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ABSTRACT

We propose an information-theoretic method for multi-phase
image segmentation, in an active contour-based framework. Our
approach is based on nonparametric density estimates, and is able
to solve problems involving arbitrary probability densities for the
region intensities. This is achieved by maximizing the mutual in-
formation between the region labels and the image pixel intensi-
ties, in order to segment up to �� regions using � curves. The
method does not require any prior training regarding the regions of
interest, but rather learns the probability densities during the evo-
lution process. We present some illustrative experimental results,
demonstrating the power of the proposed segmentation approach.

1. INTRODUCTION

A number of active contour-based variational techniques have re-
cently been developed and used in image segmentation. These
methods are based on fairly simple statistical models for the inten-
sities of the regions to be segmented. For example, either simple
Gaussian intensity models are assumed, or a particular discrimina-
tive feature (such as the intensity mean or variance) is used [5].

This work considers more general problems where the regions
to be segmented may not be separable by a simple discriminative
feature, or by using simple Gaussian probability densities. We
present an information-theoretic segmentation approach, which can
deal with a variety of intensity distributions. Some previous tech-
niques which have relations to our approach include the region
competition method of [6], and the supervised texture segmenta-
tion method of [4]. Our strategy is different from previous methods
in three major ways. First, unlike e.g. [6], our approach is based on
nonparametric statistics. Secondly, unlike e.g. [4], our technique
requires no training. Thirdly, the optimization problem we pose is
based on a new information-theoretic cost functional utilizing mu-
tual information. In particular, we cast the segmentation problem
as the maximization of the mutual information between the region
labels and the image pixel intensities.

We have previously described a two-region version of this ap-
proach [3]. In this paper, we provide an extension of this tech-
nique for images with more than two regions, by incorporating the
multi-phase segmentation formulation of [1] into our information-
theoretic, nonparametric segmentation framework. Our method
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uses � level set functions to segment up to �� regions, and the
resulting curve evolution equation (motion equation) turns out to
be a natural generalization of nonparametric region competition.
The nonparametric aspect of our approach makes it especially ap-
pealing in applications where there is little or no prior information
about the statistical properties of the regions to be segmented. We
present the effectiveness of the proposed segmentation strategy on
a number of synthetic and real scenes.

2. INFORMATION THEORETIC APPROACH TO IMAGE
SEGMENTATION: MULTI-PHASE FRAMEWORK

2.1. Problem Statement

We consider an �-ary (i.e. �-region) image segmentation prob-
lem, where ��� � � � � �� denote the true unknown regions, and the
image intensity at pixel �, denoted by ����, is drawn from the
density �� if � � ��, where ��’s are unknown. Figure 1(a) illus-
trates this image model when � � �.
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Fig. 1. Multi-phase segmentation image model. (a): Illustration of
the case � � �: true regions ��� � � � � ��, with the associated dis-
tributions ��� � � � � ��. (b): Illustration of the two curves (	
�� 	
�),
the regions ���� ���� ���� ��� partitioned by the curves .

The goal of �-ary image segmentation by curve evolution is
to move a set of curves �	
�� � � � � 	
�� (equivalently, a set of level
set functions ���� � � � � ���) such that these curves partition the
image domain into the true regions ��� � � � � ��. Each curve 
�
partitions the image domain into the two regions, the region in-
side the curve and the region outside the curve (�� does the same
thing by its sign). Thus the � level set functions partition the
image domain into �� regions, each of which we label by the



signs of the level set functions in that region. For instance, when
� � �, we have 4 regions, ���� ���� ���� ��� as illustrated
in Figure 1(b). More formally, we define ��� as a closure of the
open set �������� � �� ����� � ��. ���� ���� and ��� are
similarly defined.

Given the partitioning by the curves � � �	
��
�
���, we can

label each pixel � by its label ����. For instance, if � � ���,
���� � ��. More formally, this partitioning of the image
domain by the curves � gives us a label

� � � � �������� � � � � ��������

which is a mapping from the image domain � to a set of �� label-
ing symbols �������� � � � � ������� defined as follows:

���� � ���� if � � ������ 	 � � � ��� (1)

where ���� is the �th element in the set �

� � �
� � � � ���� � � ��.
By this correspondence between labels and curves, image segmen-
tation by curve evolution is equivalent to the ��-ary labeling prob-
lem.

2.2. Mutual Information between the Image Intensity and the
Label

As mentioned before, we have a combination of candidate seg-
menting curves �, and ��� � � � � �� are the true unknown regions.
Now suppose that � is a uniformly distributed random location in
the image domain �. In this case, the label ���� is a random
variable that depends on the curves �. It takes the value

���� � �������� � � � � ������� with probability
�������

���
, where

������� denotes the area of the region �����. On the other hand, the
image intensity ���� is a random variable that depends on the
true regions �������� with the density ����� �

����
���

��.

Now let us consider the mutual information ������������
between the label and the intensity
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where the differential entropy ���� of a continuous random vari-
able� with support � is defined by ���� � �

�
�
�	��� �� �	�����.

The entropies ������� and ����������� � ����� are func-
tionals of ����� and ������
�����
����

, respectively. The con-
ditional distribution is given as follows:
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Each conditional entropy measures the degree of heterogeneity in
each region determined by the curves �.

Using the data processing inequality [2], we can show that the
mutual information ������������ is maximized if and only if

the curves � give the correct segmentation,1 i.e.
����

�
��� � �������	 � � � ���. We omit the proof here.

This result suggests that mutual information is a reasonable cri-
terion for the segmentation problem we have formulated. How-
ever, in practice, we really cannot compute the mutual information
������������ since the regions �������� and the probability
densities ��� � � � �� are unknown.

We thus need to estimate the mutual information as follows:

������������� (3)
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This in turn requires us to estimate the densities ����� and
������
�����
����

.

2.3. The Energy Functional

Finally, we combine the mutual information estimate with a regu-
larization term, and the resulting energy functional to minimize is
then given by

���� � ��������������� �

��
���

�
��

��� (4)

where the second term acts as a curve length penalty.

3. NONPARAMETRIC DENSITY ESTIMATION AND
GRADIENT FLOWS

We now describe our density estimation process needed in (3), and
the gradient flow to minimize ���� of (4). For notational conve-
nience, we consider the case where � � �, but the development
could easily be generalized to any �.

3.1. Estimation of the Differential Entropy

Based on (3), we have �� � � conditional entropies to estimate,
namely,
������������ � ���� � � � � ������������ � ��� . In
order to compute ������������ � ���, we use the following
Parzen density estimate of ���� � ������
�����
��

:
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Thus ������������ � ��� is given by

������������ � ���

� �
	

�����

�
���

�� ����������� �� (6)

� �
	

�����

�
���

��

�
	

�����

�
���

����������������

�
���

where we have approximated the entropy ����������� � ���,
which is the expected value of the logarithm of ���� , by the sam-

ple mean of log ���� . Similarly, ������������ � ����

1For the sake of notational simplicity we assume � � �� in our devel-
opment here, but the approach is applicable to the case where � � �� , as
well.



������������ � ���� and ������������ � ��� are
given by nested region integrals over ���� ���� and ���, re-
spectively.

3.2. The Gradient Flow for the Information-Theoretic Energy
Functional

Based on the first variation of the energy functional ���� in (4),
we obtain the following coupled motion equations2:
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where 	
� and 	
� are parameterized by � � ��� 	�, and  �� is an
indicator function such that  �	
���� � ���� is 	 if the pixel
	
���� is in ��� and 0 otherwise.

For the purpose of illustration, let us observe how these gen-
eral equations (7), (8) specialize when the topology of the curves
looks like Figure 1(b). For this case, we have the following non-
parametric region competitions:
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(10)

where !��� is the Heaviside function (!���=1 if � 
 � and
!��� � � if � " �).

Equations (9), (10) involve log likelihood ratio tests compar-
ing the hypotheses that the observed image intensity ��	
�� at a
given point on the active contour 	
� belongs to one region or the
other.

As illustrated in Figure 1(b), 	
� delineates either the bound-
ary between ��� and ���, or the boundary between ��� and
���, when 	
� lies inside or outside the curve 	
�, respectively.
Equation (9) exactly reflects this situation and reveals the region
competition between regions adjacent to the curve 	
�. Similarly,
Equation (10) shows the region competition between regions adja-
cent to the curve 	
�.

2These expressions are approximate, since they contain only the dom-
inant terms contributing to the curve evolution. For the complete motion
equations (for the � � � case), see [3]

4. EXPERIMENTAL RESULTS

First, we demonstrate our information-theoretic, multi-phase seg-
mentation method on a synthetic image of geometric objects. The
image shown in Figure 2(a) contains three regions (circle/rectangle,
ellipse/hexagon, and background) with Gaussian distributions with
different means. Hence, in this case we have � � �, � � �. The
initial, intermediate, and final stages of our curve evolution algo-
rithm are shown in Figure 2, with the inside of the first (solid) and
second (dashed) curves capturing the ellipse/hexagon region, and
the background region respectively. Figure 3(a) contains an exam-
ple with four regions (circle, ellipse, hexagon, and background),
hence � � �� � � �, with again Gaussian distributions with dif-
ferent means. The first (solid) curve has the circle and ellipse in it
and the second (dashed) curve has the circle and the hexagon in it.
Equivalently, ���� ���� ���� and ��� capture the circle, the
ellipse, the hexagon, and the background, respectively. Note that,
methods such as [5] would also work in these simple examples, but
would require the selection of an appropriate statistic (in this case
the mean) a priori, whereas our method does not. The Mumford
Shah-based multi-phase technique of [1], would also work in this
case. Figure 4(a) contains an example with four regions having
Gaussian distributions with different variances. Again,���� ����
���� and ��� capture the circle, the ellipse, the hexagon, and
background, respectively.

In addition, our approach is directly applicable in problems
involving more challenging intensity distributions, as we demon-
strate on a real-image example next. Figure 5(a) shows the image
of a zebra on a background (� � 	, � � �). Note that the fore-
ground intensities appear to have a bimodal density, whereas the
background appears unimodal. Techniques, such as [5, 1] are not
suited to this kind of problem. The final result of our approach
is shown in Figure 5(d). This identical image has also been used
in [4]. Note that unlike the training-based approach of [4], our
method achieves an accurate segmentation without any supervi-
sion.

(a) initial (b) intermediate

(c) intermediate (d) final

Fig. 2. Evolution of the curve on a synthetic image; three regions
with different mean intensities.



(a) initial (b) intermediate

(c) intermediate (d) final

Fig. 3. Evolution of the curve on a synthetic image; four regions
with different mean intensities.

5. CONCLUSION

We have presented a multi-phase, information theoretic �-ary seg-
mentation technique based on nonparametric density estimates,
which is able to solve challenging segmentation problems in an
unsupervised fashion. The technique is general in the sense that it
could in principle be applied to any segmentation problem where
pixel intensity distributions could be used to discriminate between
different regions. On the other hand, the method can also solve
simple special cases, e.g. when a particular discriminative feature
is sufficient for the segmentation task. We have presented some
preliminary experimental results illustrating the flavor of this tech-
nique, and our current work involves the validation of the proposed
approach on a variety of images.
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(a) initial (b) intermediate

(c) intermediate (d) final

Fig. 4. Evolution of the curve on a synthetic image; four regions
with different intensity variances.

(a) initial (b) intermediate

(c) intermediate (d) final

Fig. 5. Evolution of the curve on a zebra image. (Input image:
courtesy of Nikos Paragios)


