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Abstract Inaccuracies in the observation model of the syn-
thetic aperture radar (SAR)due to inaccuracies of the velocity
and position of the platform or atmospheric turbulence cause
degradations in reconstructed images which necessitate the
use of autofocus algorithms. In this paper we propose a novel
signal processing algorithm for joint SAR image formation
and autofocus in a synthesis dictionarybased sparse represen-
tation framework. Proposed algorithmcan be applied broadly
to scenes that exhibit sparsity with respect to any dictionary.
This is done by extending our previously developed sparse
representation-based SAR imaging framework to joint SAR
image formation and autofocus. To this end, the phase error
vector is separated from the unknown phase of the complex-
valued back-scattered field. Phase error vector is estimated
using a MAP estimator and compensated through an itera-
tive algorithm to produce focused images. We demonstrate
the effectiveness of the proposed approach on synthetic and
real imagery.

Keywords Synthetic aperture radar (SAR) · Autofocus ·
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1 Introduction

Synthetic aperture radar (SAR) is an active microwave sen-
sor producing high resolution 2-D images of the ground with
processing of Doppler shift in azimuth direction in addi-
tion to normal radar range processing [1]. SAR imaging
problem is an inverse problem to be solved based on themath-
ematical model of the observation process. The observed
signal directly depends on the two way propagation time
from the platform to the field which is called demodula-
tion time. Exact measurement of this time is influenced by
several parameters. One of these parameters is the distance
from the center of the scene to the sensor which may be
inaccurate due to slip and mobility of the platform. Inexact
knowledge of the demodulation time causes phase errors in
SAR data, which results in defocusing of the reconstructed
image [2].

In this paper, we consider the spotlight mode of SAR
[2]. Conventional image formationmethod in spotlight mode
SAR is the polar format algorithm (PFA), which is based on
the two dimensional Fourier transform [2,3]. Some limit-
ing factors of PFA are limited resolution, side-lobe artifacts,
and speckle noise. In addition, the conventional PFAmethod
has no mechanism to counter image defocusing caused by
phase errors during the image formation process. There
are several methods to compensate the effect of phase
errors on the conventionally reconstructed images, which
are referred to as autofocus methods. Phase gradient auto-
focus (PGA) [4] is one of the most successful and widely
used autofocusing methods that estimates phase errors by
windowing and center shifting on isolated defocused tar-
gets. Multichannel autofocus (MCA) is another autofocus
technique that estimates 1-D phase error functions by solv-
ing a set of linear equations [5]. These autofocus techniques
for estimation and compensation of phase errors are based
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on post-processing of defocused images produced by con-
ventional reconstruction methods. Recently, a nonquadratic
regularization-based image reconstruction method has been
proposed for SAR image formation and autofocusing simul-
taneously [6].

In this new method, phase errors are compensated dur-
ing the image formation process and the problem is set up
as an optimization problem using nonquadratic regulariza-
tion method [7]. Similar ideas have been developed in [8,9]
too. This new framework is quite effective in phase error
estimation and compensation. However, in the formulation
developed in [6], it is implicitly assumed that the image
of the underlying scene is sparse. For scenes that are not
sparse directly in the image domain, such as scenes with
a large smooth area of strong scatterers, this method may
produce a poor reconstruction. Such scenes might exhibit
sparsity in a different domain, which could be captured by a
dictionary.

In this paper, we extend the work in [6] for any scene
that has a sparse representation in a proper dictionary and
develop a new method for simultaneous SAR image for-
mation and autofocus. This is done by extending the sparse
representation-based SAR imaging method [10] for simulta-
neous SAR image formation and autofocusing. The approach
in [10] allows the use of any overcomplete synthesis dictio-
nary to represent the scene reflectivities.

In this framework, due to the complex-valued nature of
SAR images, the phase component of the complex backscat-
tered field should be estimated in parallel with the phase
error. Throughout the paper, upper case and lower case
bold face characters denote matrices and vectors, respec-
tively.

2 The effect of phase errors on the linear SAR
observation model

In this section, we first describe the linear mathematical
model of the SAR observation process and then discuss the
influence of phase errors on the observation model.

2.1 Observation model of a SAR imaging system

Here, imaging a scene of radius L in spotlight mode of SAR
is considered. In spotlight mode, the platform moves in the
azimuth direction and the squint angle θ varies by aperture
position. In SAR systems, the transmitted signal is often a
chirp signal as follows:

s(t) =
{
exp( j (ω0t + ht2)) |t | ≤ Tp

2
0 otherwise

(1)

where ω0 is the carrier frequency and 2h is the chirp
rate of the transmitted signal. This signal is transmitted to
the scene to be imaged, and the received signal is mixed
with the reference chirp signal and passed through a low-
pass filter to produce the demodulated signal given by
[3,7]:

rθ (t) =
∫∫

x2+y2≤L2
f (x, y)

× exp(− j�(t)(x cos θ + y sin θ))dxdy (2)

where L , f (x, y),�(t) = 2
c (ω0t+2h(t−τ0)) and τ0 denote

the radius of the scene, the underlying field, radial spatial
frequency, and demodulation time, respectively.

The demodulated signal is then sampled in all squint
angles, so the discrete form of demodulated received sig-
nal for all azimuth positions, i.e., the phase history, becomes
[3,7]:

⎡
⎢⎢⎢⎣

r1
r2
...

rP

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C1

C2
...

CP

⎤
⎥⎥⎥⎦ f ⇒ r = Cf (3)

where r, ri and Ci are the phase histories, discretized
demodulated signal at the i th aperture position, and discrete
approximation of the observation kernel in (2), respectively.
The reflection coefficients of the field are stacked in the
column vector f . In a noisy environment, denoting the obser-
vation vector by g and the additive white Gaussian noise by
w, the linear observation model of a SAR system can be
written as:

g = Cf + w (4)

2.2 Phase error and its influence on the observation
model

According to relations (2) and (4) the discretized approxima-
tion of the observation kernel depends on the demodulation
time. Perfect measurement of the demodulation time is
impossible due to slip and mobility of the platform and
atmospheric effects. Uncertainties in the position of the
platform are assumed constant over a signal received at a
particular aperture position, but vary across different aper-
ture positions. Phase errors caused by such uncertainties are
a function of the aperture position only.

Modeling such errors in the linear observation model is
accomplished through the following procedure [6]. Denot-
ing the demodulated signal vector in i th azimuth position in
the presence of phase errors by riε and the error-free signal
vector in the i-th azimuth position by ri , their relation can be
expressed as:
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riε = e jϕi ri i = 1, 2, . . . , P (5)

where ϕi is the phase error in the i th azimuth position.
According to (5), all phase history elements can be stacked
in a matrix form as:

rε =

⎡
⎢⎢⎢⎢⎣

K1 0 · · · 0

0 K2
. . .

...
...

. . .
. . . 0

0 · · · 0 KP

⎤
⎥⎥⎥⎥⎦ r ⇒ rε = Dr (6)

where

Ki =

⎡
⎢⎢⎢⎢⎣
e jϕi 0 · · · 0

0 e jϕi
. . .

...
...

. . .
. . . 0

0 · · · 0 e jϕi

⎤
⎥⎥⎥⎥⎦

Q×Q

(7)

that shows the phase error in the azimuth point i over all
range positions. In (6), D is a diagonal matrix with size of
PQ×PQ where P and Q are numbers of azimuth and range
samples, respectively. Hence, the linear observationmodel in
the presence of phase errors becomes:

gε = DCf + w (8)

where gε is the noisy phase-corrupted observation.

3 Proposed dictionary-based sparsity-driven
autofocus algorithm

Sparsity-driven autofocus (SDA) algorithm proposed in
[6], is an approach developed for joint SAR imaging and
phase error correction through a nonquadratic regularization
framework, assuming sparsity of the underlying scene. The
proposed method of this paper provides an important exten-
sion over the SDA approach and facilitates sparsity-driven
autofocusing on any scene containing any type of features.
This is done by extending the sparse representation-based
SAR imaging method [10] to the problem of joint SAR
image formation and autofocus. This method can be used
for any scene that has a sparse representation in terms of
any signal dictionary, which includes scenes with piecewise
smooth reflectivities, where the method in [6] may produce
poor reconstructions.

Selection of a dictionary that can sparsify any wide area
SAR image is still a challenging issue. However, there are
some efforts in this regard. For example the work in [10]
concluded that for SAR images of natural scenes the wavelet
dictionary seems to be a good choice. Previous pieces ofwork

have also established that the wavelet transform can sparsely
represent natural scene images [11,12].

We have used small patches of SAR data involving highly
spatially correlated areas for our experiments. For such real
scenes, wavelet coefficients have a small number of nonzero
high-frequency terms, and therefore the wavelet dictionary
can sparsify this type of data. While we demonstrate the per-
formance of our proposed approach with certain dictionaries
in this paper, we do not necessarily claim that we have iden-
tified the best dictionary. However, we do believe that due to
the spatially correlated nature of SAR reflectivities (although
the structure of the correlation might be different from, e.g.,
optical images), there is certainly a need to consider sparse
representations in various dictionaries. Accordingly, there
is a need to develop autofocusing algorithms that can be
usedwithin the framework of such dictionary-based sparsity-
driven image formation methods. This requires the kind of
technical development presented in this paper. In that sense,
this is a technical methodology paper whose goal is to make
such a joint image formation and autofocusing algorithm
available to radar imaging researchers and practitioners. Our
framework and algorithm can be seamlessly used with any
arbitrary dictionary.

In this method, we sparsely represent the magnitude of
the complex-valued reflectivity field using a proper dic-
tionary and estimate the sparse representation coefficients,
unknownphase of reflectivity field, and the phase error vector
by optimizing a multivariate cost function. The multivariate
optimization we pose can be solved using a block coordinate
descent approach. The first subsection below describes the
dictionary-based sparse representation and autofocus frame-
work we propose. The second subsection contains the details
of the iterative algorithm we develop for solving the opti-
mization problem posed.

3.1 Dictionary-based sparse representation framework

Considering the complex-valued nature of the SAR image,
the reflectivity field can be expressed as follows:

f = �|f | (9)

In this equation � = diag{e jβl } where βl is the phase of lth
component of vector f and |f | is themagnitude of the vector f .

Since features of the magnitude of the reflectivity field are
usually important [10], the new dictionary-based approach
is designed to sparsely represent the magnitude of the image
as:

|f | = 
a (10)

where
 is an appropriate dictionary that sparsely represents
magnitude of the complex-valued image and a denotes the
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sparse representation coefficients. Nowwe substitute (9) and
(10) into the observation model (8):

gε = DCf + w = DC�|f | + w = DC�
a + w

= diag{d} C diag{b} 
a + w (11)

In (11) b is a vector with elements (b)l = e jβl . Also, d
is a vector with elements (d)i = e jϕi where ϕi is the i-th
element of the phase error vector.

What we propose is a combined algorithm for complex-
valued SAR imaging that finds both the magnitude and
the phase of the reflectivities, where we incorporate prior
information about the magnitude field through sparse rep-
resentation and assume no prior information on the phase
field (so we essentially perform maximum likelihood esti-
mation on phase, but if any such information is available,
it can in principle be included in our approach through
extra terms involving the phase). As a cartoon example,
think of a complex-valued scene f with piecewise constant
(or smooth) reflectivity magnitudes and random, uniformly
distributed phase. The magnitude of such a scene would
admit sparse representation, whereas its real and imagi-
nary parts would not. So if we tried to linearly represent
such an f through a dictionary, that would amount to try-
ing to represent the real and imaginary parts sparsely,
which would not work due to the random-phase nature of
SAR.

We want to reconstruct the sparse coefficients a, which
defines the magnitude image |f |, from noisy observations
gε, in the presence of the unknown phase matrix and the
phase error matrix D. This problem can be solved through
the following optimization problem.

{d̂, b̂, â} = argmin
d,b,a

(‖gε − diag{d} C diag{b} 
a‖22

+ λ‖a‖p
p + λ′

(
I∑

l=1

(|(b)l |q − 1)2
)

+ λ′′
⎛
⎝ PQ∑

i=1

(|(d)i |u − 1)2)

⎞
⎠ (12)

where I is the total number of elements of b.

This multivariate nonlinear estimation problem can be
solved using three linear problems in a block coordinate
descent scheme. This optimization problem is generally not
convex, so there is no guarantee for convergence of the algo-
rithm to the global minimum; however, we usually get a
good solution (at a local minimum) starting from a reason-
able initialization (e.g., a conventional reconstruction). The
iterative algorithm of dictionary-based sparsity-driven auto-
focus (DBSDA), which we develop with this perspective, is
sketched as the above flowchart.
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3.2 The DBSDA algorithm

According to the observation model in (11) and overall
optimization problem in (12), if � and D were known, an
estimate of a and hence the image itself could be found using
an atomic decomposition technique [13] such as an extension
of basis pursuit as [14]:

â = argmin
a

‖ gε − DC�
a ‖22 +λ ‖ a ‖p
p (13)

where ‖ · ‖p denotes the l p norm and λ is a regularization
parameter. The first term in (13) is a data fidelity term, and
the second term uses p � 1 to enforce sparsity of the repre-
sentation [15,16].

However, image vector element phases and elements of
the phase error matrix are unknown. In order to overcome
this problem, the following coordinate descent algorithm is
proposed.

3.2.1 Initialization

In this step, the image formed by the conventional polar for-
mat algorithm (PFA) is used to initialize the algorithm. Then
initial estimate of the phase matrix can be produced based on
the phases of the PFA image. Initial value of phase error is
considered to be 0 for all azimuth positions and so the initial
value of D is set to the identity matrix, i.e., D = I.

3.2.2 Estimation of a

In this step, the optimization problem in (13) can be solved
using the initial estimates of D and � matrices. In order to
avoid problems due to nondifferentiability of the l p norm, a
smooth approximation is used as [7]:

‖ a ‖p
p ≈

I∑
i=1

(| (a)i |2 +η)
p
2 (14)

where I and η are the total number of elements of f and
a nonnegative small constant, respectively. With the slight
modification in (14), the cost function in (13) becomes:

J (a) = gH
ε gε − gH

ε (DC�
)a − aH (DC�
)Hgε

+ aH (DC�
)H (DC�
)a+λ

I∑
i=1

(
|(a)i |2 +η

) p
2

(15)

Gradient of the cost function with respect to a becomes:

∇a J (a) = M(a)a − 2(DC�
)Hgε (16)

where

M(a)a = 2(DC�
)H (DC�
) + λpΓ (a) (17)

and

Γ (a) = diag

{
1

(|(a)i |2 + η)1−
p
2

}
(18)

This optimization problem has no closed-form solution.
Here we use a quasi-Newton method with a particular
Hessian update scheme [17]:

â(n+1) = â(n) − ρ[M(â(n))]−1∇a J (a) (19)

whereM(a) is an approximation of theHessian. The step size
is assumed to be ρ = 1 which guarantees the convergence
of the algorithm. Substituting (16), (17) and (18) in (19), we
can find an estimate of a through:

â(n+1) = (2(DC�
)H (DC�
)

+ λpΓ (â(n)))−1(2(DC�
)Hgε) (20)

Evaluating the matrix inversion term of the right side in
(16) is not efficient, and therefore the equivalent linear form
of this equation is solved instead, using the conjugate gradient
(CG) method [18,19].

The quasi-Newton method and the CG are serving two
different objectives. The outer iteration in our algorithm can
be interpreted as a quasi-Newton method (another interpre-
tation is what is called half-quadratic regularization). Each
iteration of that algorithm requires solution of a set of linear
equations. This is where we use a set of inner CG iterations.

The algorithm begins with an initial estimate of a and runs
until it converges. Then, a new estimate of |f | can be obtained
according to (11).

“Although we seek a sparse representation of |f | = 
a,
we do not check whether the representation obtained from
the above algorithm always yields a positive-valued signal.
This causes an extra redundancy in our model insofar as a
negative magnitude can be compensated by a phase shift of
π . One could try and limit the approach to guarantee positive
numbers in the magnitude representation, and however, that
would lead to additional computational complexity. In our
work, we have not felt the need to limit the solution to be
nonnegative [10]”.

3.2.3 Estimation of the phase of the complex-valued image

Estimating the phase matrix of the complex-valued image
requires the observation model to be expressed slightly dif-
ferently. The diagonal components of matrix � are placed in
the vector b, and the elements of |f | from the previous step,
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are placed in diagonal components of a diagonal matrix H,
i.e., H = diag{|fi |}. Hence, the modified observation model
becomes:

gε = DCHb + w (21)

We can find an estimate of b through the following optimiza-
tion problem:

b̂ = argmin
b

‖gε − DCHb‖22 + λ′‖b‖2q2q − 2λ′‖b‖qq (22)

The details of the derivation of Eq. (22) which is a MAP
estimator of b can be found in the electronic supplementary
material. This problem can be solved using the same type of
quasi-Newton scheme previously used for a:

T́ (b̂(n))b̂(n+1) = 2(DCH)Hgε (23)

where

T́ (b̂(n)) = 2(DCH)H (DCH)+2λ′qΓ1(b̂(n))−2λ′qΓ2(b̂(n))

(24)

and

Γ1(b) = diag

{
1

(|bi |2 + η)1−q

}
,

Γ2(b) = diag

{
1

(|bi |2 + η)1−
q
2

}
(25)

Equation (23) can be solved using the CG method. The iter-
ative algorithm for solving (23) must be run until

(
‖b̂(n+1) − b̂(n)‖22

‖b̂(n)‖22

)
≤ δb (26)

where δb is a small positive real constant. The estimate of �

is then given by:

� = diag{b} (27)

3.2.4 Estimation of the phase error components

In previous steps of the DBSDA algorithm, we have esti-
mated the phase matrix �, and the magnitude vector |f |.
Using these estimated variables and (10) the complex-valued
reflectivity vector is estimated. Then the phase history vector
r is estimated using (3). The observation model in (9) can be
written as:

gε = DCf + w = Dr + w (28)

Denoting the diagonal matrix R = diag{r}, and the vector
formed by stacking the diagonal elements of matrix D by d,
the observation model can be put into the following form:

gε = Dr + w = Rd + w (29)

Assuming phase error in each azimuth position indepen-
dent from other azimuth positions with uniform pdf, we can
introduce the MAP estimator of d as follows:

d̂ = argmin
d

‖gε − Rd‖22 + λ′′‖d‖2u2u − 2λ′′‖d‖uu (30)

The details of the derivation of Eq. (30) can be found in
the electronic supplementary material. This problem can be
solved using a similar quasi-Newton scheme previously used
for b:

[2(R)H (R) + 2λ′′uΓ1(d̂(n))

−2λ′′uΓ2(d̂(n))]d̂(n+1) = 2RHgε (31)

We use conjugate gradient algorithm to solve (31). This
algorithm runs until:

(
‖d̂(n+1) − d̂(n)‖22

‖d̂(n)‖22

)
≤ δd (32)

where δd is a small positive constant.
Although for the sake of generality we have assumed 2D

phase errors, the majority of phase errors (e.g., those due
to platform location uncertainties) are 1D functions of the
azimuth position. It can be easily shown that this additional
constraint results in the closed-form solution given in [6].

3.2.5 Updating the observation model

After estimation of d, the matrix D = diag{d}, needs to be
updated in each iteration.

Obtaining the updated matrix D, we can go back to step
2 of the algorithm (estimation of a). This iterative scheme
runs until the image is formed and phase error is estimated
and compensated according to the algorithm stopping cri-
teria. Penalty parameter selection affects the quality of the
reconstructed image.

Parameter selection is a common concern in many opti-
mization problems, including sparse representation prob-
lems. There is a separate body of work on automatic
parameter choice [20]. One can certainly employ one of these
parameter choice techniques when using our approach, but
that is beyond the scope of the current paper. Convergence
of the algorithm in terms of cost functional can be easily
established in a similar way to that in [10].
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Table 1 SAR system parameter

Carrier frequency (ω0 ) 2π × 1010 rad
s

Chirp rate (2 h) 2π × 1012 rad
s2

Puls duration (Tp) 4 × 10−4 s

Range and azimuth resolution (δr , δaz) 0.375 m

Fig. 1 Reconstruction of a SAR data extracted from a real SIR-C/X-
SAR image in the presence of phase errors. a Reference underlying
scene, b conventional PFA reconstruction, c PFA+PGA autofocus
method, d PFA+MCA autofocous method, e SDA method, f the
DBSDA method

4 Experimental results

Wepresent experimental results using synthetic and real SAR
images. The dictionary used in this paper consists of wavelet
atoms. We compare the results of DBSDA to PGA, MCA,
and SDA. This comparison demonstrates the potential of our
algorithm to produce better results, which is obtained at the
cost of increased computational complexity. For generation
of synthetic SARphase history data, we have used the system
parameters shown in Table 1.

In the first experiment, the aim is to test the performance
of the proposed algorithm on a synthetic image with a large
smooth region. Results of this experiment is shown in the
electronic supplementary material.

In the next experiment, we apply different reconstruction
methods on data extracted from a real SIR-C/X-SAR image
of 128 × 128 pixels [21]. We have generated the raw data
using the observation model in (4) (or (8) in the presence
of the phase errors) from the complex SAR image. Figure
1a shows the reference underlying scene. Figure 1b–f shows
the reconstructed images using conventional reconstruction
and different autofocus methods. Phase errors are random
with uniform distribution in the interval [−π

2 , π
2 ]. The SNR

is 20dB.

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

SNR(db)

M
S

E

MSE of formed image using  SDA method

MSE of formed image using DBSDA method

Fig. 2 Mean squared error of the reconstructed image in Fig. 1 using
SDA and DBSDA methods

Fig. 3 Reconstruction of real TerraSAR-X data in the presence of
phase error. a Reference underlying scene, b conventional PFA recon-
struction, c PFA+PGA autofocus method, d PFA+MCA autofocous
method, e SDA method, f DBSDA method

The figures of real and estimated phase errors using SDA
and DBSDA methods for all azimuth positions, as well as
the error of phase error estimation can be found in electronic
supplementary material. They show that in most azimuth
positionsDBSDAmethod can achieve better phase error esti-
mation in comparison with the SDA method.

Finally, themean squared error of the reconstructed image
versus different signal to noise ratios is shown inFig. 2 for this
experiment, using SDA andDBSDA. These results show that
DBSDA is more effective, in simultaneous image formation
and phase error estimation and compensation, than SDA for
SAR scenes composed of piecewise smooth reflectivities.

In the last experiment we apply different reconstruction
and autofocus methods on a real patch of TerraSAR-X data
of 256× 256 pixels. We have used the reverse bi-orthogonal
wavelet (rbio1.1) dictionary DBSDA. Figure 3b–f shows the
reconstructed images using conventional reconstruction and
different autofocus methods. In this simulation the SNR is
25 dB. Results in Fig. 3 demonstrate that DBSDA outper-
forms other autofocusing techniques. Also Fig. 4 shows the
mean squared error versus SNR of the reconstructed image
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SNR(dB)

M
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MSE of reconstructed image using SDA method

MSE of reconstructed image using DBSDA method

Fig. 4 Mean squared error of the reconstructed TerraSAR-X image
using SDA and DBSDA methods

Table 2 The run times of different techniques (s)

Techniques 1st Exp 2nd Exp 3rd Exp

PFA+PGA 0.076488 0.837312 4.332716

PFA+MCA 0.088197 0.386849 2.605853

SDA 5.474754 5.067594 42.89076

DBSDA 7.462061 11.36453 48.10363

for DBSDA and SDA. This result shows that DBSDA pro-
vides much lower mean squared errors than SDA. We have
calculated the run times of different autofocus techniques in
all experiments carried on an Intel core i5 2.5 GHz processor.
These results are depicted in Table 2. Overall, our experi-
ments show the ability of the proposed DBSDA algorithm to
produce better results, obtained at the cost of more compu-
tational complexity.

5 Conclusion

In this paper, we have introduced a novel simultaneous SAR
image formation and autofocusing technique. Our algorithm
extends the idea of exploiting sparsity in the autofocus-
ing process [6] from scenes that are directly sparse in the
image domain to scenes that admit sparse representation in
terms of any dictionary. To this end, we pose a sparsity-
driven optimization problem through which we estimate and
compensate the phase errors by a block coordinate descent
algorithm in the image formation process. Experimental
results with synthetic and real SAR images show that the
DBSDA algorithm offers better performance than both the
post-processing-based autofocus algorithms and the SDA
method in reconstruction of scenes that are not directly sparse
in the image domain. The quantitative MSE measure of the
quality is also evaluated and supports this observation. Also
for further analysis, the abilities of SDA and DBSDA to cor-
rectly estimate the unknown phase errors are investigated,
which shows that DBSDA outperforms SDA for a scene with
piecewise smooth reflectivities.
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