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ABSTRACT

Inthispaper, weintroduce anovel approach for simultaneous restora-
tion and segmentation of blurred, noisy images by approaching a
variant of theMumford-Shah functional from acurve evolution per-
spective. In particular, by viewing the active contour as the set of
discontinuitiesin theimage, we derive agradient flow to minimize
an extended Mumford-Shah functional where the known blurring
function isincorporated as part of the data fidelity term. Each gra-
dient step involves solving a discrete approximation of the corre-
sponding partial differential equation to obtain a smooth and de-
blurred estimate of the observed image without blurring across the
curve. The experimental results based on both synthetic and real
images demonstrate that the proposed method segments and restores
the blurred images effectively. We conclude that our work is an
edge-preserving image restoration technique that couples segmen-
tation, denoising, and deblurring within asingle framework. In ad-
dition, thisframework provides an intellectual connection between
regularization theory (used to solve the deblurring inverse prob-
lem) and the theory of curve evolution.

1. INTRODUCTION

An important inverse problem in image processing is the problem
of estimating underlying scenes from blurred and noisy observed
images. In generd, thisis an ill-posed problem, and techniques
based on regularization theory have been favored for its solution.
Themost common regul arization approach is Tikhonov regulariza-
tion [14]. Such methods lead to computationally straightforward
optimization problems, but they may suppress useful features in
theresulting imagery, such asedges. Recently, considerable efforts
have been spent in designing aternative techniques which preserve
boundaries between regions, while performing the regularization
[16, 5]. Our interest isin obtaining such arobust regularization of
theinverse problem, but at the same time explicitly segmenting the
image. To this end, we propose an agorithmic framework for im-
age deblurring and segmentation.

Oneapproach toimage segmentationisviacurve evolution tech-
niques[1, 2, 3,6, 11, 12, 17, 18]. In general, the goa of these tech-
niques is to extract the boundaries (represented by closed curves)
within an image. Recently, a new curve evolution approach based
onminimizing theoriginal Mumford-Shah functional [7, 8] hasbeen
proposed for simultaneous smoothing and segmentation of noisy
images [4, 15]. Theimage smoothing proposed in thiswork islin-
ear, with edge preservations based on a global segmentation of the
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image by the curve. In this paper, we demonstrate how we extend
the technique in [15] to an edge-preserving deblurring and denois-
ing algorithm. The major novelty of our approach is the solution
of the image restoration problem in a curve evolution framework,
which leads to an explicit segmentation of the image as well as a
solution of the restoration problem.

The remainder of the paper is organized as follows. Section 2
formulatesour approach to solving theinverse problem fromacurve
evolution perspective. In particular, an objective functional iscon-
structed based on an extended form of the Mumford-Shah func-
tional. Section 3 then derives our curve evolution-based approach
to minimizing this objective functional. We present experimental
results in Section 4, using both synthetic and real images. Finaly,
we concludein Section 5 with asummary and somefurther research
directions.

2. THE EXTENDED MUMFORD-SHAH FUNCTIONAL
FOR THE RESTORATION PROBLEM

A variant of the Mumford-Shah functional where discontinuities
are limited to aclosed curve isgiven by
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in which ¢ denotes the smooth, closed segmenting curve, g de-
notes the observed data, f denotes the piecewise smooth approx-
imation to g with discontinuities only along ¢, and 2 denotes the
image domain [8, 7]. Note that thefirst term in Eo (£, C)), the data
fidelity term, is proportional to the negative-log-likelihood of ob-
serving g given f, for the observation model

EO(f: 6) =

g(z,y) = f(z,y) + n(z,y), )]

where (x, ) denotes the coordinates in R?, and n is white Gaus-
sian noise. With astatistical maximum aposteriori (MAP) estima-
tion perspective, the second and the third termsin (1) arerelated to
the prior probability density functionson f and C.

The observation model for the deblurring problem we are in-
terested in solving is

g(x,y) = h(z,y) * f(z,y) + n(z,y), 3

where h is a known 2-D impulse response of the blurring opera-
tion. For this observation model, we can formulate an extended
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Mumford-Shah functional based on the same prior assumptions as

in (1) about f and C-
o [[ hes=graa
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Thisis the objective function we will minimize.

E(f,C) =

3. MINIMIZATION OF THE EXTENDED
MUMFORD-SHAH FUNCTIONAL

Q

R€ o

Fig. 1. lllustration of the curve (5), theregioninsidethe curve (R),
the region outside the curve (R®), and the discrete lattice overlaid
with the curve.

In this section, we present a discrete implementation to minimize
the extended Mumford-Shah functional of (4). First, the discrete
version of the observation model (3) is given by

g =Hf +n, 5

where f and g are real-valued vectors consisting of alexicographic
ordering of pixels in the underlying and the observed images re-
spectively, H isthe blurring matrix, and n iswhite Gaussian noise.
Thecorresponding discrete version of the extended Mumford-Shah
functional is
E(f,C) = B|Hf—g|’
ta Y G-+ pds ©
(e}

(i,7)€S

where S = {(1, j)|i, j are adjacent in thelattice, and ¢, j arein the
samesideof thecurveC }, and f; and g; denote the ith components
of f and g respectively. Figure Lillustratesthat (z, ) and (4, k) are
in S, whereas (¢, 1) and (i, m) arenot in S.

Now the problem isto find £ and €' that minimize E(f, C) of
(6). We propose an iterative optimization schemewhere each itera-
tion consists of two steps. Thefirst step calculatesf that minimizes
E(f,C) given C. The necessary condition for such an f is given
by alinear equation (a discrete approximation of a partial differ-
ential equation (PDE)). The second step evolves the curve by Ct,
which isthe negative of thegradient of E(£(C), C). Thealgorithm
is summarized by the following pseudo code:

initialize C;
while (not converged) {

solve f = arg ming E(f, C) for fixed C; (Section 3.1)
evolve the curve with C; (Section 3.2)

where the convergence criterionis

|| fprev. — fnew||

< €, where e isasmall positive constant.
lIfprev. |l

3.1. Estimation of theField by a Linear Equation

We can find anecessary condition on f by calculating thefirst deriva-
tive of E with respect to f; for each i. Let h; be the ith column of
the matrix H, so that Hf = ). h; f;. Then the first derivative of
E with respect to f; isgiven by
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Then the necessary condition 52 = 0 for each i is
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(fi — fi) =hlg. (8)

Finally, the necessary condition on f is given by the following lin-
ear equation, whose ith row is (8):

HTHf — %Af =H"g, 9)
where
1 if (i,7) € S
Aij =9 —2ist gpesAiv 1= . (10)
0 otherwise

Note that the matrix A, which depends on the current position of
the curve, is a discrete implementation of the operator V2 which
does not take differencesacrossthecurve. Thusthislinear equation
isadiscrete approximation of aPDE. In our work, the above linear
equation is solved by the conjugate gradient method.

3.2. CurveEvolution

Now we need to look at the variation of E with respect to the curve
C. First, since only the data fidelity term in our extended objec-
tive functional is different from the origina Mumford-Shah func-
tional, the variation with respect to the curveisvery similar to that
derived in[7]. A rigorous derivation of the variation is beyond the
scope of this paper, so we refer the reader to [7] for further details,
and here we give an intuitive explanation. The ideaisto move the
curve around a point of index ¢ (whose intensity is f;) adjacent to
the curve. At such apoint adjacent to the boundary, thereisacom-
petition between R (the region inside the curve) and R° (the re-
gion outsidethecurve). In other words, the competition isto decide
whether to put the point 7 in R or in R°.

Notethat moving the curve such that the point ; becomesinside
the curve changes theimage intensity of that point by an extension
of f from R, while keeping the image intensity of the other points
unchanged [7]. Similarly, moving the curve such that the point ; be-
comes outside the curve replaces the image intensity of that point



by an extension of f from R°. Thus the contribution from the data
fidelity term to the gradient of the energy with respect to the curve
isgiven by the difference between the two evaluations of this data
fidelity termfor thetwo possible choices of f;. Thusthecurve evo-
lution is given by

= ﬂDN +aPN — 'yn]\?, (11)
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K, isthe curvature, and NV isthe outward normal vector of the curve

C. Thecurve evolution isimplemented by using standard level set
methods [13, 9, 10].

4. EXPERIMENTAL RESULTS
We present experimental results on asyntheticimage of 126 x 121
pixelsand areal image of an aircraft of 480 x 270 pixels. We con-
sider aproblem involving the restoration and segmentation of im-
ages distorted by a spatially invariant horizontal motion blur. The
distorted data are obtained by applying a 25-pixel horizontal mo-
tion blur to the original image followed by the addition of white
Gaussian noise, where the resulting signal to noise ratio (SNR)* is
16.1 dB for the synthetic image and 13.2 dB for the aircraft image.

\N® '»

(a) original (b) blurred

o= O
\2 \eo

(d) Tikhonov (e) proposed

Fig. 2. Comparison of the restoration results on a synthetic image.

Figure 2 illustrates the restoration results on the synthetic im-
age. The original image is shown in Figure 2(a), and the blurred
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Fig. 3. Evolution of the curve and the final segmentation result on
a synthetic image.
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Fig. 4. Comparison of the restoration results on an aircraft image.

and noisy observed imageis shown in Figure 2(b). To demonstrate
the ill-conditioned nature of the problem, we show the restoration
obtained by running the observed data through the pseudo inverse
of the blurring kernel in Figure 2(c). Asit iswell-known, such an
inversion exhibits severe noise amplification, which we observe in
Figure 2(c). Figure 2(d) showstheimage restoration result of Tikhonov
regularization. Note that some deblurring is achieved, and some
smoothness is imposed. However, the sharp boundaries between
the regions are not successfully restored. Finaly, the result of our
proposed method based on the Mumford-Shah functional isshown
in Figure 2(e). Thisresult is visually much closer to the origina
image of Figure 2(a) than the Tikhonov solution shownin Figure 2(d).
Note that restoration results similar to Figure 2(e) can also be
obtained by other edge-preserving regularization methods. How-
ever, asdescribed in Section 3, our method also providesan explicit
segmentation through itscurve evolution-based structure, which we
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Fig. 5. Evolution of the curve and the final segmentation result on
an aircraft image.



illustrate in Figure 3. Figure 3(a) shows the initial curve C onthe
observed image. In Figure 3(b), wedisplay the curve at aninterme-
diateiteration, together with the corresponding estimated field. Fi-
nally, Figure 3(c) showsthefinal curve and the corresponding seg-
mented image at convergence. This result shows that our method
can detect the boundaries of the objects and restore the image ef-
fectively.

We now report the results of similar experiments for areal air-
craft image. The original scene, the observed image, and the re-
stored image based on the pseudo inverse are shown in Figure 4(a),
4(b), and 4(c) respectively. Figure 4(d) contains the Tikhonov so-
lution, whereas Figure 4(e) displaystheresult of our technique. Our
method appears to produce a good piecewise smooth approxima:
tion of the original image. Again, using boundary information en-
ablesdeblurring and denoising without | osing sharpness of the edges.
InFigure 5, we demonstrate sampl esfrom the evol ution of the curve
and the resulting segmentation, which seemsto capture the bound-
aries of the aircraft successfully.

5. CONCLUSIONS

We have presented anovel technique for robust restoration and seg-
mentation of images by combining and extending ideas from vari-
ational methods for edge-preserving regularization and the theory
of curveevolution. In particular, we have derived acurve evolution
formulato minimizeavariant of the Mumford-Shah functional, which
incorporatesamodel of the observation process and an explicit rep-
resentation of the region boundaries through an active contour.
We have presented results demonstrating the effectiveness of
our method in restoring and segmenting synthetic and real images.
Our current work involves extensions and applications of our tech-
nique to other inverse problems such as computed tomography.
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