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Abstract— Brain–Computer Interfaces (BCIs) seek to
infer some task symbol, a task relevant instruction, from
brain symbols, classifiable physiological states. For exam-
ple, in a motor imagery robot control task a user would
indicate their choice from a dictionary of task symbols
(rotate arm left, grasp, etc.) by selecting from a smaller dic-
tionary of brain symbols (imagined left or right hand move-
ments). We examine how a BCI infers a task symbol using
selections of brain symbols. We offer a recursive Bayesian
decision framework which incorporates context prior dis-
tributions (e.g., language model priors in spelling applica-
tions), accounts for varying brain symbol accuracy and is
robust to single brain symbol query errors. This framework
is paired with Maximum Mutual Information (MMI) coding
which maximizes a generalization of ITR. Both are applica-
ble to any discrete task and brain phenomena (e.g., P300,
SSVEP, MI). To demonstrate the efficacy of our approach we
perform SSVEP “Shuffle” Speller experiments and compare
our recursive coding scheme with traditional decision tree
methods including Huffman coding. MMI coding leverages
the asymmetry of the classifier’s mistakes across a par-
ticular user’s SSVEP responses; in doing so it offers a
33% increase in letter accuracy though it is 13% slower in
our experiment.

Index Terms— Brain–computer interfaces (BCIs), deci-
sion tree, Discrete Memoryless Channel, Huffman Coding,
Mutual Information, SSVEP Shuffle Speller.

I. INTRODUCTION

WE SUGGEST that there is much to be gained by
considering a BCI in two distinct parts. In one, a

BCI must correctly classify a brain symbol.1 In another, a
BCI must map an estimated brain symbol(s) to some task
symbol (move wheelchair forward, type “A”, rotate robot arm
clockwise, etc). In this work, we focus exclusively on the

Manuscript received August 10, 2015; revised January 4, 2016
and May 9, 2016; accepted June 23, 2016. Date of publication
July 13, 2016; date of current version June 18, 2017. This work
was supported by National Institute on Disability and Rehabilitation
Research (H133E140026), NSF Division of Information and Intelligent
Systems (IIS-1149570), National Institute on Handicapped Research
(R01DC009834), NSF Division of Computer and Network Systems
(CNS-1136027).

M. Higger, F. Quivira, M. Moghadamfalahi, H. Nezamfar, and
D. Erdogmus are with Electrical and Computer Engineering, Northeast-
ern University, Boston, MA 02115 USA.

M. Akcakaya is with the Electrical and Computer Engineering, Univer-
sity of Pittsburgh, Pittsburgh, PA 15260 USA.

M. Cetin is with Engineering and Natural Sciences, Sabanci University,
Istanbul, Turkey.

MATLAB code is available at https://bitbucket.org/cogsyslab/
codingforbci.

Digital Object Identifier 10.1109/TNSRE.2016.2590959
1We use the term brain symbol to refer to a classifiable physiological state.

For example, right hand imagined movement, P300 present, or the response
to a flickering 10 Hz LED are brain symbols of motor imagery, P300, and
SSVEP respectively.

latter, the scheme which maps a sequence of brain symbols
to a task symbol. We refer to this second function as the
“coding scheme” of a BCI and begin with a brief review of
existing solutions.

A. SSVEP

SSVEP, with its large dictionary of brain symbols, is well
suited for a simple “one-to-one” coding scheme which assigns
each task symbol its own unique brain symbol. For instance,
QWERTY-style BCI keyboards exist where each character is
assigned a unique SSVEP frequency [1]. Other keyboards
vary the stimulation elements by using mixed frequency and
phase flashing [2], arbitrary binary patterns [3], or quantized
sinusoids [4]. Cao et al. offer a variation on the theme, a
system which reserves two brain symbols to flip forward and
backward through different one-to-one task symbol menus [5].
Many of these one-to-one systems show impressive perfor-
mance by leveraging the large number of SSVEP brain sym-
bols available. However, there is no guarantee that such a large
quantity of brain symbols are available in all locked-in users
and increasing the number of brain symbols may come with
a penalty in classification accuracy [6].

Cursor control is an alternative coding scheme which
assigns brain symbols to cursor directions [7]–[9]. In such a
system, the user directs a cursor over a large, arbitrary menu
of task symbols. Cursor systems often require fewer brain
symbols than one-to-one coding schemes.

Decision trees, as exemplified in [10] or [11], also offer the
ability to choose among a large dictionary of task symbols with
few brain symbols. In this coding scheme, task symbols are
partitioned among the brain symbols. With each round, the task
symbols associated with the estimated brain symbol are re-
partitioned while others are discarded. The process continues
until a unique task symbol remains. Note that absent any
capability to go back up decision tree, any single brain symbol
query error yields a task symbol decision error.

B. Motor Imagery

Hex-o-spell and its variants can be considered a combination
cursor/decision tree coding scheme [12], [13]. Task symbols
are visually partitioned into the six slices of a hexagon. The
system then queries the user as to whether his or her selection
is in the currently highlighted slice. The user responds using
two state motor imagery and the process continues as a
decision tree by zooming in on slices the user selects until
a unique task symbol remains.
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C. P300

P300 coding schemes, because of the necessarily temporal
nature of P300 stimuli, must be more creative. Rapid serial
visual presentation (RSVP) spellers show sequences of single
task symbols and ask the user to generate the P300 signal when
their target task symbol is present [14], [15]. Alternatively,
P300 matrix spellers flash sets of characters and infer the
user’s target character by identifying the intersection of all sets
where the P300 is present [16]. Waal et al. apply this paradigm
to tactile BCIs by mapping task symbol sets to fingers via
tactile stimulators [17]. Carefully choosing the sets of flashing
characters reduces the number of queries per decision [18].
Zhou et al. search for the optimal flashing pattern by maximiz-
ing an estimation of the system’s practical ITR [19]. Matrix
spellers show promise when combined with generative brain
symbol models, as in [20], which could potentially be used to
construct coding schemes which optimize system performance
according to a given criterion.

D. Combined Brain Symbols

Combining BCI modalities opens up new coding oppor-
tunities. Xu et al. develop a matrix speller that uses both
P300 and SSVEP to find the intended character; brain symbols
alternate between flickering and timed events in order to
leverage both phenomena [21], [22]. Similarly, Yin et al.
offer task symbol arrangements which leverage both P300
and SSVEP stimulation to uniquely identify the target task
symbol [23], [24]. Li et al. combine modalities to add an idle
state to a wheelchair control BCI [25].

E. Task Symbol Context

Task symbol context prior distributions can limit the load
placed on user querying via BCI, as language models do for
spelling applications [26]. Disregarding context can dramat-
ically reduce efficiency. The speller design shown in Fig. 4
of [10] assigns about 70% of the task symbol probability to a
single brain symbol by assigning the “first” few task symbols
to a the first brain symbol. Such an initial query, on average,
offers relatively weak evidence in making inferences about the
target task symbols (see Sec IV-C for discussion). On the other
hand, Volosyak et al use context to great effect in reorganizing
the layout of characters in a cursor-based SSVEP speller
BCI [27]. Hohne et al introduce a T9 predictive text system
to an auditory BCI speller [28]. Word prediction is found to
reduce the estimated typing time by half in a motor imagery
speller [29]. Word level inference via graphical models is
used to increases communication rates in [30]. Perhaps most
famously, Wills and MacKay build Dasher [31], a two brain
symbol speller in the spirit of Shayevitz’s Posterior Matching
paradigm [32]. Dasher selections are made by moving a cursor
up or down across a line whose length is divided according
to the probability of the task symbol. There are many systems
which use Huffman coding, which offers the fewest queries,
on average, to uniquely resolve a task symbol [33], [34].

Fig. 1. The SSVEP Shuffle Speller associates a letter (task sym-
bol) with a particular SSVEP response (brain symbol) by placing it
near the LED array which stimulates that response. The square and
less-than characters represent space and backspace respectively. See
Section VI-A or https://www.youtube.com/watch?v=JNFYSeIIOrwavideo
of its use for further detail.

F. BCI Channel Modelling

With a channel model a BCI designer can explicitly opti-
mize characteristics of interest. Omar et al apply a binary
symmetric model with noiseless feedback to a two-state motor
imagery BCI [35]. By doing so they import well known
feedback coding schemes and all the rigor and optimal perfor-
mance which comes with them [32]. The binary symmetric
channel is a step in the right direction for motor imagery
though it leaves much to be desired in the context of P300
or SSVEP as there are no garauntees that brain symbols are
confused symmetrically.2

G. Our Contribution

In this work, we build a decision framework that takes both
task symbol context and the varying accuracy of inferring
a user’s brain symbols into account. Given discrete task
symbols, we model the BCI as a memoryless channel. By
memoryless we mean that the previous query’s brain symbol
inference has no impact on the current query’s brain symbol
inference (see Appendix A for how P300 can be considered
memoryless). With this assumption, we offer a Bayesian
update rule that integrates query evidence into a task decision
framework (Section III). We examine various coding schemes
on the framework, including decision trees and Huffman codes
similar to those described above, as well as our own recursive
codes (Section IV) that are robust to single query errors.
Finally, in Section VI, we present results from 10 users who
used each coding scheme in an SSVEP speller paradigm
(see Fig. 1).

2Since our paper was submitted for review, similar to our approach, another
paper which describes an adaptive query strategy for a discrete memoryless
channel has been published [36]. However, there is an important fundamental
difference between the approaches of these two papers: unlike the above
mentioned published work, our optimization searches over all possible code
vectors (1) without requiring our task or brain symbols to be in any particular
order. Furthermore, this work compares multiple different encodings of task
symbols as brain symbols.
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II. TERMINOLOGY AND NOTATION

We use the term brain symbol to refer to a classifiable
physiological state. For example, right hand imagined move-
ment, P300 present, or the response to a flickering 10 Hz
LED are brain symbols of motor imagery, P300, and SSVEP
respectively. We denote the brain symbol as random variable X
which takes a value x ∈ {x0, x1, · · · , xNX −1}. A task symbol
is an application specific decision. For example, a letter is a
spelling task symbol while “drive left” is a wheelchair control
task symbol. We denote the task symbol as random variable M
which takes a value m ∈ {m0, m1, · · · , mNM −1} with known
context prior PM (m).

We reserve the term query to refer to a classification on X ,
the set of brain symbols. We reserve the term decision to refer
to a classification on M , the set of task symbols. Finally, we
use the term sequence to refer to the set of queries required
to make a single decision.

BCI channel has a slightly unconventional meaning here,
referring to a mapping from ground truth brain symbols to
their estimates. A BCI channel can be considered to be the
concatenation of a user’s physiological response function with
a classifier and all of its parameters. By fixing a particular user-
classifier pair, we can quantify the BCI channel’s performance
as the distribution PX̂ |X . Intuitively, this distribution describes
how often the classifier confuses one brain signal with another.
This conditional distribution is referred to as the confusion
matrix.

III. DECISION FRAMEWORK

We seek a decision framework that:

1) Performs inference over a task symbol set which is much
larger than the brain symbol set (NM > NX )

2) Leverages context prior distributions over a task symbol
set (PM )

3) Leverages the varying accuracy of brain symbols (i.e.,
the confusion matrix PX̂ |X ) for inference on task sym-
bols

4) Offers a principled mechanism to decide on a task
symbol which is robust to single classification errors

We propose the framework depicted in Fig. 2. It assumes
knowledge of the confusion matrix, which can be estimated by
normalizing a count of how often brain symbols are confused
for one another in a given training set.

In usage, an encoding vector c j assigns each task symbol a
brain symbol:

c j =
⎡
⎢⎣

cm0, j

cm1, j
...

⎤
⎥⎦ (1)

where each cmi , j is the brain symbol associated with task
mi during query j . Note that c j will often map multiple
task symbols to a single brain symbol. The user attempts
to produce the brain symbol associated with their target task
symbol. Evidence, e j , is collected and classified by the BCI

Fig. 2. BCI Decision Framework.

to produce PX̂ j |E j
, a distribution3 over the estimated brain

symbol. A Bayesian update which incorporates this latest
query evidence yields PM |E1: j . If confidence threshold α is
exceeded a decision is made, otherwise another query is
performed by incrementing j . Evidence is aggregated such that
each query’s posterior is the next query’s prior. The recursive
Bayesian update is given as

PM |E1: j (m|e1: j ) =
∑

x̂

PM |X̂ j ,E1: j−1
(m|x̂, e1: j−1)PX̂ j |E j

(x̂ |e j )

(2)
where E1: j−1 is all previous evidencePX̂ j |E j

is the classifier’s
estimate of the intended brain symbol in the most recent query
and

PM |X̂ j,E1: j−1
(m|x̂, e1: j−1)

= PX̂ |X (x̂ |cm, j )PM |E1: j−1(m|e1: j−1)∑
m PX̂ |X (x̂ |cm, j )PM |E1: j−1(m|e1: j−1)

(3)

which expresses the system’s belief in each task symbol before
the current query’s evidence is incorporated. A derivation is
given in Appendix B.

While this framework meets all four requirements listed
above, its speed and accuracy are highly dependent on the
particular coding scheme used to generate c from the latest
distribution over M . We describe different coding schemes in
the following section.

3We assume that the classification scheme outputs a distribution PX̂ j |E j
,

rather than a point estimate x̂ . In the event that the classifier only provides
a point estimate, it can be assumed that the decision is made with certainty.
The Bayesian update (2), by itself, appropriately introduces uncertainty into
the decision.
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Fig. 3. Sequential coding tree (NX = 2,NM = 7) and corresponding
codebook. ci,j denotes the brain symbols assigned to task symbol mi in
query j of a decision sequence.

IV. CODING METHODS

The first two coding schemes, Sequential and Huffman,
are decision tree style methods which successively “zoom-
in” on a particular task symbol after many queries. Decision
tree methods do not use the recursive nature of the decision
framework given in Fig. 2 and are included for comparison.
Instead, they make a decision when only one viable task
symbol remains. Later on, we propose Uniform or Maximum
Mutual Info (MMI) coding, which query until a sufficiently
high confidence is reached.

A. Sequential Coding

Sequential codes perform as many queries as would be
needed to uniquely resolve all task symbols in an error
free BCI system. Task symbols are assigned to codewords
(sequences of brain symbols) arbitrarily, often associating the
task symbols to codewords by their index. Specifically, a
sequential codebook is built by counting in base NX , the most
significant digit of each number is used for the first query
(see Fig. 3).

There is much room for improvement from sequential
decision trees. Notice that in the example of Fig. 3 m6 requires
only two queries to make a decision while the rest require
three. To capitalize on this benefit, we should re-index task
symbols to ensure that m6 is the most probable based on
contextual information. Sequential coding offers no guarantee
that we are assigning faster codewords, those which require
fewer quieries, to more frequent task symbols.

B. Huffman Coding

Huffman codes minimize how many queries it takes, on
average, to resolve a particular task symbol:

E[L(m)] =
∑

m

PM (m)L(m) (4)

where we use L(m) to denote the number of queries it takes to
resolve a particular task message (“L” for codeword length).
We demonstrate Huffman coding by way of example, for a
rigorous treatment see [37].

Let us examine the task of driving a wheelchair with
NM = 9 different task symbols using NX = 3 brain sym-
bols (motor imagery left, right, and foot). Fig. 4 shows a
(re-indexed) sequential code for this task. We might expect the

Fig. 4. Sequential coding of a hypothetical motor imagery wheelchair
BCI example. Each decision requires two queries.

Fig. 5. Huffman coding tree (NX = 3,NM = 9) and corresponding
codebook for the example of Fig. 4. This code offers an average of 1.53
queries per decision.

user to drive forward (m8) more often than reverse-right (m0).
Huffman codes leverage such context prior information to
minimize the average number of queries per decision. In this
toy example the Huffman code given by Fig. 5 minimizes the
expected number of queries per decision to 1.53, a significant
speedup from the 2 given by sequential coding.

Any decision tree method, including both Sequential and
Huffman coding, suffer from the fact that an error in a single
query forces a wrong decision and removes the user’s target
task symbol for the remainder of the sequence. For example,
in the code given by Fig. 5, if the target task symbol is m7 but
the user incorrectly chooses x0 in the first query there is no
way to “go back up” the tree; they must continue to traverse
downwards towards a set of non-target task symbols. We call
these queries where the target is not present “impossible’.

C. Uniform Coding

We remind the reader that the following two proposed
coding schemes are recurisve in that they perform queries
until a sufficiently high confidence is reached to make a
decision. Because of this there are no “impossible” queries
as no task symbol is ever precluded until a decision is made.
Additionally, “codewords” of recursive methods are all one
brain symbol long and need not be unique.
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Fig. 6. Uniform Coding “tree” (NX = 3,NM = 9). Both MMI and Uniform
Coding build a “tree” before each query according to the latest PM|E1:j-1

.

To motivate Uniform Coding, let us first imagine designing
the worst possible code, assigning all task symbols to a single
brain symbol. Under any classification evidence supplied, the
Bayesian update, (2) and (3), will not shift the posterior
away from the prior distribution. Fortunately, the opposite
of this worst-case scenario code offers strong performance.
Uniform coding seeks to spread task symbols among brain
symbols such that the brain symbol probability distribution is
as uniform as possible.

Extending the motor imagery wheelchair example used in
Section IV-B to Uniform Codes yields Fig. 6. Note that m8
is so privileged by its probability mass that it earns its own
unique brain symbol. On the other hand, m0, · · · , m5 are so
rare that Uniform Coding is willing to accept that if the set
is selected, x̂ = x2, we still cannot distinguish from among
them.

More formally, we choose cuni as

cuni = min
c

∑
xi

|PX (xi ) − 1

NX
| (5)

where

PX (xi ) =
∑

m|cm=xi

PM |E1: j−1(m|e1: j−1) (6)

On first sight, one might suspect that uniform codes struggle
to decide in favor of uncommon task symbols. However,
as a sequence progresses a target task symbol increases
its probability through query evidence updating, eventually
earning its own unique brain symbol. Further, because every
task symbol is shown in every query, Uniform codes, like
MMI codes below, never frustrate the user with “impossible”
queries. Despite these advantages, Uniform codes still leave
room for improvement.

Consider the confusion matrix for a hypothetical motor
imagery BCI in Table I. Uniform codes entrust each brain
symbol with as equal probability mass as possible even
though a “foot” classification is weaker evidence. In line with
this example, real user-classifier pairs offer no guarantee of
identical accuracies and uniform errors across brain symbols.
The final coding scheme, MMI, explicitly leverages the relative
accuracies of brain symbols in encoding task symbols.

TABLE I
AN EXAMPLE CONFUSION MATRIX WHICH CONTAINS ACCURATE

(LEFT AND RIGHT) AND INACCURATE (FOOT) BRAIN SYMBOLS.
THE CLASSIFIER IS OFTEN INACCURATE WHEN THE USER IS

TRYING TO GENERATE THE FOOT RESPONSE. UNIFORM

CODES DO NOT LEVERAGE THE RELATIVE ACCURACY OF

INFERRING BRAIN SYMBOLS WHILE MMI CODES DO.

D. Maximum Mutual Information (MMI) Coding

The ideal query would shift our current knowledge of the
task symbol, PM |X1: j , from its previous form PM |X1: j−1 as
much as possible. In this sense, the ideal query ought to
maximize our expectation of this shift, as quantified by the
Kullback Leibler divergance. Again, to simplify notation, we
drop the query indexing variable j

cMMI = arg max
c

EX̂ [K L(PM |X̂ ||PM )]

= arg max
c

∑
x̂,m

PM,X̂ (m, x̂) log
PM,X̂ (m, x̂)

PM (m)PX̂ (x̂)

= arg max
c

I (M, X̂ )

= arg max
c

H (M) − H (M|X̂)

= arg max
c

−H (M|X̂) (7)

where I is the mutual information function, H is the entropy
function and the last equality comes from the fact that H (M)
does not depend on c. From the final equality we see our
objective has another intuitive motivation; MMI codes mini-
mize the uncertainty in task symbol M after being given brain
symbol estimate X̂ . Further

−H (M|X̂) =
∑
m,x̂

PM |X̂ (m|x̂)PX̂ (x̂) log PM |X̂ (m|x̂)

=
∑
m,x̂

PX̂ (x̂)PM (m)PX̂ |X (x̂ |cm) · · ·

log
PX̂ |X (x̂ |cm)PM (m)∑
m PX̂ |X (x̂ |cm)PM (m)

(8)

where we have applied (3) in the last equality.
Alternatively, this objective can be motivated as a partic-

ular extension of the Information Transfer Rate (ITR). ITR
measures the rate of information common to both the target
brain symbol X and estimated brain symbol X̂ (see Section V).
This common information represents how confidently the BCI
estimates the user’s target brain symbol X . Of course, in and
of itself, determining a user’s intended brain symbol is only
of academic interest; we ultimately seek to determine which
task symbol M the user wishes to select. With this in mind,
it is natural to think that the mutual information between task
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symbol M and estimated brain symbol X̂ is a closely related
objective.

Using the most accurate brain symbols offers strong evi-
dence in making a task symbol decision. Of course, it is not
wise to assign all task symbols to the most accurate brain
symbol; a system would struggle to distinguish among task
symbols. MMI codes manage this tradeoff. Empirically, we
observe that the final query of most MMI sequences uniquely
assigns the most probable task symbol with the strongest brain
symbol; such a configuration offers the strongest evidence for
(or against) the selection of this task symbol.

If a particular confusion matrix is symmetric, it can be seen
(see [37, Th. 7.2.1.]) that the distribution PX which maximizes
the mutual information is uniform. In particular, symmetric
confusion matrices imply equivalence between Uniform and
MMI codes. As we will see in Section VI, MMI codes gain a
performance advantage over Uniform codes only for confusion
matrices which are far from symmetric.

V. PERFORMANCE METRICS

We evaluate the performance of our classifiers using ITR

I T R = 1

T
max

PX
I (X̂ , X)

= 1

T
max

PX

∑
x,x̂

PX̂ ,X (x̂, x) log
PX̂ |X (x̂ |x)

PX̂ (x̂)
(9)

where I (X, X̂) is the mutual information between the target
and estimate of the brain symbol and T is the stimulation time.
This version of ITR is consistent with the common definition

I T R∗ = 1

T

[
p log p + log NM + (1 − p) log

1 − p

NM − 1

]

(10)

where p is the accuracy of all brain symbols though it does not
assume that all brain symbols are equally accurate or that PX

is uniform. Throughout this work we use “ITR” and “ITR∗”
to mean the quantities given by (9) and (10) respectively.

The difference can be significant, as it is in Table III.
ITR∗ is often lower than ITR because mistakes under a
symmetric channel are uniformly distributed among all brain
symbols, offering the weakest evidence (see noisy typewriter
example in [37]). For further details on both definitions of ITR
see [38]–[42].

VI. EXPERIMENT

We aim to validate the efficacy of our recursive Bayesian
decision framework (Fig. 2) using MMI coding against other
methods. To do so, we perform online experiments using
different coding schemes in an SSVEP speller paradigm.

A. SSVEP Shuffle Speller

SSVEP Shuffle Speller associates task and brain symbols by
placing them near each other (see Fig. 1). Users are instructed
to gaze at the LED nearest their target letter. We have named
it the “Shuffle” speller because after each query the letters
are shuffled around the monitor, moving to the box associated

with their next brain symbol.4 This animation was created
in an attempt to make it as easy as possible for a user to
track their letter. We are wary of the potential difficulties the
shuffling may have in locked in users. Despite these positive
results, we still have many reservations about the eye gaze
requirements of the shuffle speller. We use it here only as a
test bed for our different coding schemes.

We have chosen SSVEP as it offers a large dictionary of
classifiable brain symbols to demonstrate coding schemes,
but we remind the reader that the particular choice of BCI
modality (SSVEP, MI, or P300), classifier, and even user
performance are encapsulated in the confusion matrix PX̂ |X .
One could imagine building a Motor Imagery “Shuffle” Speller
that associates each set of characters in Fig. 1 with an imagined
body movement. See Appendix A for a P300 example.

B. Setup

Ten neurotypical people volunteered for experiments. The
volunteers included six men and four women ages 24–34, all
with normal or corrected to normal vision. Each user gave
written informed consent according to Northeastern’s IRB
protocol and was paid for their participation.

LEDs stimulated at six equally spaced frequencies in the
alpha range:

x ∈ {8.00, 8.96, 9.92, 10.88, 11.84, 12.80}Hz (11)

and were classified using the CCA-KDE method described in
Appendix C. All queries were 5 seconds long and the training
session consisted of 20 ground truth queries for each target
frequency in (11).

We compute the Uniform code by noting that its objec-
tive is identical to the “Partition Problem”, whose solution
we approximate using a well known greedy algorithm [43].
Specifically, we assign the task symbols in order of decreasing
probability, mapping each to the brain symbol which currently
has the lowest probability (6).

As we do not have a closed form solution of (7) for
MMI codes, computation was done via a gradient ascent hill
climbing algorithm (see [44]). In particular, we start with a
random c and iterate over the task symbols. For each m, we
choose for it the brain symbol x which optimizes (7) and stop
our iteration when a local maximum is reached. We do this
for 20 random c initializations and choose the maximum of
these local optima as our MMI code approximation.

The experiment consists of five copy phrase tasks. In each
task, the user was asked to spell a sequence of characters
from a particular word. The copy phrase tasks were selected
for a varying range of difficulty (see Table II). Character
probabilities were determined using an n-gram language model
trained on a one million sentence New York Times corpus
(see [45, Sec. 3] for full details). Character probabilities
were computed under the assumption that all previously typed
characters were correct, and were normalized to allow for a
backspace probability fixed at 5%.

4An alternative to animated shuffling could be to assign color codes to brain
symbols and in a static matrix of letters, change the coloring of letters without
moving them. The tuning of visual aspects to suit human factors is outside
the scope of this work
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TABLE II
COPY PHRASE TASKS. PMi DENOTES THE CONTEXT PRIOR GIVEN

FOR THE iTH TARGET CHARACTER UNDER THE ASSUMPTION

THAT ALL PREVIOUS CHARACTERS WERE SELECTED

CORRECTLY WITH CERTAINTY.

A probability threshold of α = .85 was used to make
decisions in the recursive codes; no threshold was used in
decision tree codes. Decision tree codes made decisions at
the end of each tree branch as the maximum a posteriori task
symbol.

C. Simulation

Remember that MMI coding is only advantageous over
Uniform when the confusion matrix is far from symmetric
(see last paragraph of Section IV-D). To explicitly examine
this case we define confusion matrix:

PSim
X̂ |X (xi |x j ) =

{
1 − .1 j if i = j
.1 j
5 otherwise

(12)

Which is equivalent to a user who has an accuracy of
{.9, .8, .7, .6, .5, .4} across different stimuli (11); mistakes are
uniformly distributed among remaining stimuli. Note that
no real SSVEP data was used in this simulation. Instead,
we generate a Monte Carlo “SSVEP classification” PX̂ |E by
assigning a 90% belief to X = xi where xi is drawn according
to ∼PSim

X̂ |X (xi |x j ) and x j is fixed by a particular code vector (1).
Remaining probability mass is distributed uniformly in PX̂ |E .
We perform 100 Monte Carlo decision sequences for each
coding scheme and target character pair where target character
prior probabilities are given in Table II. Results are shown in
the last row of Table III.

VII. RESULTS

As can be seen in Fig. 7, decision tree style codes (Sequen-
tial and Huffman) were much less accurate and slightly faster
than recursive codes (Uniform and MMI). This makes intuitive
sense as no threshold need be met in a decision tree style
decision. As expected, Huffman codes were slightly faster
than sequential codes (see Section IV-B) as they leveraged
the context prior to minimize the number of queries per
decision. Remember that we call a query “impossible” if the
user’s target character is not present for selection. Across
all users, 14 % of Sequential Code queries were impos-
sible while only 4 % of Huffman queries were impossi-
ble. Uniform and MMI coding do not produce impossible
queries.

Among the recursive codes, MMI codes offer an increase
in speed at a small cost in accuracy over Uniform codes.
Remember that MMI codes consider the accuracy of brain

Fig. 7. Letter decision accuracy and speed (queries per letter decision).
Each circle is a user-coding scheme pair averaged across all queries of
all decisions of all copy phrase tasks.

Fig. 8. A histogram of Target Brain Symbol Confidence (i.e., classifier
output) across coding schemes. Max Mutual Info coding keeps the user-
classifier pair in its comfort zone by avoiding less accurate brain symbols.
As a result, it produces more confident brain symbol classifications.

symbol classication in assigning task symbols to brain sym-
bols. The difference between these codes is slight due to the
fact that the confusion matrices of many users were close to
symmetric (see Table III for accuracies of each brain symbol).
Remember that for symmetric confusion matrices a uniform
distribution over PX , (6), optimizes both the Uniform and
MMI objectives. This explanation is further supported by the
fact that the simulation (See Section VI-C), built to have a
non symmetric confusion matrix, had a significant boost in
speed using MMI codes against Uniform codes (see Table III).
Because MMI coding avoids less accurate brain symbols, it
earns more confident classifier outputs (Fig. 8). MMI coding
is a generalization of Uniform coding, we suggest using MMI
coding and tuning the decision threshold α to achieve a given
accuracy.

Empirically, recursive codes spent fewer queries on deci-
sions which initially had a higher probability from the lan-
guage model (see Fig. 9). In other words, characters which
had a higher initial probability required fewer queries to raise
their probability beyond the threshold.

In summary, decision tree methods were quick but relatively
inaccurate. Both uniform and MMI codes have high accuracy
as they perform queries until a sufficiently high confidence
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TABLE III
PERFORMANCE OF SSVEP CLASSIFIER PER USER CODING SCHEME PAIR. ACCi DENOTES THE ACCURACY OF THE iTH BRAIN SYMBOL,

POX|X(xi|xi). ALL ITRS REPORTED IN BITS/MIN, SEE SECTION V FOR ITR DETAIL. AccM DENOTES THE AVERAGE LETTER DECISION

ACCURACY ACROSS ALL COPY PHRASE TASKS OF A PARTICULAR USER AND CODING SCHEME. THE “SIM” ROW IS NOT COUNTED

IN THE “MEAN” ROW, SEE SECTION VI-C FOR DETAIL.

Fig. 9. Speed (queries per letter decision) versus initial probability
of target character. Each circle represents a decision sequence of
User 6. Note that recursive codes efficiently spend more queries on more
challenging target characters (those with lower probability).

is reached; MMI also leverages the varying accuracy of the
different brain symbols to decide more quickly. This is most
notable in the case of the simulated user whose accuracy was
constructed to vary the most across brain symbols.

VIII. CONCLUSION

We have presented a Bayesian decision framework which:
1) Performs inference over a task symbol set which is much

larger than the brain symbol set (NM > NX )
2) Leverages a context prior distribution over a task symbol

set (PM )
3) Leverages the varying accuracy of brain symbols

(i.e., the confusion matrix PX̂ |X ) for inference on task
symbols

4) Offers a principled mechanism to decide on a task
symbol which is robust to single query errors

This framework employs a coding scheme which maps task
symbols to brain symbols by leveraging the latest distribution

over task symbols. We offer recursive codes which perform
queries until a decision confidence is reached; this property
makes them robust to single query error. MMI codes, in
particular, offer a strong trade-off point between decision
accuracy and queries per decision (Fig. 7). MMI codes achieve
their competitive advantage by leveraging both the context
prior of task symbols as well as the confusion between brain
symbols inherent to a particular user-classifier pair.

We would like to highlight that (2) and (3) are applicable
to all circumstances which have some training set for a
user-classifier pair. Incorporating these Bayesian updates will
appropriately consider brain symbol confusion in the user or
classifier. This can offer some measure confidence in decisions
even if the classifier itself offers only point estimates.

APPENDIX I
APPENDIX: P300 AS A MEMORYLESS CHANNEL

Readers who are familiar with the P300 ought to object
strongly to modeling P300 generation as a memoryless chan-
nel; by its very nature the P300 is dependent on the task
symbols shown beforehand! We suggest a slight abstraction
to remedy this. Let us redefine a P300 query as the selection
of one time bin from a set of time bins where a user may have
generated a unique P300 signal. In this sense, our redefined
“brain symbol” corresponds to the time bin where the P300 is
present. In this way, the confusion matrix expresses confusion
of P300 targets in time. In particular, it may be the case that
errors are more prevalent in time bins immediately before or
after the target time bin. Additionally, it may also be the case
that the P300 is easier or more difficult at the start or end of
a query. MMI codes would explicitly leverage these effects.

APPENDIX II
APPENDIX: RECURSIVE BAYESIAN UPDATE

We remind the reader that we use PM to express the naive
prior distribution over task symbols (i.e., language model).
The remaining expressions in this section are valid when
conditioned on E1: j−1 though we drop this conditioning to



712 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 25, NO. 6, JUNE 2017

simplify notation. Dropping the conditioning in this manner is
equivalent to computing before the evidence of the first query
has been received

PX̂ |M (x̂ |m) =
∑

x

PX̂ ,X |M (x̂, x |m)

=
∑

x

PX̂ |X (x̂ |x)PX |M (x |m)

=
∑

x

PX̂ |X (x̂ |x)δx,cm

= PX̂ |X (x̂ |cm) (13)

where the second equality comes from the fact that given X ,
X̂ is independent of M and the third equality uses a Kronecker
delta to express the fact that PX |M (x |m) = 1 if cm = x and
is 0 otherwise. Further, we compute

PX̂ (x̂) =
∑

m

Px̂ |M (x̂ |m)PM (m)

=
∑

m

PX̂ |X (x̂ |cm)PM (m) (14)

where the last equality is a result of (13). Finally

PM |X̂ (m|x̂) = PX̂ |M (x̂ |m)PM (m)

PX̂ (x̂)

= PX̂ |X (x̂ |C(m))PM (m)∑
m PX̂ |X (x̂ |C(m))PM (m)

(15)

which applies Bayes rule in the first equality and (13) and (14)
in the second.

APPENDIX III
APPENDIX: SSVEP CLASSIFIER (CCA-KDE)

We use CCA-KDE ([41]) because it produces a principled
estimate of the posterior distribution of our target brain symbol
which is helpful, though not necessary, in the framework
of Fig. 2.

A. Canonical Correlation Analysis (CCA)

Lin et al. [46] introduce CCA, a dimensionality reduction
method which captures the correlation between multiple elec-
trodes of EEG signal and multiple harmonics of each target
frequency. In particular, for each fi ∈ F a template is built

Yi =

⎡
⎢⎢⎢⎢⎢⎣

sin(2π fi t)
cos(2π fi t)

...
sin(2π H fi t)
cos(2π H fi t)

⎤
⎥⎥⎥⎥⎥⎦

∈ R2H×T fs (16)

for t = [ 1
fs

, 2
fs

, · · · , T ] where H is the number of harmonics
considered, fs is the sampling frequency and T is the query
length in seconds. CCA maximizes Pearson’s correlation coef-
ficient between a linear combination of electrodes of EEG data
as well as an additional linear combination over the template
signals in Yi (see [47]).

We collect a feature vector of maximal Pearson’s coeffi-
cients to each template as

eCC A = [ρ1, · · · , ρM ]T (17)

where ρi is the maximum correlation coefficient to the i th
template. In most CCA methods, the estimate is chosen as
the maximal correlation coefficient. CCA is still an exciting
and active area of development within the BCI commu-
nity [48]–[52].

B. Kernel Density Estimation (KDE)

CCA-KDE explicitly estimates the distribution of the CCA
coefficients eCC A on its true stimulation frequency x . In partic-
ular, it uses training data of N stimulation queries {ei , xi }N

i=1
and approximates Pe|X as a mixture

Pe|X (e|x) ≈ 1

N j

∑
ei |xi=x

K (e|ei ,� j ) (18)

where N j is the number of samples from class x and
K (·|μ,�) is a Gaussian kernel. The covariance matrix is
chosen according to Silverman’s rule [53]. Please see [54]
for a thorough treatment of KDE.
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