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ABSTRACT

In this paper, we introduce a novel approach for simultaneous restora-
tion and segmentation of blurred, noisy images by approaching a
variant of the Mumford-Shah functional from a curve evolution per-
spective. In particular, by viewing the active contour as the set of
discontinuities in the image, we derive a gradient flow to minimize
an extended Mumford-Shah functional where the known blurring
function is incorporated as part of the data fidelity term. Each gra-
dient step involves solving a discrete approximation of the corre-
sponding partial differential equation to obtain a smooth and de-
blurred estimate of the observed image without blurring across the
curve. The experimental results based on both synthetic and real
images demonstrate that the proposed method segments and restores
the blurred images effectively. We conclude that our work is an
edge-preserving image restoration technique that couples segmen-
tation, denoising, and deblurring within a single framework. In ad-
dition, this framework provides an intellectual connection between
regularization theory (used to solve the deblurring inverse prob-
lem) and the theory of curve evolution.

1. INTRODUCTION

An important inverse problem in image processing is the problem
of estimating underlying scenes from blurred and noisy observed
images. In general, this is an ill-posed problem, and techniques
based on regularization theory have been favored for its solution.
The most common regularization approach is Tikhonov regulariza-
tion [14]. Such methods lead to computationally straightforward
optimization problems, but they may suppress useful features in
the resulting imagery, such as edges. Recently, considerable efforts
have been spent in designing alternative techniques which preserve
boundaries between regions, while performing the regularization
[16, 5]. Our interest is in obtaining such a robust regularization of
the inverse problem, but at the same time explicitly segmenting the
image. To this end, we propose an algorithmic framework for im-
age deblurring and segmentation.

One approach to image segmentation is via curve evolution tech-
niques [1, 2, 3, 6, 11, 12, 17, 18]. In general, the goal of these tech-
niques is to extract the boundaries (represented by closed curves)
within an image. Recently, a new curve evolution approach based
on minimizing the original Mumford-Shah functional [7, 8] has been
proposed for simultaneous smoothing and segmentation of noisy
images [4, 15]. The image smoothing proposed in this work is lin-
ear, with edge preservations based on a global segmentation of the
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image by the curve. In this paper, we demonstrate how we extend
the technique in [15] to an edge-preserving deblurring and denois-
ing algorithm. The major novelty of our approach is the solution
of the image restoration problem in a curve evolution framework,
which leads to an explicit segmentation of the image as well as a
solution of the restoration problem.

The remainder of the paper is organized as follows. Section 2
formulates our approach to solving the inverse problem from a curve
evolution perspective. In particular, an objective functional is con-
structed based on an extended form of the Mumford-Shah func-
tional. Section 3 then derives our curve evolution-based approach
to minimizing this objective functional. We present experimental
results in Section 4, using both synthetic and real images. Finally,
we conclude in Section 5 with a summary and some further research
directions.

2. THE EXTENDED MUMFORD-SHAH FUNCTIONAL
FOR THE RESTORATION PROBLEM

A variant of the Mumford-Shah functional where discontinuities
are limited to a closed curve is given by
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in which �� denotes the smooth, closed segmenting curve, � de-
notes the observed data, � denotes the piecewise smooth approx-
imation to � with discontinuities only along ��, and � denotes the
image domain [8, 7]. Note that the first term in ����� ���, the data
fidelity term, is proportional to the negative-log-likelihood of ob-
serving � given � , for the observation model

��
� �� � ��
� �� � ��
� ��� (2)

where �
� �� denotes the coordinates in ��, and � is white Gaus-
sian noise. With a statistical maximum a posteriori (MAP) estima-
tion perspective, the second and the third terms in (1) are related to
the prior probability density functions on � and ��.

The observation model for the deblurring problem we are in-
terested in solving is

��
� �� � ��
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where � is a known 2-D impulse response of the blurring opera-
tion. For this observation model, we can formulate an extended
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Mumford-Shah functional based on the same prior assumptions as
in (1) about � and ��:
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This is the objective function we will minimize.

3. MINIMIZATION OF THE EXTENDED
MUMFORD-SHAH FUNCTIONAL
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Fig. 1. Illustration of the curve (��), the region inside the curve (�),
the region outside the curve (��), and the discrete lattice overlaid
with the curve.

In this section, we present a discrete implementation to minimize
the extended Mumford-Shah functional of (4). First, the discrete
version of the observation model (3) is given by

� � �� � �� (5)

where � and � are real-valued vectors consisting of a lexicographic
ordering of pixels in the underlying and the observed images re-
spectively,� is the blurring matrix, and � is white Gaussian noise.
The corresponding discrete version of the extended Mumford-Shah
functional is
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where � � ���� ����� � are adjacent in the lattice, and �� � are in the
same side of the curve �� �, and �� and �� denote the �th components
of � and � respectively. Figure 1 illustrates that ��� �� and ��� �� are
in �, whereas ��� �� and ��� �� are not in �.

Now the problem is to find � and �� that minimize ��� � ��� of
(6). We propose an iterative optimization scheme where each itera-
tion consists of two steps. The first step calculates � that minimizes
��� � ��� given ��. The necessary condition for such an � is given
by a linear equation (a discrete approximation of a partial differ-
ential equation (PDE)). The second step evolves the curve by ���,
which is the negative of the gradient of�������� ���. The algorithm
is summarized by the following pseudo code:

initialize ��;
while (not converged) �

solve � � ���	
�� ��� � ��� for fixed ��; (Section 3.1)
evolve the curve with ���� (Section 3.2 )

�
where the convergence criterion is

��prev. � �new�

��prev.�
� �� where � is a small positive constant.

3.1. Estimation of the Field by a Linear Equation

We can find a necessary condition on � by calculating the first deriva-
tive of � with respect to �� for each �. Let �� be the �th column of
the matrix �, so that �� �

�
� ����. Then the first derivative of

� with respect to �� is given by
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Then the necessary condition 	
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Finally, the necessary condition on � is given by the following lin-
ear equation, whose �th row is (8):
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where
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Note that the matrix �, which depends on the current position of
the curve, is a discrete implementation of the operator �� which
does not take differences across the curve. Thus this linear equation
is a discrete approximation of a PDE. In our work, the above linear
equation is solved by the conjugate gradient method.

3.2. Curve Evolution

Now we need to look at the variation of� with respect to the curve
�� . First, since only the data fidelity term in our extended objec-
tive functional is different from the original Mumford-Shah func-
tional, the variation with respect to the curve is very similar to that
derived in [7]. A rigorous derivation of the variation is beyond the
scope of this paper, so we refer the reader to [7] for further details,
and here we give an intuitive explanation. The idea is to move the
curve around a point of index � (whose intensity is ��) adjacent to
the curve. At such a point adjacent to the boundary, there is a com-
petition between � (the region inside the curve) and �
 (the re-
gion outside the curve). In other words, the competition is to decide
whether to put the point � in � or in �
.

Note that moving the curve such that the point � becomes inside
the curve changes the image intensity of that point by an extension
of � from �, while keeping the image intensity of the other points
unchanged [7]. Similarly, moving the curve such that the point � be-
comes outside the curve replaces the image intensity of that point



by an extension of � from �
. Thus the contribution from the data
fidelity term to the gradient of the energy with respect to the curve
is given by the difference between the two evaluations of this data
fidelity term for the two possible choices of ��. Thus the curve evo-
lution is given by
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� is the curvature, and �� is the outward normal vector of the curve
��. The curve evolution is implemented by using standard level set
methods [13, 9, 10].

4. EXPERIMENTAL RESULTS

We present experimental results on a synthetic image of �
�	�
�
pixels and a real image of an aircraft of ���	
�� pixels. We con-
sider a problem involving the restoration and segmentation of im-
ages distorted by a spatially invariant horizontal motion blur. The
distorted data are obtained by applying a 25-pixel horizontal mo-
tion blur to the original image followed by the addition of white
Gaussian noise, where the resulting signal to noise ratio (SNR)1 is
16.1 dB for the synthetic image and 13.2 dB for the aircraft image.

(a) original (b) blurred (c) pseudo inverse

(d) Tikhonov (e) proposed

Fig. 2. Comparison of the restoration results on a synthetic image.

Figure 2 illustrates the restoration results on the synthetic im-
age. The original image is shown in Figure 2(a), and the blurred
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, where Var(�) denotes the variance

of � .

(a) initial curve (b) intermediate (c) final curve

Fig. 3. Evolution of the curve and the final segmentation result on
a synthetic image.

(a) original (b) blurred (c) pseudo inverse

(d) Tikhonov (e) proposed

Fig. 4. Comparison of the restoration results on an aircraft image.

and noisy observed image is shown in Figure 2(b). To demonstrate
the ill-conditioned nature of the problem, we show the restoration
obtained by running the observed data through the pseudo inverse
of the blurring kernel in Figure 2(c). As it is well-known, such an
inversion exhibits severe noise amplification, which we observe in
Figure 2(c). Figure 2(d) shows the image restoration result of Tikhonov
regularization. Note that some deblurring is achieved, and some
smoothness is imposed. However, the sharp boundaries between
the regions are not successfully restored. Finally, the result of our
proposed method based on the Mumford-Shah functional is shown
in Figure 2(e). This result is visually much closer to the original
image of Figure 2(a) than the Tikhonov solution shown in Figure 2(d).

Note that restoration results similar to Figure 2(e) can also be
obtained by other edge-preserving regularization methods. How-
ever, as described in Section 3, our method also provides an explicit
segmentation through its curve evolution-based structure, which we

(a) initial curve (b) intermediate (c) final curve

Fig. 5. Evolution of the curve and the final segmentation result on
an aircraft image.



illustrate in Figure 3. Figure 3(a) shows the initial curve �� on the
observed image. In Figure 3(b), we display the curve at an interme-
diate iteration, together with the corresponding estimated field. Fi-
nally, Figure 3(c) shows the final curve and the corresponding seg-
mented image at convergence. This result shows that our method
can detect the boundaries of the objects and restore the image ef-
fectively.

We now report the results of similar experiments for a real air-
craft image. The original scene, the observed image, and the re-
stored image based on the pseudo inverse are shown in Figure 4(a),
4(b), and 4(c) respectively. Figure 4(d) contains the Tikhonov so-
lution, whereas Figure 4(e) displays the result of our technique. Our
method appears to produce a good piecewise smooth approxima-
tion of the original image. Again, using boundary information en-
ables deblurring and denoising without losing sharpness of the edges.
In Figure 5, we demonstrate samples from the evolution of the curve
and the resulting segmentation, which seems to capture the bound-
aries of the aircraft successfully.

5. CONCLUSIONS

We have presented a novel technique for robust restoration and seg-
mentation of images by combining and extending ideas from vari-
ational methods for edge-preserving regularization and the theory
of curve evolution. In particular, we have derived a curve evolution
formula to minimize a variant of the Mumford-Shah functional, which
incorporates a model of the observation process and an explicit rep-
resentation of the region boundaries through an active contour.

We have presented results demonstrating the effectiveness of
our method in restoring and segmenting synthetic and real images.
Our current work involves extensions and applications of our tech-
nique to other inverse problems such as computed tomography.
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