integral at all the
points on the curve takes O(M|R.|) time. Therefore, the complexity of a direct computation of
the gradient flow is O(M (|Ry| + |R_|) + |R4|? + M|Ry |+ |R_|2+ M|R_|) ~ O((# of pixels)?)
per each step.

However, we reduce the complexity by using an approximation method based on the fast Gauss
transform (FGT) [18], [37], [17]. FGT can evaluate density estimates based on N data points
in the form of P(z) = < Zf\il K(x — x;) at M different points in O(c(M + N)) time instead
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of O(MN) time, where c is the precision number which grows with the required precision of
the approximation. The precision number ¢ is the order of the Taylor series expansions used
in FGT, and c less than 10 is often sufficient in most cases. Furthermore, in evaluating p,., we
observe that using only a randomly selected subset of R is sufficient instead of using all the
pixel intensities in Ry. If we select N points from Ry in order to estimate p; and another N
points from R_, the computational cost using FGT per each iteration is O(¢(M + N + N) +
¢(N+N)+c(M+N)+c(N+N)+c(M+ N)), where the integral in the second and third term
in (15) takes O(c(M + N)) time by FGT. Given the size of the narrow band, a reasonable choice
of N will be a linear function of M. This results in the overall complexity of O(M), i.e. linear
in the size of the narrow band.

In general, FGT is also possible for estimation of multi-dimensional density functions, which
will allow us to extend our framework to color and vector-valued images. For d dimensional data,
the complexity of FGT is now O(c?(M + N)) [17], with the same M and N as the above. The
only difference in computational complexity from the case of gray level images is in the constant
factor ¢?. Therefore, the computational complexity is still linear in the size of the narrow band,
if our method is extended to vector-valued images.

Since our energy functional involves a curve length penalty term, we have a curvature flow term
in (15). If we replace the curve length penalty term by 3% g(é(s))ds as in the geodesic active
contours [7], the evolution equation (15) will have div(g(az,y)%ﬂvm replacing the curvature
flow, where ¢ is the corresponding level set function. In this case, the fast geodesic active contours
proposed by Goldenberg et al. [14] can be combined with our framework, just as the simplified
Mumford Shah model of Chan and Vese [9] has been combined with the fast geodesic active

contours in Kimmel et al. [24]. For further information on the fast geodesic active contours, we

refer the readers to [29].

D. Discussion on the Gradient Flow

The first term of the gradient flow expression in (15) is a log-likelihood ratio which compares
the hypotheses that the observed image intensity G(é) at a given point on the active contour
c belongs to the foreground region Ry or the background region R_ based upon the current
estimates of the distributions p; and p_. By this log-likelihood ratio term, the pixel on the
boundary is merged to either the region R or the region R_ such that the updated regions are

more homogeneous.
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To understand the second and third terms in (15), let us consider the analogy to the generic
flow in (14). We have the second term of (14) because the integrand £(-) in (13) depends on
the curve. Similarly, we have the second and third terms in the gradient flow (15) because
the integrands of the entropy estimates (11) and (12), which are logarithms of Parzen density
estimates, depend on the curve.

These second and third terms reinforce and refine what the first term does. The first term
alone does not take into account the fact that a deformation of the curve results in updating the
data samples used for the two density estimates. It is the two additional terms that compensate
for the change of density estimates.

These second and third terms, as well as the use of the nonparametric density estimates dis-
tinguish this active contour model from the region competition algorithm of Zhu and Yuille [45],
which involves alternating iterations of two operations: estimating the distribution parameters
inside and outside the curve; and likelihood ratio tests to evolve the curve. In that algorithm,
changes in the distributions are not directly coupled with likelihood ratio tests. In contrast,
the changes in the nonparametric density estimates are built directly into our curve evolution

equation through these two terms.

IV. EXTENSION TO MULTI-PHASE SEGMENTATION

In this section, we provide an extension of the two-region version of our technique to images
with more than two regions. To this end, we incorporate the multi-phase segmentation formula-
tion of [10] into our information-theoretic, nonparametric segmentation framework. Our method
uses m level set functions to segment up to 2™ regions, and the resulting curve evolution equation

(motion equation) turns out to be a natural generalization of nonparametric region competition.

A. n-ary Segmentation Problem and Mutual Information

We extend the two-region image segmentation problem to an n-ary (i.e. n-region) version,
where Ry, ..., R, denote the true unknown regions, and the image intensity at pixel x, denoted
by G(x), is drawn from the density p; if z € R;, where p;’s are unknown. Figure 2(a) illustrates
this image model when n = 4.

The goal of n-ary image segmentation by curve evolution is to move a set of curves {C_"l, ey @m}
(equivalently, a set of level set functions {¢1, ..., dn}) such that these curves partition the image

domain into the true regions Ry,..., R,. Each curve C; partitions the image domain into the
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IH Ry;p4

(a) (b)

Fig. 2. Multi-phase segmentation image model. (a) Illustration of the case where n = 4: true regions
Ri,..., Ry, with the associated distributions pi,...,ps. (b) Illustration of the two curves (61, 62)
and the regions Ry, Ry _,R_,, R__ partitioned by the curves .

two regions, the region inside the curve and the region outside the curve (¢; does the same thing
by its sign). Thus the m level set functions partition the image domain into 2™ regions, each of
which we label by the signs of the level set functions in that region. For instance, when m = 2,
we have 4 regions, Ry, R _,R_,,R__ as illustrated in Figure 2(b).

Given the partitioning by the curves C £ {C;} |, we can label each pixel z by its label Lo(z).
For instance, if x € R4y, Le(x) = Ly4. More formally, this partitioning of the image domain

by the curves C gives us a label
LC Q) — {L++...+, ceny L__..._},

which is a mapping from the image domain €2 to a set of 2™ labeling symbols { L4 4.4, ..., L__.._}

defined as follows:
Lc(.fc) = Ls(z) ifxe Rs(i)a 1<i<2m, (16)

where (i) is the ith element in the set {+ 4 ---+,...,— —--- —}. By a straightforward gener-

alization of (9), we propose the following energy functional for multi-phase segmentation:

m
B(C) = ~IOU(G(X)iLe(X) +a) ¢ ds a7)
i=17Ci
where the mutual information estimate is naturally extended to:

2777.
[(G(X);Le(X)) =h(G(X)) =) Pr(Le(X)=Ly;)h(G(X)|Le(X)=Ly;)  (18)
=1
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B. The Gradient Flows

We now compute the gradient flow to minimize E(C) of (17). For notational convenience, we
consider the case where m = 2, but the development could easily be generalized to any m.

n (18), we have 2™ = 4 conditional entropies to estimate, namely,
h(G(X)|La(X) = Lyy),...,h(G(X)|Lc(X) = L__) . We compute these estimates in a way
that is analogous to what we did for the two-region case. For example, h(G(X)|Lc(X) = Lyy)
is given by
1

WG(X)|Le(X) = Lyy) 1Rk

log py+(G(x)) dx (19)

1
= — 10g< K(G(x) - G(z dfc)dx,
|Rit| JR, . |Rit| JR. (G(=) ()

and the other entropy estimates are obtained in a similar way.
Generalizing our results from Section III, and using the multi-phase segmentation formulation
of [10], we compute the first variation of the energy functional E(C) in (17), and obtain the

following coupled motion equations:

G Ry |—ani+ H(6:(C1) <1g§t<g(23; ol K(iff(égf”)dm
7). K(i(%(%()é 1))“’) ) <10g ?Egigii
YT K(if)@(i)()é Par 5 . K(i(@@g)()@)dx ] .

9C Ry |ana+ H(6:(Ca) (m%jﬁ%iiﬂfi“ N R Gg)@))dw
ol )@5)()6 2))”)”1‘ Hor(C2) <1gz+§2202§;
arand i e )<G<C;§>é Do [, G (Csj)(?z))dm)] 2!

where H(-) is the Heaviside function (H(¢)=1if ¢ > 0 and H(¢) =01if ¢ <0).

Equations (20), (21) involve log-likelihood ratio tests comparing the hypotheses that the ob-
served image intensity G (@) at a given point on the active contour @ belongs to one region or
the other.

As illustrated in Figure 2(b), Cy delineates cither the boundary between Ry, and R_,, or

the boundary between R,_ and R__, when Ci lies inside or outside curve 52, respectively.
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(a) initial (b) intermediate (c) intermediate

Fig. 3. Evolution of the curve on a synthetic image; the different mean case.

Equation (20) exactly reflects this situation and reveals the region competition between regions
adjacent to curve C. Similarly, Equation (21) expresses the region competition between regions

adjacent to curve C_”g.

V. EXPERIMENTAL RESULTS

) B
%Q

) initial ) intermediate ) intermediate ) final

Fig. 4. Evolution of the curve on a synthetic image; the different variance case.

We present experimental results on synthetic images of geometric objects, and a number of real
images. In all the examples, the regularization parameter « in (9) or (17) is chosen subjectively
based upon our qualitative assessment of the segmented imagery. In cases where prior information
is available about the objects in the scene, it may be possible to learn an appropriate distribution
of regularizers based upon the known smoothness characteristics of the object boundaries coupled
with the signal-to-noise ratios of the images to be segmented.

We use synthetic images generated by several sets of distributions. Figure 3 shows the result
produced by our technique for the case where the two distributions for the foreground and the

background are Gaussian with different means and the same variance. Figure 4 shows the result
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) initial ) intermediate ) intermediate ) final

Fig. 5. Evolution of the curve on a synthetic image without the additional two terms; the different

variance case.

for the case where the two distributions for the foreground and the background are Gaussian
with different variances and the same mean. For these two cases, the method of Yezzi et al. [44]
would require the selection of the appropriate statistic (i.e. mean and variance for the first and
second cases respectively) a priori, whereas our method solves the segmentation problem without
that information.

For the result in Figure 3, we measured the run time for both our nonparametric method and
parametric counterpart in [44]. On an Intel Xeon 2.2 GHz cpu, the nonparametric method took
167 seconds (image size is 126 by 121), whereas the parametric method took 26 seconds. The
parametric method is of less computational cost when the parametric method is well-matched to
the problem here. However, if there is a mismatch between the image and the parametric model,
there will be losses in terms of both the accuracy of the segmentation and the computational
cost.

As we mentioned in Section III-D, the motion equation for the curve (15) contains three
data-driven terms and a curvature term. We now provide an empirical analysis of the relative
contribution of the first data-driven term (the log-likelihood ratio) versus the other two data-
driven terms, to the overall curve evolution. To this end, we consider the example in Figure 3.
We compute the numerical values of the log-likelihood ratio, the second term, and the third term
of the gradient flow (15) at each point on the curve, for multiple snapshots during the iterative
curve evolution process. In order to analyze the general behavior of these terms, we combine
all those data obtained throughout the curve evolution process and show their histograms in

Figure 6. Figure 6(a) and Figure 6(b) show histograms of the values taken by the second term
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(a) histogram of the second term (b) histogram of the third term

distribution of the first term distibution of the two additional terms
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(c) histogram of the first term  (d) histogram of (2nd term - 3rd term)

12nd term - 3rd term)|
|1st term|

(e) histogram of log;,

Fig. 6. Histograms of the three terms of the gradient flow for the points on the boundaries of Figure 3.

and the third term respectively. We observe that the values of both terms are often close to
1, and lie in a limited range (mostly between 0 and 1.5). We analyze this observation in more
detail in Appendix-E. Figure 6(c) and Figure 6(d) show histograms of the values taken by the
first term and the other two terms (i.e. the second term minus the third term). Since both
the second and the third term have a limited range, their difference (which is their overall

contribution to the evolution) is also in a limited range (mostly between -1.5 and 1.5), as is

I2nd term - 3rd term|
|Ist term| - We

shown in Figure 6(d). Finally, Figure 6(e) shows a histogram of log;,

can observe that mostly the first term has a larger magnitude than the other two terms, hence it
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Fig. 7. Example image with two regions (boundaries marked in (b)), where the foreground has a unimodal

density p1, and the background has a bimodal density ps. The two densities p; and py have the same

Qeneed

mean and the same variance.

5

(a) initial (b) intermediate (c) intermediate (d) final

Fig. 8. Evolution of the curve on a synthetic image; unimodal versus bimodal densities.

is the dominant contributor to the curve evolution. Consequently, for the experiment in Figure 3,
we obtain a similar segmentation results without including the two additional terms.

However, for other types of images, the log-likelihood ratio can be small, and the other two
terms can become more important affecting the performance of the segmentation. For instance,
if we do not include the additional two terms for the segmentation of the image in Figure 4(a),
we observe a loss in the accuracy of the segmentation as illustrated in Figure 5. We observe that
the sharp corners of the rectangle are missed. A similar performance loss due to excluding these
additional terms is also pointed out by Jehan-Besson [21]. Based on these empirical observations,
we believe this is an issue that requires further analysis in future works.

The next synthetic example we consider involves a more challenging image shown in Figure 7(a).
The underlying distributions of the foreground and the background are a unimodal Gaussian

density and a bimodal density with two Gaussian components as illustrated in Figure 7(c) and
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) initial curves

(b) corresponding segmentation results

Fig. 9. Segmentations of the image in Figure 7(a) with various initializations. (a) Eight different initial-

izations with varying number of seeds. (b) Corresponding segmentation results.

Figure 7(d) respectively. The two distributions have the same mean and same variance, so it is
hard even for a human observer to separate the foreground from the background. In order to let
the readers see the foreground, we show the actual boundaries by a curve in Figure 7(b). For this
kind of image, the methods based on means and variances such as that proposed by Yezzi et al.
[44] would no longer work. Figure 8 shows our segmentation results. As shown in Figure 8(a),
we have used an automatic initialization with multiple seeds. The power of the multiple-seed

initialization is that it observes entire regions, and the evolution of the curve occurs globally.
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(a) image (b) with boundary (c) ;1 (d) p2

Fig. 10. Example image with two regions (boundaries marked in (b)), where the foreground has a uniform
density p1, and the background has a bimodal density ps. The two densities p; and ps have the same

mean and the same variance.

(a) initial (b) intermediate (c) intermediate (d) final

Fig. 11. Evolution of the curve on a synthetic image; uniform (foreground) versus bimodal (background)

densities.

Figure 8(b) and Figure 8(c) show the intermediate stages of the evolution, where the seeds in
the background region gradually shrink at each iteration, whereas those in the foreground region
grow. The final result shown in Figure 8(d) appears to be an accurate segmentation. Similarly,
the next synthetic example in Figure 10 involves two distributions with the same mean and the
same variance, where the foreground distribution is uniform and the background one is bimodal
with two Gaussian components. As shown in Figure 11, our method can detect the foreground
objects without any prior knowledge about the probability densities involved.

We empirically analyze the sensitivity of our segmentation results to initialization. In Figure 9,
we run our algorithm on the same image as the one generated from unimodal and bimodal
densities in Figure 7 with different initializations. Figure 9(a) shows various initializations with

different number of seeds, and Figure 9(b) shows the corresponding segmentation results. As the
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(a) original (b) initial (c) intermediate

Fig. 12. Evolution of the curve on a leopard image.
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(a) original (b) initial (c) intermediate (d) final

Fig. 13. Evolution of the curve on a zebra image. (Input image: courtesy of Nikos Paragios)

upper row of Figure 9(b) shows, the segmentation can be suboptimal if we have a small number
of seeds indicating that the segmentations depend on the initializations. However, the lower row
of Figure 9(b) shows that as long as the number of seeds is large enough, the segmentation result
is stable with respect to initializations even for this challenging example. It will be a worthwhile
future work to analyze the dependence of the curve evolution on the initializations. At this point
we can give a rule of thumb for initializations with multiple seeds that the seeds need to cover
the entire region such that they intersect with both the foreground and the background with
high probability and that the number of seeds need to be large enough in order to avoid local
minima.

Let us now consider the challenging examples in Figure 8 and Figure 11. If we did not have
access to the underlying truth (as shown in Figure 7 and Figure 10), then based on the data
and the results in Figure 8 and Figure 11, one might naturally ask the question of whether there
are really two regions (i.e. foreground and background) here as the segmentations suggest, or
whether there is only a single region. This raises the issue of statistical significance of a given
result. We can address this issue by considering the null hypothesis Hy that there is only one

region versus the alternative hypothesis H; that there are two regions. We present the details of
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this analysis in Appendix-B.2, where we observe that the key quantity involved here is again the
mutual information. Specifically, the log-likelihood ratio log % is given by the size of
data times the mutual information estimate, i.e. |2|I(G(X); L(X)), which leads to the following
interpretations: First, the higher the mutual information, the more different the density estimates
D+, p— are, and thus the more confidence we have. Second, the larger the size of data, the more
accurate those density estimates are. Based on these observations, we take I(G(X); La(X)) as
a statistic, and generate samples of this statistic under the null hypothesis Hy that there is a
single region. The procedure for generating these samples is described in Appendix-B.3. Next we
compute the sample mean E[I|Hp] and the sample variance Var[I|Ho] of I(G(X); L&(X)) under
Hj. Finally, we evaluate whether the mutual information estimate fseg(G(X ); Ls(X)) produced
by our segmentation result is a likely outcome under the null hypothesis. For this evaluation,
we simply use the Z-value, Z £ Ise‘g/;i\/%’ which measures the distance between the observed
value Iseg and the mean under Hy, in terms of the number of standard deviations. Large values
indicate that the result is significant, hence the null hypothesis can be rejected. For the result
shown in Figure 8(d) and Figure 11(d) the Z-values are 4.24 and 5.63, respectively. These values
are unlikely to occur under the null hypothesis, which thereby indicates that the segmentation
results we have are statistically significant.

We now report the result for a leopard image and a zebra image shown in Figure 12 and
Figure 13 respectively. Both of these are challenging segmentation problems, where methods
based on single statistics may fail. Figure 12(d) shows the segmentation result for the leopard
image. The final curve captures the main body of the leopard and some parts of its tail and legs.
The parts of the tail and the legs that are missing look similar to the background, which makes
a perfect segmentation difficult. Figure 13 shows the success of our method in segmenting the
zebra image, which is the identical zebra image used in Paragios et al. [31]. Their supervised
texture segmentation algorithm requires an image patch taken from the object and an image
patch taken from the background in advance as an input to the algorithm. In contrast, the merit
of our method is that we do not have to know or choose which feature to use and that the method
non-parametrically estimates probability density functions and use that as a statistical feature.
It is noticeable that our method, which is unsupervised, can segment this complex image as

accurately as their supervised algorithm. Regarding the computational costs, on an Intel Xeon

2.2 GHz cpu, the nonparametric method took 211 seconds for segmenting the zebra image, whose
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size is 115 by 115.

Although our method can segment textured images without a prior training, there are some
classes of images where our framework breaks down. For instance, if one region has a texture with
a marginal distribution p;, and the other region has a different texture with the same marginal
distribution pp, then such an image can not be segmented without using a preprocessing such as

one based on filter banks.

(a) initial (b) intermediate (c) intermediate (d) final

Fig. 14. Evolution of the curve on a synthetic image; three regions with different mean intensities.

(a) initial (b) intermediate (c) intermediate (d) final

Fig. 15. Evolution of the curve on a synthetic image; three regions with different mean intensities.

Now we present the results of our information-theoretic, multi-phase segmentation method on
synthetic images of geometric objects, as well as real images. The image shown in Figure 14(a)
contains four regions (circle, ellipse, hexagon, and background) with Gaussian distributions with
different means. Hence, in this case we have m = 2, n = 4. The initial, intermediate, and
final stages of our curve evolution algorithm are shown in Figure 14, where the four regions
Ry Ry_,R_,R__ determined by the two curves capture the circle, the background, the
hexagon, and the ellipse, respectively. Note that, methods such as that of [44] would also work

for this simple example, but would require the selection of an appropriate statistic (in this case the
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Fig. 16. Evolution of the curve on an aircraft image.

(b) intermediate (c) intermediate

Fig. 17. Evolution of the curve on a brain image.

mean) a priori, whereas our method does not. The Mumford Shah-based multi-phase technique
of [10], would also work in this case. Figure 15(a) contains an example with three regions having
Gaussian distributions with different variances, hence m = 2,n = 3. In this case, Ry _, R_, and
R__ capture the background, the hexagon, and the ellipse, respectively, whereas R shrinks
and disappears.

Figure 16(a) shows an image of an airplane. The two curves in the final segmentation in
Figure 16(d) capture the four regions, the airplane, the sky, the white clouds, and the darker
clouds.

Figure 17(a) shows a brain pathology image, which has three regions, the background, the
white matter, and the gray matter. This kind of brain images involve not only complex bound-
aries but also a topological constraint that the white matter is inside the gray matter. The
proposed multiphase segmentation method can handle this topology and the three regions cap-

ture the white matter, the gray matter, and the background.
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VI. CONCLUSION

We have developed a new information-theoretic image segmentation method based on non-
parametric statistics and curve evolution. We have formulated the segmentation problem as one
of maximizing the mutual information between the region labels and the pixel intensities, subject
to curve length constraints. We have derived the curve evolution equations for the optimization
problem posed in our framework. Due to the nonparametric aspect of our formulation, the pro-
posed technique can automatically deal with a variety of segmentation problems, in which many
currently available curve evolution-based techniques would either completely fail or at least re-
quire the a priori extraction of representative statistics for each region. We use fast techniques
for the implementation of nonparametric estimation, which keep the computational complexity at
a reasonable level. Our experimental results have shown the strength of the proposed technique

in accurately segmenting real and synthetic images.
APPENDIX

A. Proof of the Fact about Mutual Information

In this appendix, we prove a statement from Section II, namely that the mutual information
I(G(X); L(X)) is maximized if and only if C' is the correct segmentation, i.e. if Ry = Ry,
R_ = Ry (or equivalently Ry = Ry, R_ = R;). We remind the readers that this analysis
makes use of the knowledge of R;, Ry, p1,p2 so that we can compute the MI. Since I(G(X); X)
is independent of the label L5(-), it is sufficient to show that

I(G(X); La(X)) < I(G(X); X) (22)

and that equality holds if and only if Ry = R;, R— = Rs (or equivalently Ry = Ry, R_ = Ry).

Proof: The inequality is basically the data processing inequality [12]. We will follow the
proof in [12].

By using the chain rule, we can expand the mutual information between G(X) and { X, L 5(X)},
namely I(G(X); X, L(X)) in the following two different ways:

I(G(X); X, La(X)) = I(G(X); La(X)) + I(G(X); X[La(X)) (23)

— I(G(X):X) + [(G(X); La(X)|X) (24)
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Note that given X = z, L~5(X) is just a constant L5(x). Thus G(X) and L5(X) are conditionally
independent given X, and we have I(G(X); L5(X)|X) = 0. Since I(G(X); X|Ls(X)) > 0, we

have
I(G(X): X) > I(G(X); La(X). (25)

The equality holds if and only if I[(G(X); X|Ls(X)) = 0, i.e. G(X) and X are conditionally
independent given L~(X). Now it suffices to show that PG(X)|La(X) = PG(X)|X,La(X) if and only
if Rt = Ry, R_ = Ry (or equivalently Ry = Ry, R_ = Rj). The remainder of the proof is based
on the fact that pg(x)r.(x) is not homogeneous, (ie. it is a mixture of p; and pa) unless L ()
gives a correct segmentation, whereas pg(x)|x, La(X) is always homogeneous.

Note that the conditional densities pg(x), La(X)=Ly and pg(x)| La(X)=L_ are mixtures of p; and

p2 as given in (6) and (7):

_ RN Ry [Ry N Ry 9%

PG(X)|Ls(X)=Ly = IRy | P IR, | (26)
|[R- N Ry [R- N Ry|

PG(X)|La(X)=L_ = X D1 ] D2 (27)

On the other hand, the conditional density PG(X)| X =x,L5(X)=Ls(x) is p1 if x € Ry and po if
T € Ro.

Suppose that Ry = R;, R_ = Ry. Then (26) and (27) give us that PG(X)|La(X)=Ly = P1
and PG(X)|Lg(X)=L = D2 Similarly, if R+ = Rp, R— = Ry, then PG(X)|La(X)=Ly = P2 and
PG(X)|La(X)=L_ = P1- In either case, we have PG(X)|La(X) = PG(X)|X,La(X)-

However, unless Ry = Rj, R_ = Ry (or equivalently Ry = Ry, R_ = Rj), at least one of
PG(X)|La(X)=Ly A PG(x)|Ls(x)=L_ is a mixture of p1 and p, thus pe(x)|L4(x) 7 PG(X)|X,La(X)-

Therefore, PGX)|La(X) = PG(X)|X,La(X) if and only if Ry = Ry, R- = Ry (or equivalently
Ry = Ry, R_ = Ry), and this completes the proof.

|
Remark: The inequality (22) is also true for the case where Lc(-) is an n-ary label, and the
equality holds if and only if pg(x)|Lo(x) = Pa(x)|X,Lo(x)- Consequently, the equality holds if the
label L (-) gives a correct segmentation. Now we prove that the equality does not hold if the label
gives an incorrect segmentation. Since pg(x)(x,Lo(x) 18 always homogeneous, the equality holds
only if pg(x)|Lo(x) is homogeneous. However, if the segmentation is incorrect, PG(X)|Lo(X)=Ly)
is a mixture for at least one L) thus pg(x)ne(x) # Pa(x)|x,Lo(x)- This proves the same fact

for the n-ary label case.
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B. Statistical Interpretation and Analysis
B.1 MAP Estimation Interpretation of the Energy Functional

The curve that minimizes the energy functional is given by

argmin E(C) = argmin]Qﬁl(G(X)]L(j(X))+a7{ﬂds. (28)
(& c (&

Now the conditional entropy term corresponds to the negative logarithm of the likelihood as

follows:
QURGX)La(X) = |QPr(La(X) = L)(G(X)|La(X) = Ly)
+[QIPr(La(X) = L)(G(X)|La(X) = L)
- _ @L og D x))dx — EL ogp x))dx
= —[Q o 1’| R+1 g+ (G(x))dz — | ol B R_l gp—(G(z))d
= —/Q10gﬁG(X)|L@(X)=L5(x)(G(x)L@(X) = La(2))dz, (29)

where the last expression is the negative log-likelihood of the data {G(z)|zr € Q} in terms of
the estimated density. On the other hand, the curve length term can be interpreted as the
negative logarithm of prior probability for the curve, f(j ds = —log p(é) Therefore, minimizing
the energy functional corresponds to finding the maximum a posteriori estimate of the label.

B.2 MI as a Confidence Measure

We express the question of whether the image has only a single region or two regions as the

following hypothesis testing problem:

Hp : p1(z) = p2(x) (single region) (30)

Hi :pi(x) # pa2(xz)  (two regions) (31)

Under the null hypothesis Hy, the data {G(x)|z € 2} have a single unknown density p; = pa,

and in this case pg(x) = p1 = p2, whose estimate is pg(x). Thus the log-likelihood is given by

log p({G(x) |z € Q}|Hp) = /Q log Px) (G(x))d (32)
— —|lh(G(X)) (33)

Under the alternative hypothesis, the data have two unknown densities p; and ps, and their

estimates are py and p_. Thus (29) gives the negative of the log-likelihood of the data under Hj.
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Therefore, we have the log-likelihood ratio in terms of the data size and the mutual information

estimate as follows:

({G(z)|x € Q}[Hy)
({G(z)|x € Q}[Ho)

logi —|QIR(G(X)|Ls(X)) + [QIR(G(X)) (34)

= |QUI(G(X); La(X)) (35)
This gives a quantitative measure of the belief that H; is true.

B.3 Computing the Z-value

To evaluate the significance of a segmentation result (indicating the existence of two regions
in the image), we need to generate samples of the statistic under the null hypothesis that there
is a single region. We obtain such samples through random permutations of the binary label.
More formally, we define the permutation of the binary labels Lw,é(') induced by a permutation

of the pixels 7 : 2 — Q as follows:

In a similar way to [15], we perform the following procedure:

o Repeat M times (with index m =1 to M):
— sample a random permutation 7, from a uniform distribution over the set of all permutations,
— compute the MI statistic I,,, = I(G(X); me,é(X))

o compute sample mean and sample variance of {I1,..., I/}

These sample mean and sample variance are used as estimates of E[I|Ho| and Var[I|Hy).

C. Gradient Flows for “Nested” Region Integrals

In Section III-B, we stated the gradient flow for a general nested region integral. In this
section, we provide a derivation of the gradient flow (via the first variation) of a curve C(t) for

—

minimizing an energy integral F, which is a region integral over the curve’s interior R(C(t)) (we
have used a shorthand notation R for R(C(t)) in the main body of the paper). In our derivation,
we use the results of Delfour and Zolesio [13]. Alternative derivations for this type of region
integrals can be found in [3], [21].

For a simple region integral in the form of

E(C(1) = / /() d, (36)

R(C(t))
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where the integrand does not depend on the curve or time ¢ (dependence on the curve é(t)

implies dependence on time t), we have the following expression for the time derivative:

dE — —
= Cy, fN) d 37
T = Py (CrIN) o (37)

where we use subscript ¢ to denote partial derivative as in th = %—(tj. From the above derivative,
the form of the gradient flow for c (the negative of the gradient so that the region integral

decreases most rapidly) is revealed to be [45]
=~ = —fN. (38)

We now consider a general class of region-based energy functionals E where the integrand f
depends upon another family of region integrals e(z,t) over R(C(t)). Note that the “nested”
region integrals e(z,t) depend on ¢, since R(C(t)) (the interior of C(t)) changes as the curve
evolves over time. More precisely, we assume as in (13)

BC) - |

~ fle(z,t))dxr  where e(x,t):/ g(x,2)dz (39)
R(C(t))

R(C(1))

If we let p(z,t) £ f(e(x,t)), our energy functional can be written as

B(C(1) = /R o £ 0 (40)

where ¢ depends on time t. Delfour and Zolesio [13] have considered region integrals in the form
of (40), and Theorem 4.2 in [13](page 352) provides derivatives of such region integrals w.r.t.
time t. Using their results, the derivative of (40) is given by:

— —

oC

OE(C(t)) = T T 2. N, = \ds
i R CULEy SN CEULEEST (a1)

where ¢(z,t) = %f(e(:v,t)) = f'(e(x,t))er(x,t). Since e(z,t) in (39) does have the form of a
simple region integral (36) for each =, whose integrand g does not depend on C. As such, we can

write ¢; as follows:

et(z,t) = %ﬁ <Ct,g(a:,C)]\7> ds (42)
50
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Plugging this into the above expression for % yields

dE = N / ~ N\ N
= = 7{6(15) (Cy,(foe)N)ds+ /I%(é(t)) [ (e(z, 1)) !fé(t) (Cy, g(z,C)N) ds] dr  (43)

- f”(t) <Ct, (fo 5)N> ds + /R(é(t)) fé(t) <Ct, f (5(m,t))g($,C)N> dsdzx (44)

= j{ C_;tu
()

revealing the following gradient flow for c (where t is omitted as an argument for simplicity):

J\7> ds (45)

(46)

fos—i-/ B f/(E(x,t))g(a:,C_")dx
R(C(t))

oC

- V 4
ot N, (47)

FEC) + [ fle@)gle,C)da
R(C())
which is the result we stated in (14).

D. Derivation of the Curve FEvolution Formula

This section presents the derivation of the curve evolution formula (15) given in Section III-C.

We begin by rewriting the energy functional (9) as follows:
BE(G) = —|0hGX)) +E(C)+ E_(C)+a 7{ ds, (48)
C

where the components E(C) and E_(C) are given by

E((C) = |QIPr(Ls(X) = Lo)h(G(X)|Ls(X) = Ly) (49)
1 R .

_ /R s (@ R+ K(G(m)—G(x))dw) da (50)

E_(C) = |QIPr(Ls(X) = L_)h(G(X)|Ls(X) =L-) (51)

_ / - ’/ K(G(x) - G(& ))dﬁc) da. (52)

We now proceed with a calculation of the gradient flow for E noting that the flow for E_ will

have a similar form (but with an opposite sign). Since ‘Rﬁ in (50) also depends on the curve,
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we start by breaking F into two integrals:

E. = —(E}+E}) (53)
Py = = [ log|Rylds = ~|R.|1og| Ry (54)
+
fe(=,t))
Q) g9(z,2)
E? = / log K(G(z) — G(¢))dz | du, (55)
Ry Ry

e(x,t)

where the second integral E2 exhibits the structure of the general nested form given in (13) (with
the integrand f(), the nested integral (), and the nested integrand g¢() labeled accordingly).
Using (14), the gradient flow for £2, which we denote by V. E2 | is given by

(e(0))
V.E: = — |log (/R K(G(C) - G(&)) d;fc)
+
9(&5)
1 =
—I—/ K(G(x) — G(C)) dr| N (56)
R ( [ K(G(x) —G(i:))di:)
f'(e(@) i
. 1 K(G(z) - GO)] -
= — |log|R+|+logpL(G(C)) + ~ N, 57
while the gradient flow for Ei is given by
VEL = —(V,|Ry|)log | Ry| — V| Ryl = (1+log| R4 |)N. (58)
Adding these gradients yields
X . 1 K(G(z) —G(C)) ] -
V.E;=—(V,E} + VéEi) = |—1+logp4+(G(C)) + Rl /s ( (Gl ) N. (59)
+

The gradient for E_ has a similar structure (but with an opposite sign since the outward normal

with respect to R_ is given by —N rather than N )

G(C))
z))

—

V.E_=-—
é

. - 1 K(G(z) -
—1+1logp_(G(CO)) + R /R 5 (G (60)
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Finally, the overall gradient flow for E(C) of (9) is obtained as follows:

o¢ _ [5G 1 [ E(G@-60)
ot p—(G(C))  |RtlJr,  P+(G())
1 K(G@)-GO) o . 5
e R o

E. Approximations of the Second and Third Terms

In Section V, we have empirically observed that the second and third terms in the curve
evolution expression in (15) have a limited range. Here we show that under certain assumptions,
the values of these terms approach 1. In particular, provided that |[Ry N Ry| >> 1 and |R4 N
Rs| >> 1, we have

1 K(G(z) — G(O))
|Ril Jr,  P+(G(2))

Similarly, provided that |[R_ N R;| >> 1 and |[R_ N Ry| >> 1, we have

dv ~ 1. (62)

1 K(G(z) - G(0))
R-| Jr.  $-(G(2))

dr =~ 1. (63)

Derivation

Let A\ = 'RHF”, then py ~ Apy + (1 — \)pa.

Now the approximation is as follows:

—

| K(G() - G(C)
Rl Jr,  P+(G(x))
_ RN Ry 1 K (G(z) - G(0))
| Ry | IRy N R1| Jronr,  P+(G(2))
[RyNRo | 1 K (G(z) - G(C)) (64)
| Ry | IRy N Ryl Jronr, — P+(G(2))
-~ K(Y - G(0)) B (Y —G(0))
~ B | = | * (1—N\)E,, A0S (65)
p1(y)K(y — G(C)) p2(y) K (y — G(C))
Oy s et TARCREYY Bvorrois ot P A GO
= /K(y — G(C))dy (67)
- 1 (68)

The derivation of (63) is similar to that of (62).
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