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An Augmented Lagrangian Method for
Complex-Valued Compressed SAR Imaging

H. Emre Güven, Alper Güngör, and Müjdat Çetin

Abstract—In this paper, we present a solution to the complex
synthetic aperture radar (SAR) imaging problem within a con-
strained optimization formulation where the objective function in-
cludes a combination of the �1 -norm and the total variation of the
magnitude of the complex valued reflectivity field. The technique
we present relies on recent advances in the solution of optimiza-
tion problems, based on Augmented Lagrangian Methods, and
in particular on the Alternating Direction Method of Multipliers
(ADMM). We rigorously derive the proximal mapping operators,
associated with a linear transform of the magnitude of the re-
flectivity vector and magnitude-total-variation cost functions, for
complex-valued SAR images, and thus enable the use of ADMM
techniques to obtain computationally efficient solutions for radar
imaging. We study the proposed techniques with multiple features
(sparse and piecewise-constant in magnitude) based on a weighted
sum of the 1-norm and magnitude-total-variation. We derive a
fast implementation of the algorithm using only two transforms
per iteration for problems admitting unitary transforms as for-
ward models. Experimental results on real data from TerraSAR-X
and SARPER—airborne SAR system developed by ASELSAN—
demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

IN this paper we consider the problem of compressed syn-
thetic aperture radar (SAR) imaging using an augmented

Lagrangian approach to solve the optimization problem asso-
ciated with the SAR observation model. There exist several
sparsity-driven techniques in the context of SAR imaging [1]–
[8], though an important factor hindering their use in practice is
the excessively high computational cost of solving the associ-
ated optimization problem. From this standpoint, it is important
to incorporate recent advances in optimization techniques. The
motivation for our work stems from the need to employ compu-
tationally efficient algorithms for compressed sensing in SAR,
with a potential for parallel implementation.

Some of the current approaches for Compressive SAR imag-
ing include separating real and imaginary parts of the reflec-
tivity field vector [1] and defining a cost function based on
the magnitude of the reflectivity field [3], [9]. For reconstruc-
tion, while [9] adopts an analysis based approach and uses
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a particular quasi-Newton algorithm, [3] adopts a synthesis
based objective function and uses the spectral projected gra-
dient algorithm [10] to reconstruct the reflectivity field. [5]
also uses a synthesis-based approach with a quasi-Newton al-
gorithm for reconstruction. In [11], an adaptive sequential ba-
sis selection strategy is employed for point-enhanced imaging.
[8] and [12] employ greedy algorithms for computational effi-
ciency. For a review of greedy methods for compressed sensing,
see [13].

Alternating Direction Method of Multipliers (ADMM) tech-
niques have been successfully applied to signal and image recov-
ery problems [14]–[19]. ADMM provides a divide-and-conquer
approach by splitting unconstrained multi-objective convex op-
timization problems, augmenting the Lagrangian of the convex
optimization problem with a norm-squared error term, and us-
ing a non-linear block Gauss-Seidel approach on the resultant
terms in the optimization problem. The resulting algorithm is
guaranteed to converge under mild conditions [16], [17].

In this paper, we provide a framework for the application
of an improved version of a particular ADMM, namely the
Constrained Split Augmented Lagrangian Shrinkage Algorithm
(C-SALSA) [17] to SAR imaging; introduce a method to handle
complex SAR imagery in the constrained total variation mini-
mization (TVM) formulation, where the cost function involves
the total variation (TV) of the reflectivity magnitudes. To this
end, we derive the proximal mappings of these cost functions
involving complex-valued arguments. We use a formulation en-
abling the use of cost functions with weighted sums of the
TV and �1-norm of reflectivity magnitudes, for which case we
present a particular ADMM algorithm. Preliminary versions of
the approach proposed here can be found in [20], [21]. How-
ever, here we present a generalized version of the algorithm,
derivation of proximal mappings for complex-valued imaging,
and a comprehensive experimental analysis on SAR imaging of
large natural scenes.

The proposed techniques enable the use of ADMM for com-
plex SAR imaging with multiple features. Experimental results
on real data from TerraSAR [22] and SARPER [23]—airborne
SAR system developed by ASELSAN—demonstrate the effec-
tiveness of the proposed approach and perform well regarding
computation time, increasing the potential for employment in
practical SAR systems.

II. BACKGROUND

In this section, we provide some brief background on the
measurement model in SAR imaging, feature-enhanced sparse
imaging techniques, and augmented Lagrangian methods.
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Fig. 1. Spotlight mode SAR geometry [9]

Fig. 2. Typical processing steps for conventional SAR image formation

A. Notation

Regarding the notation used in the paper, the images we work
on are stacked as complex-valued column vectors, denoted with
bold letters such as x,y, z. Subscript denotes the iteration count,
i.e., xk for the value of x at the k-th iteration. For operations
regarding elements of vectors, x[i] denotes the i-th element of
the vector. However, since we work with TV defined in two
dimensions, we use x[i, j] to denote the i, j-th pixel of the
image, and the (iNv + j)-th element of the vector x, where
each vertical line in the image bears Nv pixels.

B. SAR Observation Model

The observation geometry for spotlight mode SAR is shown in
Fig. 1 [9]. A radar transverses a flightpath, and transmits high-
bandwidth pulses at equal angular increments. The received
pulses constitute the signal as in the following equation:

rθ =
∫∫

u2 +v 2 ≤L2
f(u, v) exp{−jΩ(ucosθ + vsinθ)}dudv,

(1)

where f is the underlying reflectivity field, θ is the angle between
the u and t axes in Fig. 1, and Ω serves as the radial spatial fre-
quency. Then, projection-slice theorem can be used to identify
the received signal as the Fourier transform of the projections of
the field [24]–[28]. In this paper, we assume that the spotlight
data is used to interpolate the samples in the two-dimensional
(2-D) Fourier transform domain, which we consider as the mea-
surement vector y. Motion compensation in Fig. 2 depicts the
process of correcting residual effects from the received signal
due to non-ideal motion. Range/Azimuth interpolation is the
process of interpolating data onto cartesian grid. Also, to cor-
rect errors due to non-ideal propagation media and non-ideal

motion compensation, an optional autofocusing step is applied
after forming the image. For further details on SAR imaging,
the interested reader may refer to many useful texts including
[24]–[26].

Hence, the SAR observation model can be considered lin-
ear in relating the vector containing the SAR image pixels to
the data vector, e.g., consisting of phase history data for spot-
light mode SAR imaging. Let us denote the image vector to be
constructed by sequentially indexed pixel-values x ∈ CN and
observation kernel by the matrix B ∈ CM ×N , which relates x
to the measurement vector y ∈ CM :

y = Bx + n, (2)

where n ∈ CM is the additive noise vector, typically from a nor-
mal distribution. The data vector y can lie in the phase history
domain, in which case the matrix B would be a spatial Fourier
transform operator; or y can be a conventionally reconstructed
image, in which case B would be a convolution operator as-
sociated with the point spread function of the entire imaging
process.

In this paper, to exploit the speed of Fourier transform on a
Cartesian grid, the data are assumed to be in the phase history
domain [24], and pre-compensated for platform motion. Then
the data are interpolated onto a Cartesian grid to use the po-
lar format algorithm, which addresses the issue of range cell
migration. The matrix B is simply a masked Fourier Trans-
form operator, which can be written as the multiplication of the
data selection matrix M ∈ RM ×N with the Fourier Transform
Matrix U ∈ RN ×N , i.e., B = MU. In the reconstruction algo-
rithms we use, however, the matrix associated with the Fourier
operator is never formed explicitly. Instead, 2-D FFTs are used to
perform the associated matrix-vector products. For wide-angle
[38] or near-field SAR imaging, associated models can be used
at their respective cost, although these details are beyond the
scope of our work.

C. Feature Enhanced Imaging

The sparsity driven SAR imaging problem can be cast as

minimize
x

‖Bx − y‖2
2 + λφ(x), (3)

where φ(x) is the penalty function appropriately selected ac-
cording to the reflectivity characteristics of the region to be
imaged. An alternative form is the constrained problem:

minimize
x

φ(x)

subject to ‖Bx − y‖2 ≤ ε
, (4)

where the error norm is prescribed to be smaller than a radius
ε suggested by the signal-to-noise ratio (SNR) that can be es-
timated from the data. Such an estimation can be performed
relatively more easily in SAR imaging scenarios, for instance,
by collecting measurements before transmitting a radar pulse
solely for the purpose of obtaining noise samples. Thus, we
prefer the constrained form (4) over (3), although the proximal
mappings presented in the next section can be used in either
form of the problem. Depending on the selection of the penalty
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function φ(x), the characteristics of the reconstruction varies.
In what follows, we consider the special cases with the 1-norm
‖x‖1 and the TV of the image magnitude TV (|x|).

1) 1-Norm Enhanced Imaging: φ(x) = ‖x‖1 results in the
enhancement of sparsity in the image domain. The use of 1-norm
as a penalty function has a long history in the solution of inverse
problems. In SAR imaging, it has been shown to enhance strong
scatterers in a weak background [9]. Compressed sensing lit-
erature has shown that, given sufficient measurements obtained
using an incoherent basis, minimizing the 1-norm closely ap-
proximates finding the sparsest solution possible. Therefore, this
penalty function is appropriate for obtaining images with higher
resolution in cases with sparse scenery [9].

2) TV Enhanced Imaging: φ(x) = TV (|x|) results in re-
constructions with emphasized piecewise-constant features,
TV (|x|) being the TV of magnitude of the complex-valued
image to be reconstructed [9], [17]. It is important to note that
SAR images are complex and we choose to apply the TV on the
magnitude of the SAR image. TV is known to reduce speckle
noise in images [9], [29]. By applying TV on the magnitude of
the reflectivity field, we aim to reconstruct speckle suppressed
images. The handling of complex SAR data requires special
care, as will be described in the sequel.

For an overview of recent work on the use of such sparsity-
enforcing methods in SAR imaging, see [4].

D. Augmented Lagrangian Methods (ALMs) for Imaging

ALMs approach constrained optimization problems by
adding a penalty term to the Lagrangian that is zero for any
feasible vector, which enables convergence under far more gen-
eral conditions [14]. ADMM, a particular form of ALMs, pro-
vides a divide-and-conquer approach by splitting the primal
variables to obtain separability in the Augmented Lagrangian,
and performing sequential updates that are simpler to imple-
ment. Algorithm 1 shows the steps of the ADMM for solving
problems of type (3) by Variable Splitting [16] and alternating
the optimization variable in sub-problems. For instance, setting
f1(x) = ‖Bx − y‖2

2 , G = I, and f2 = λφ(x) in Algorithm 1
yields the solution to problem (3), with steps that can be effi-
ciently implemented [16].

SALSA [16] and C-SALSA [17] are ADMM techniques for
image recovery problems that benefit from the augmented La-
grangian and variable splitting to efficiently solve problems of
the form (3) and (4), respectively. While there are different ap-
proaches in literature [30]–[32] for selection of λ in (3), these
techniques generally involve solving (3) many times, thus mul-
tiplying the associated computational cost by the number of
trials for different values of λ. As parameter selection is some-
what easier in the constrained form (4), we focus on the solu-
tion of constrained problems in this paper. The problem in (4)
with φ(x) = ‖x‖1 can be expressed in an unconstrained form
as [17]:

minimize
x

‖x‖1 + ιE (ε,I,y) (Bx) , (5)

Algorithm 1: ADMMADMM [17]
1.Set k = 0, choose μ > 0, z0 , d0

2.repeat

3.xk+1 = arg minx f1(x) + μ
2 ‖ (Gx − zk − dk ) ‖2

2

4.zk+1 = arg minz f2(z) + μ
2 ‖ (Gxk+1 − z − dk ) ‖2

2

5.dk+1 = dk − Gxk+1 + zk+1

6.k ← k + 1

7.until some stopping criterion is satisfied.

where ιE (ε,I,y) (Bx) is the indicator function of the feasible set
E(ε, I,y) such that:

E(ε,A,y) =
{
x ∈ CN : ‖Ax − y‖2 ≤ ε

}
, (6)

ιS (s) =
{

0, if s ∈ S
+∞, if s /∈ S

. (7)

The steps of C-SALSA are shown in Algorithm 2. The vectors
z(1)

0 and d(1)
0 are in CN , whereas z(2)

0 and d(2)
0 are in CM .

The operators Ψφ/μ and ΨιE ( ε , I , y ) are the Moreau proximal

mappings for 1
μ φ(x) = ‖x‖1

μ and ιE (ε,I,y) (s), and are given by

Ψφ/μ(s) = soft(y, 1/μ), (8)

and

ΨιE ( ε , I , y ) (s) =

{
s, if ‖s − y‖2 ≤ ε

y + ε (s−y)
‖s−y‖2

, if ‖s − y‖2 > ε
, (9)

respectively, where soft(y, τ) denotes the element-wise appli-
cation of the soft-thresholding function

y �→ sign(y) · max {|y| − τ, 0} , (10)

for real vectors [17]. In recovery of real images with the TVM
formulation, Ψφ/μ can be performed using Chambolle projec-
tions [33] to obtain the corresponding Moreau proximal map-
pings [17].

III. COMPLEX SAR IMAGING USING ALMS

In this section, we first consider the problem of handling phase
in the context of complex-valued SAR imaging and present the
proximal mapping functions associated with the 1-norm of a
linear transformation as well as with the TV of the reflectivity
magnitudes. Next, we generalize the problem and consider the
use of hybrid (1-norm plus TV of the magnitude) cost functions
and present an ADMM algorithm for this general case.

A. Handling Phase for Complex Imaging

The Moreau proximal mapping for φ is defined as:

proxφ(v) = arg min
x

φ(x) +
μ

2
‖x − v‖2

2 . (11)

We consider setting the cost function to 1-norm of a sparsify-
ing linear transformation of the magnitudes, φ(x) = ‖W|x|‖1 .
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Some transforms that can be used to sparsify natural images in-
clude wavelet and discrete cosine transforms. However, these
transformations should be applied on the magnitude of the
reflectivity field. Hence proximal mappings need to be ex-
tended to handle complex case. Theorem 1 below defines
a generalized Moreau proximal mapping for a cost function
φ(x) = ‖W|x|‖1 , that is the 1-norm of a linear transformation
W|x| of the vector of absolute values |x| of the complex vector
x ∈ CN .

Theorem 1: Let φ(x) = ‖W|x|‖1 for x ∈ CN , then
proxφ(v) = prox‖Wx‖1

(|v|)·exp{j∠(v)}.
For φ(x) = ‖x‖1 , an appropriate choice of the cost function

for complex images sparse in the spatial domain, the associated
Moreau proximal mapping is an extended version of the soft
thresholding mapping defined for real vectors. In particular,
setting W = I yields the proximal mapping function for �1-
norm as soft(|y|, τ) exp{j∠y}. The proof for the more general
case in Theorem 1 can be found in Appendix A. Also, a special
case of this proof is given for �1-norm in [34].

It is well-known that the TV is a more suitable cost function
for image components with piecewise-constant characteristics
to use within the constrained optimization formulation (4). For
recovering real-valued images with the TVM formulation, Ψφ/μ

can be performed using Chambolle projections to obtain the
corresponding Moreau proximal mappings. However, handling
of phase requires further care, especially in the isotropic TVM
formulation for complex-valued vectors x, which is not covered
by Theorem 1. As in the context of SAR imaging, it is important
to incorporate the fact that the field of reflectivity magnitudes
may be piecewise-constant, while the phase thereof may vary
randomly in each pixel. As such, the cost function φ(x) in (4)
should be selected as:

TV (|x|) =
∑
i,j

|∇ (|x|) |[i, j], (12)

where

|∇ (|x|) |[i, j] =
√

(Dh |x|)2 + (Dv |x|)2 , (13)

and

(Dh |x|) = |x[i + 1, j]| − |x[i, j]|, (14)

(Dv |x|) = |x[i, j + 1]| − |x[i, j]|. (15)

Here, we extend the use of ADMMs for image recovery to
include cases where the objective comprises the magnitude-
total-variation TV (| · |) of complex imagery. The TV of the
image magnitude given by φ(x) = TV (|x|) is associated with
the Moreau proximal mapping defined in Theorem 2:

Theorem 2: Let φ(x) = TV (|x|). Then, proxT V (|·|)(v)
[i, j] = proxT V (|v|) [i, j]·exp{j∠(v[i, j])}, where proxT V (·)
is the proximal mapping for the TV function TV (x).

The proof can be found in Appendix B.
For real-valued images, it is sufficient to use a fixed number

of steps involving Chambolle’s projections to account for the
Moreau proximal mapping for the TV function [17]. Similarly,
for complex-valued images, we apply Chambolle’s algorithm
for a fixed number of steps on the magnitude of the image, and

Algorithm 2: C-SALSA [17]

1.Set k = 0, choose μ > 0, z(1)
0 , z(2)

0 , d(1)
0 , d(2)

0

2.repeat

3.rk = z(1)
k + d(1)

k + BH
(
z(2)

k + d(2)
k

)

4.xk+1 =
(
I + BH B

)−1 rk

5.z(1)
k+1 = Ψφ/μ

(
xk+1 − d(1)

k

)

6.z(2)
k+1 = ΨιE ( ε , I , y )

(
Bxk+1 − d(2)

k

)

7.d(1)
k+1 = d(1)

k − xk+1 + z(1)
k+1

8.d(2)
k+1 = d(2)

k − Bxk+1 + z(2)
k+1

9.k ← k + 1

10.until some stopping criterion is satisfied.

combine the resulting magnitude with the initial phase at each
ADMM iteration. In mathematical terms:(
ΨT V (|·|)/μ(s)

)
[i, j] = exp{j∠(s[i, j])}

(
ΨT V (·)/μ(|s|)

)
[i, j],
(16)

where ΨT V (·)/μ is the Moreau proximal mapping corresponding
to the cost function TV (·)/μ, obtained herein using Chambolle
projections the same way as in C-SALSA [17].

Conventional isotropic TV is proven to exhibit compressed
sensing guarantees [35]. While the proof can not be directly ex-
tended to TVM, magnitude regularization has been previously
used with success in a compressive imaging framework [36].
Here we acknowledge that traditional compressed sensing guar-
antees are not currently known to be applicable for the proposed
TVM formulation. Still, empirical results suggest it to be suit-
able and effective for SAR imaging as will be shown in Section
IV. Future work in this respect is needed to fill the gap for the-
oretical guarantees of recovery through nonlinear sparsifying
transformations.

The proximal mapping functions defined here allow us to use
ADMM for complex SAR imagery with desired cost functions
on the magnitudes of the images.

B. ADMM for Constrained Optimization With a Hybrid Cost
Function

A critical aspect of feature enhanced SAR imaging, and com-
pressed sensing methods alike, is the proper selection of the
sparsifying transform. While 1-norm minimization in the image
domain tends to work well for strong scatterers in a weakly
scattering background, TV of the image magnitude performs
better for profiles with piecewise constant features. Nonethe-
less, natural scenes are usually a composition of sparse and
piecewise-constant scattering characteristics [9]. In practice, it
is essential to account for various scattering profiles present in
the region of interest for imaging, as it has been successfully
used in sparsity based SAR imaging [3], [9], [21], [37]. As such,
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we propose to use a hybrid cost function in the ADMM formu-
lation, in particular, a weighted sum of the 1-norm and the TV
of the image magnitude.

In particular, we use a solution to the constrained optimization
problem with a hybrid cost function, by separating the weighted
components in the augmented Lagrangian, starting from the
general ADMM framework given in Algorithm 1. Specifically,
in order to solve the optimization problem of the form:

minimize
x

α1φ1 (x) + · · · + αm φm (x)

subject to ‖Bx − y‖2 ≤ ε
, (17)

for m separable objective functions. We employ the variable
splitting scheme used in [16], [17], by introducing the concate-
nated variables:

z =
[
z(0) z(1) · · · z(m)

]T
, G =

[
BT I · · · I

]T
, (18)

for the transformed problem:

minimize
x

f1(x) + f2(z)

subject to Px + Qz − s = 0
. (19)

Let us set P = G,Q = −I, s = 0, f1(x) = 0, and

f2(z) = ιE (ε,I,y)

(
z(0)

)
+

m∑
i=1

αiφi

(
z(i)

)
, (20)

where ιE (ε,I,y)
(
z(0)

)
accounts for the indicator function asso-

ciated with the data fidelity constraint ‖Bx − y‖2 ≤ ε. This set-
ting ensures that Gx = z, and consequently: x = z(1) = · · · =
z(m) ,Bx = z(0) . The resulting ADMM steps are:

xk+1 = arg min
x

μ

2
(
‖Gx − zk − dk‖2

2
)

(21)

zk+1 = arg min
z

f2(z) +
μ

2
‖ (Gxk+1 − z − dk ) ‖2

2 (22)

dk+1 = dk − Gxk+1 + zk+1 . (23)

where Eq. (21) involves a quadratic cost and leads to a closed-
form solution:

xk+1 = (GH G)−1GH (dk + zk ) (24)

=
(
mI + BH B

)−1

[
m∑

i=1

d(i)
k + z(i)

k + BH
(
d(0)

k + z(0)
k

)]
.

(25)

Efficient solutions of Eq. (25) can be obtained using the
Woodbury matrix identity [17], such as in the case where B
represents the matrix associated with the observation of partial
Fourier transform data with BBH = I, so that:

(mI + BHB)−1 =
1
m

(I − 1
m + 1

BH B). (26)

Algorithm 3: ADMM with Hybrid cost function

1.Set k = 0, choose μ > 0, z(i)
0 , d(i)

0 , αi for all i

2.repeat

3.xk+1 = (mI + BHB)−1
[∑m

i=1 d(i)
k + z(i)

k

+BH
(
d(0)

k + z(0)
k

)]
4.for i = 1 · · · m

5.z(i)
k+1 = Ψφi

α i
μ

(
xk+1 − d(i)

k

)

6.d(i)
k+1 = d(i)

k − xk+1 + z(i)
k+1

7.endfor

8.z(0)
k+1 = ΨιE ( ε , I , y )

(
Bx − d(0)

)

9.d(0)
k+1 = d(0)

k − Bxk+1 + z(0)
k+1

10.k ← k + 1

11.until some stopping criterion is satisfied.

In order to solve Eq. (22), the second step in the ADMM, we
can use the variable splitting scheme [16], [17], to obtain:

z(i)
k+1 = arg min

z( i )
φi

(
z(i)

)
+

μ

2αi

(
‖xk+1 − z(i) − d(i)

k ‖2
2

)
, for i = 1 · · ·m (27)

z(0)
k+1 = arg min

z( 0 )
ιE (ε,I,y)

(
z(0)

)

+
μ

2

(
‖Bxk+1 − z(0) − d(0)

k ‖2
2

)
. (28)

Equation (27) can be recognized as the Moreau proximal

mapping Ψ α i
μ φi

(
xk+1 − d(i)

k

)
associated with function φi .

Equation (28) has a simple solution given by the orthogonal pro-

jection ΨιE ( ε , I , y )

(
Bxk − d(0)

k

)
onto the ε-radius hypersphere

centered at y [17].
The last step of the ADMM, shown in Eq. (23), simply con-

sists of the updates:

d(i)
k+1 = d(i)

k − xk+1 + z(i)
k+1 , for i = 1 · · ·m (29)

d(0)
k+1 = d(0)

k − Bxk+1 + z(0)
k+1 . (30)

With these substitutions, the ADMM solution we propose for
problem (17) is given in Algorithm 3. We have chosen m = 2,
the two cost functions as φ1(·) = ‖ · ‖1 and φ2(·) = TV (| · |)
for our experimental results in Section IV. Even though Algo-
rithm 3 can be viewed as an instantiation of the general algorithm
ADMM-2 in [17], the specified cost functions and transforma-
tions in problem (19) and Eq. (20) require adjustments given
in the above steps for completeness. Also, the solution here in-
cludes the fast solution of step 3 given in Eq. (26), as we describe
in the next section.
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C. Fast Solution of Proposed Approach For Unitary
Transform Domains

When the gathered data are in a unitary transform domain as
in our case, the proposed approach can be solved using only one
forward and one inverse transform per iteration. This includes
the fast calculation of xk+1 and Bxk+1 vectors as described
below.

Using B = MU, UUH = I and MMH = I, where M de-
notes the masking matrix and U denotes the unitary transform
matrix, we can conclude that BBH = I. Define a slack variable
qk as

qk =
m∑

i=1

d(i)
k + z(i)

k . (31)

Then, the updated step 3 of the algorithm can be re-written as

xk+1 =
1
m

(I − 1
m + 1

BHB)
[
qk + BH

(
d(0)

k + z(0)
k

)]
,(32)

xk+1 =
1
m

[
qk +

1
m + 1

BH
(
m

(
d(0)

k + z(0)
k

)
− Bqk

)]
.

(33)

Then, Bxk+1 can be calculated as

Bxk+1 =
1

m + 1

[
Bqk +

(
d(0)

k + z(0)
k

)]
. (34)

Therefore, besides proximal mapping functions, the algo-
rithm can be carried out using only one forward and one in-
verse transform per iteration. Since Fourier transform is unitary,
this can be applied to SAR imaging directly using the method
described in Section II. The implication of this is that this algo-
rithm now has the computational efficiency of greedy methods
such as orthogonal matching pursuit [39]. In the next section, we
study the performance of Algorithm 3 with numerical examples,
as well as real SAR data.

IV. EXPERIMENTAL RESULTS

In this section, we present several examples illustrating the
performance of the augmented Lagrangian approach for com-
plex SAR imaging. For the examples with TerraSAR [22], we
form the phase history data from reference SAR images obtained
from full-angle, full-bandwidth SAR returns; while we use com-
plex (I/Q) data in the phase history domain for experiments with
SARPER—airborne SAR system developed by ASELSAN. In
the implementation of Algorithm 3, the ADMM parameter μ
is multiplied by a scalar larger than 1 at each iteration, as is
suggested in [14], [17], in this case by a factor of 1.1 at each
iteration starting from a value of 10.

In our first example, in order to illustrate the effectiveness of
using magnitude-total-variation as the cost function, we perform
a simulation with two rectangular objects on a flat background.
For the low-resolution measurement scenario, 25% of the ref-
erence samples are maintained in a rectangular region in the
2-D Fourier space at the center of the grid. This scenario is
applicable in practice since all practical SAR sensors can be es-
sentially regarded as making observations with a band-limited /

Fig. 3. (a) Reference image. (b) Minimum-norm reconstruction. (c) TV over
real/imaginary parts. (d) TVM over magnitude.

narrow-aperture data. Each pixel in the spatial domain is given a
uniformly random phase value between 0 and 2π. Fig. 3(a)–(d)
show the reference image, the minimum-norm reconstruction
with zero-padding beyond the available samples, reconstruction
minimizing the TV over real and imaginary parts of the complex
SAR image, and lastly our proposed reconstruction by minimiz-
ing the TV of the magnitude of the complex SAR image using
the proximal mapping defined in Theorem 2. For the proximal
mapping function associated with TV, we used five iterations
of Chambolle projections [17], [33] in step 5 of Algorithm 3.
Clearly, the reconstruction by minimization of the TV of the real
and imaginary parts suffers from artifacts due to the spatial phase
variation in the complex image, not properly accounted for in
this approach. On the other hand, minimizing the magnitude-
total-variation results in more accurately represented features
in the center, as well as better overall contrast. This example
shows that our algorithm performs magnitude-total variation
regularization effectively.

Next, we study the performance of the hybrid cost function
for different sparsity, SNR, and sampling levels using simu-
lated data. We construct 128 × 128 random scenes consisting
of point and rectangularly-shaped targets (each dimension ≤ 5
pixels wide), and add randomly varying phase. We perform re-
constructions for sampling levels of {0.2, 0.4, 0.6}, and input
SNR levels of 30 dB and 10 dB, and measure the performance in
terms of peak-signal-to-noise-ratio (pSNR) of the reconstructed
images. For each SNR and sampling level, we have run this sim-
ulation 100 times with randomly generated scenes correspond-
ing to different sparsity levels. In our analysis of the results,
we consider both spatial sparsity as well as reflectivity gradient
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Fig. 4. pSNR versus scene sparsity and sparsity level of the reflectivity mag-
nitude gradient.

Fig. 5. Projection of the 3d plot onto scene sparsity versus pSNR axes.

magnitude sparsity. We define the sparsity rates as the ratio of
the number of non-zero reflectivities or gradients to the total
number of pixels. The plot relating pSNR, scene sparsity, and
sparsity level of the reflectivity magnitude gradient can be seen
in Fig. 4 for two different sampling levels. Fig. 5 shows the
projection of the 3-D plot on pSNR and scene sparsity axes,
for different SNR and sampling levels. It is interesting to note
that the reconstruction performance is acceptable at practical
input SNR levels such as 30 dB and 10 dB. We observe gradual
decrease in pSNR as we reduce the number of measurements,
add more noise, and make the scene less sparse.

In our next example, we study a TerraSAR [22] image
example with sparse features as well as piecewise-constant-
magnitude features. The binary random mask in the Fourier
space that contains 39% of the samples used for the reference
image. Even though completely random sub-sampling is not
currently applicable in practice, to show the performance of
the algorithm in a scenario involving irregular data limitations,

Fig. 6. TerraSAR reference image (top-left), Minimum-norm reconstruc-
tion (top-right), Minimum 1-norm reconstruction (middle-left), Minimum
magnitude-TV reconstruction (middle-right), Reconstruction with hybrid cost
including TV of real and imaginary parts (bottom-left), Proposed reconstruction
with hybrid cost including magnitude-TV (bottom-right)

we have used such a setting. For a study of practical sensing
and random sub-sampling considerations in mono- and multi-
static SAR, see, e.g., [40]. The parameter selection is made as
α1 = 0.8 for 1-norm and α2 = 0.2 for the hybrid cost function,
although other choices result in different levels of emphasis
in each feature associated with the corresponding weight. We
observed this choice of weights results in satisfactory imaging
performance, although the optimal selection may require a thor-
ough statistical study over a diverse set of SAR images, which
is beyond the scope of this paper. Fig. 6 shows the reference
image, the minimum-norm reconstruction, and reconstructions
with cost functions of 1-norm, magnitude-TV, hybrid-cost with
TV over real/imaginary parts and hybrid-cost with magnitude-
TV. The contrast across piecewise-constant features appear visu-
ally improved by the hybrid cost (with magnitude-TV) relative
to the 1-norm reconstruction, while better maintaining super-
resolution features compared to the minimum magnitude-TV
solution. The hybrid cost minimization including the TV over
real/imaginary parts also performs poorly in terms of the contrast
and speckle reduction compared to the hybrid cost minimization
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Fig. 7. Proposed reconstruction of TerraSAR images with α1 = 0.9 (top-
left), α1 = 0.8 (top-right), α1 = 0.7 (middle-left), α1 = 0.6 (middle-right),
α1 = 0.5 (bottom-left), α1 = 0.2 (bottom-right). In each case (α2 = 1 − α1 )

including magnitude-TV. This example also verifies that natural
scenes with a composition of more than one type of scatterer
characteristics [37] require the use of a suitable cost function for
feature-enhanced SAR imaging. As as result of the approach we
developed for complex SAR imagery, we are able to apply the
proposed method successfully on real data of natural scenes.

Fig. 7 shows the reconstruction results for a set of α1 values
comprised of {0.9, 0.8, 0.7, 0.6, 0.5, 0.2}. α2 was selected as
(1-α1) in each case. We observe that for larger α1 values, the
sparse features are more strongly emphasized, along with ac-
companying speckle characteristics. Decreasing α1 , or equiva-
lently increasing α2 , contributes to a better contiguity of smooth
structures in the image, while improving the suppression of
speckle noise. A selection of α1 = 0.8 results in a visual balance
between the sparse and smooth structures, whereas decreasing
α1 causes a slight oversmoothing of edges and sharper features
in the image. Thus, we have observed a graceful degradation
of the desired features with variation of the parameters α1 and
α2 . A more thorough study on the sensitivity of sparsity-driven
SAR imaging to the choice of hyperparameters, and methods
for automatic parameter selection can be found in [30].

In our final set of experiments, we apply our reconstruction
technique to data collected with SARPER. Data collection in

spotlight mode [24] is followed by interpolation of Fourier do-
main samples from polar to a rectangular grid. The collected
data are %56 oversampled in range direction. The reference im-
age obtained by 2-D inverse Fourier transformation of all of the
available data samples of size 5000 × 3500 is shown in Fig. 8.
The vertical axis (5000 elements) depicts range direction, and
the horizontal axis (3500 elements) depicts azimuth direction.
Minimum-norm reconstruction, following a rectangular mask-
ing operation containing 3.2% of all reference samples in the
Fourier space, is shown in Fig. 9. Fig. 10 better illustrates the
effectiveness of the method in preserving features of sparsity
and piecewise-smooth variation in magnitude, present in the
complex SAR imagery. Figs. 11–13 show similarly obtained re-
sults for a different scene, also indicating the applicability of our
technique to airborne SAR data with complex imagery of larger
sizes, such as 5000 × 3500, as is of interest in practical systems.
In both sets of examples, we can clearly see that the proposed
approach is successful in enhancing point-like and piecewise-
constant features in the reconstruction with the complex ADMM
SAR imaging framework.

Next we analyse the computational performance of our pro-
posed approach. That of C-SALSA, studied for real images,
in comparison to NESTA can be found in [17]. For complex
imaging, we compare our results to an equivalent unconstrained
problem as follows. We evaluate the feature-enhanced recon-
struction method (herein referred to as FERM) [9], for which
the performance results are given in Table I. The FERM solu-
tion is obtained first for a particular choice of the regularization
parameter, and the data fidelity error ε of the result is measured
and given as input to our method. To obtain a fair compari-
son, we set the stopping criterion for ADMM to reach the same
cost value as that of the FERM solution xf e , which is given by
α1‖xf e‖1 + α2TV (|xf e |). We implemented both algorithms
in Matlab. We used a mex function in Chambolle projection
step of the algorithm. The results in Table I show that the pro-
posed method requires less computation time and scales well
with larger image dimensions, though our analysis of computa-
tion times is based on a single selection of the hyperparameter.
The dimensions of the SAR images used in the comparisons
in Table I are 512 × 512 for TerraSAR, and 1024 × 1024 for
SARPER. Each iterative step of the FERM requires solving a
linear system of unknowns equal to the number of pixels in the
image. The solution of such a linear system in each iteration—
even when using methods such as conjugate gradient—does not
scale well with increasing image sizes, or is affected adversely
by reduction in available amount of data, as the conditioning of
the system becomes worse with less data. On the other hand,
for the proposed method, the computational bottlenecks in each
iteration are 2-D FFTs; and therefore the number of operations
per iteration scales well, with O(N log N), with number of pix-
els N . Furthermore, the proposed method’s computation time is
less sensitive to the reduction of data. Therefore, the proposed
method is more suitable for use with SAR images that are of
interest in practice, especially in compressed sensing scenarios
where the linear system associated with the measurement model
is inherently ill-conditioned.
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Fig. 8. Reference image from SARPER—airborne SAR system developed by ASELSAN.

Fig. 9. Minimum-norm reconstruction from 3.2% of reference samples in Fourier space.
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Fig. 10. Reconstruction with the proposed method from 3.2% of reference samples in Fourier space.

Fig. 11. Reference image from SARPER—airborne SAR system developed by ASELSAN.
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Fig. 12. Minimum-norm reconstruction from 3.2% of reference samples in Fourier space.

Fig. 13. Reconstruction with the proposed method from 3.2% of reference samples in Fourier space.
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TABLE I
COMPUTATION TIMES, ERROR- AND COST-RATIOS FOR FERM AND HYBRID ADMM (AVERAGE COMPUTATION TIMES AND COST FUNCTION VALUES OVER 200

RUNS) WHERE NADMM REPRESENTS THE ADMM ITERATION COUNT

Data Mask Type Data Percentage tFERM tADMM NADMM
ε ADMM
ε FERM

c o s t (x ADMM)
c o s t (x FERM)

TerraSAR Rectangular 75% 10.0 s 2.6 s 34 0.994 0.90
TerraSAR Rectangular 50% 12.5 s 2.4 s 34 0.992 0.90
TerraSAR Rectangular 25% 14.4 s 2.2 s 34 0.986 0.92
TerraSAR Rectangular 11% 16.7 s 1.0 s 17 0.981 0.91
TerraSAR Rectangular 6% 17.8 s 1.0 s 16 0.994 0.74
TerraSAR Random 39% 12.4 s 2.7 s 38 0.957 0.90
TerraSAR Random 22% 14.9 s 2.9 s 42 0.922 0.94
TerraSAR Random 12% 17.6 s 3.0 s 47 0.909 0.90
TerraSAR Random 6% 19.7 s 3.1 s 48 0.974 0.93
Sarper Rectangular 75% 82.5 s 12.8 s 39 0.990 1.00
Sarper Rectangular 50% 93.7 s 12.6 s 41 0.991 0.91
Sarper Rectangular 25% 112.8 s 12.4 s 43 0.988 0.90
Sarper Rectangular 11% 97.4 s 6.8 s 25 0.994 0.88
Sarper Rectangular 6% 72.8 s 7.3 s 27 0.996 0.65
Sarper Random 39% 99.4 s 13.2 s 42 0.989 0.98
Sarper Random 22% 110.1 s 13.1 s 44 0.988 0.90
Sarper Random 12% 113.4 s 12.8 s 45 0.985 0.94
Sarper Random 6% 74.6 s 14.1 s 51 0.988 0.92

V. DISCUSSION

In this paper, we introduced an Augmented Lagrangian based
approach for feature-enhanced / compressed SAR imaging. By
rigorously deriving the proximal mappings for TV of the reflec-
tivity magnitudes as well as for the 1-norm of a generic linear
transformation of the reflectivity magnitudes, we were able to
use an ADMM based technique that appropriately handles com-
plex SAR imagery. We used the technique in conjunction with a
hybrid cost function comprised of 1-norm and TV of reflectivity
magnitudes, as is more appropriate for natural SAR images con-
taining multiple types of features.. We were thus able to apply
our ADMM-based method on complex-valued real SAR data
from natural scenes. Our method is suitable for use with large
image sizes as the computational complexity scales well with
increasing dimensionality, as is typically desired in practical
systems.

We validated our approach using raw data collected using
SARPER—airborne SAR system developed by ASELSAN—
as well as controlled numerical examples and images from Ter-
raSAR to study the effectiveness of the proposed approach. Our
results illustrate the computational benefits of using the pro-
posed ADMM for complex SAR imaging, besides proving its
feasibility with real SAR imagery of moderately large dimen-
sions, with measurements obtained using SARPER.

An important aspect in SAR imaging is autofocusing [24],
also in the context of compressed sensing [41]–[43]. Future ef-
forts will focus on robustness to phase noise and other modeling
imperfections to complement the work presented in this paper.

APPENDIX A
PROOF OF THEOREM 1: PROXIMAL MAPPING ASSOCIATED

WITH THE 1-NORM OF A REAL VALUED LINEAR TRANSFORM

OF MAGNITUDE FOR COMPLEX IMAGES

Theorem 1: Let φ(x) = ‖W|x|‖1 for x ∈ CN , then
proxφ(v) = prox‖Wx‖1

(|v|)·exp{j∠(v)}.

Proof. First, define x and v as:

x = a + jb and v = c + jd, (35)

where a,b, c,d ∈ RN and W ∈ RN ×N . W[i, j] denotes the
i, j-th element of the matrix W, and W[i, :] denotes the row
vector which consists of the elements of i-th row of the matrix
W. Let us continue with the definition of proximal mapping.

proxφ (v) = arg min
x

φ(x) +
μ

2
‖x − v‖2

2

= arg min
a,b

∑
i

∣∣∣∣∣∣
∑

j

W[i, j]
√

a[j]2 + b[j]2

∣∣∣∣∣∣ (36)

+
∑

j

μ

2

(
(a[j] − c[j])2 + (b[j] − d[j])2

)
.(37)

Taking partial derivatives with respect to both real and imaginary
parts and equating each to zero vector gives the result as

a[j] +
∑

i

W[i, j]a[j]
μ|x[j]| sign(W[i, :]|x|) = c[j], (38)

b[j] +
∑

i

W[i, j]b[j]
μ|x[j]| sign(W[i, :]|x|) = d[j]. (39)

Summing Eqs. (38) and (39) multiplied with complex j side
by side yields:

a[j] + jb[j] +
∑

i

W[i, j](a[j] + jb[j])
μ|x[j]| sign(W[i, :]|x|)

= c[j] + jd[j], (40)
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x[j] +
∑

i

W[i, j]x[j]
μ|x[j]| sign(W[i, :]|x|) = v[j], (41)

exp{j∠x[j]}
(
|x[j]| +

∑
i

W[i, j]
μ

sign(W[i, :]|x|)
)

= exp{j∠v[j]}|v[j]|. (42)

One can divide Eq. (42) into two as phase and magnitude:

exp{j∠x[j]} = exp{j∠v[j]}, (43)

|x[j]| +
∑

i

W[i, j]
μ

sign(W[i, :]|x|) = |v[j]|. (44)

Just as easily one can derive proximal mapping for the real
valued counterpart φr = ‖Wx‖1 as:

proxφr
(v) = arg min

x
φr (x) +

μ

2
‖x − v‖2

2 , (45)

= arg min
x

∑
i

∣∣∣∣∣∣
∑

j

W[i, j]x[j]

∣∣∣∣∣∣ +
∑

j

μ

2
(x[j] − v[j])2 .

(46)

Same as before, taking partial derivative with respect to x and
equating it to zero vector gives the result:

x[j] +
∑

i

W[i, j]
μ

sign(W[i, :]x) = v[j]. (47)

If the input is positive valued, i.e. all elements of the vector v
is positive, then the left side of the equation must also be positive.
Therefore the result x must have all positive valued elements.
Therefore for an input of |v|, the output of the proximal mapping
function is as follows:

|x[j]| +
∑

i

W[i, j]
μ

sign(W[i, :]|x|) = |v[j]|. (48)

Eqs. (44) and (48) are exactly the same. Moreover, the phase
of the input must be equal to the phase of the output. Therefore
the following equality holds for any real valued linear transform
over x.

prox‖W |x|‖1
(v) = prox‖Wx‖1

(|v|) · exp{j∠(v)}. (49)

This concludes the proof of Theorem 1. �

APPENDIX B
PROOF OF THEOREM 2: PROXIMAL MAPPING ASSOCIATED

WITH THE MAGNITUDE-TOTAL-VARIATION FOR COMPLEX

IMAGES

Let us start with the definition of the proximal mapping asso-
ciated with the TV:

proxT V (v) = arg min
x

TV (x) +
μ

2
‖x − v‖2

2 . (50)

We are going to use two lemmas for our final proof.

Lemma 1: Let |∠(v[i, j])| = |∠(proxT V (v)[i, j])| for all
i, j. Then, the condition ∠(v[i, j]) = ∠(proxT V (v)[i, j]) holds
for the minimizer v = arg minx TV (x) + μ

2 ‖x − v‖2
2 .

Proof. If |∠(v[i, j])| = |∠(proxT V (v)[i, j])|, then ei-
ther ∠(v[i, j]) = ∠(proxT V (v)[i, j]) or ∠(v[i, j]) =
−∠(proxT V (v)[i, j]). Since we are operating on the in-
tensity (absolute value) of the pixels, neither of the choices
affect the first term. We need to check how the two choices
affect the second term, ‖x − v‖2

2 , where x = proxT V (v). We
can simplify this operation as below:

minimize
∑
i,j

∣∣∣∣ |x[i, j]| exp {j∠(x[i, j])}
−|v[i, j]| exp {j∠(v[i, j])}

∣∣∣∣
2

. (51)

If ∠(v[i, j]) = −∠(proxT V (v)[i, j]), then for each i, j pair,
the terms inside the summation is equal to

minimize
∑
i,j

(|x[i, j]| + |v[i, j]|)2 , (52)

whereas for ∠(v[i, j]) = ∠(proxT V (v)[i, j]), for each i, j the
term is equal to

minimize
∑
i,j

(|x[i, j]| − |v[i, j]|)2 . (53)

It is obvious that the absolute value of the sum of two non-
negative numbers as in Eq. (52) is greater than or equal to the
absolute value of the difference of the two non-negative numbers
as in (53). Therefore, setting ∠(v[i, j]) = ∠(proxT V (v)[i, j])
when |∠(v[i, j])| = |∠(proxT V (v)[i, j])| ensures the mini-
mization of each term in the summation in (51), and thus the
sum itself. �

Lemma 2: For a real image vector a ∈ RN ,
min(proxT V (a)) ≥ min(a).

Proof. We will use proof by contradiction. Let p =
proxT V (a), and i′, j′ denote the index values corresponding
to the minimum value of the image vector a. Assume that
p[i′, j′] < a[i′, j′]. Then, either (i) ‖∇p‖1 > ‖∇a‖1 or (ii)
p[i, j] − a[i, j] = c > 0 for all [i, j], for some c ∈ R. For case
(i), TV (p) > TV (a) and ‖p − a‖2

2 > 0; therefore p is not the
minimizer of the cost function associated with the proximal
mapping shown in (50). For case (ii), TV (p) = TV (a) and
‖p − a‖2

2 = N · c2 > 0; therefore, again, p is not the mini-
mizer of the cost function of the proximal mapping opera-
tor. However, both cases (i) and (ii) lead to a contradiction.
Hence, we conclude that min(p) ≥ min(a) is always satisfied
for p = proxT V (a). �

Theorem 2: Let φ(x) = TV (|x|). Then, proxT V (|·|)(v)
[i, j] = proxT V (|v|) [i, j]·exp{j∠(v[i, j])}, where proxT V (·)
is the proximal mapping for the TV function TV (x).

Proof. First, define x and v as:

x = a + jb, (54)

v = c + jd. (55)
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Let us continue with the definition of the magnitude-Total-
Variation:

TV (|x|) =
∑
i,j

∇|x|[i, j] (56)

Rewriting for the complex case, the associated proximal map-
ping becomes:

proxT V (|·|)(v) = arg min
a,b

∑
i,j

∇
(√

a[i, j]2 + b[i, j]2
)

+
μ

2
(
(a[i, j] − c[i, j])2 + (b[i, j] − d[i, j])2) . (57)

Let

∇1

(√
a[i, j]2 + b[i, j]2

)
= e[i, j] = |x[i, j]| − |x[i − 1, j]|,

(58)

∇2

(√
a[i, j]2 + b[i, j]2

)
= f [i, j] = |x[i, j]| − |x[i, j − 1]|.

(59)

Now the proximal mapping becomes:

proxT V (|·|)(v) = arg min
a,b

∑
i,j

√
e[i, j]2 + f [i, j]2

+
μ

2
((a[i, j] − c[i, j])2 + (b[i, j] − d[i, j])2). (60)

Taking derivatives with respect to both real and imaginary
parts, and setting them equal to zero yields the result. Beginning
with the real part:

∂
√

e[i, j]2 + f [i, j]2

∂a[i, j]
+

∂
√

e[i + 1, j]2 + f [i + 1, j]2

∂a[i, j]

+
∂
√

e[i, j + 1]2 + f [i, j + 1]2

∂a[i, j]
+ μ(a[i, j] − c[i, j]) = 0, (61)

a[i, j]
|x[i, j]|

(
μ|x[i, j]| + e[i, j] + f [i, j]√

e[i, j]2 + f [i, j]2

+
−e[i + 1, j]√

e[i + 1, j]2 + f [i + 1, j]2
+

−f [i, j + 1]√
e[i, j + 1]2 + f [i, j + 1]2

)

= μc[i, j]. (62)

Likewise, for the imaginary part:

∂
√

e[i, j]2 + f [i, j]2

∂b[i, j]
+

∂
√

e[i + 1, j]2 + f [i + 1, j]2

∂b[i, j]

+
∂
√

e[i, j + 1]2 + f [i, j + 1]2

∂b[i, j]
+ μ(b[i, j] − d[i, j]) = 0,(63)

b[i, j]
|x[i, j]|

(
μ|x[i, j]| + e[i, j] + f [i, j]√

e[i, j]2 + f [i, j]2

+
−e[i + 1, j]√

e[i + 1, j]2 + f [i + 1, j]2
+

−f [i, j + 1]√
e[i, j + 1]2 + f [i, j + 1]2

)

= μd[i, j]. (64)

Dividing Eq. (64) by Eq. (62) side by side, we reach:

b[i, j]
a[i, j]

=
d[i, j]
c[i, j]

. (65)

The result above implies that |∠(v[i, j])| = |∠(x[i, j])|. By
Lemma 1, we can say that ∠(v[i, j]) = ∠(x[i, j]).

Multiplying (64) by j and summing with (62) yields:

a[i, j] + jb[i, j]
|x[i, j]|

(
μ|x[i, j]| + e[i, j] + f [i, j]√

e[i, j]2 + f [i, j]2

+
−e[i + 1, j]√

e[i + 1, j]2 + f [i + 1, j]2
+

−f [i, j + 1]√
e[i, j + 1]2 + f [i, j + 1]2

)

= μ(c[i, j] + jd[i, j]), (66)

x[i, j]
|x[i, j]|

(
μ|x[i, j]| + e[i, j] + f [i, j]√

e[i, j]2 + f [i, j]2

+
−e[i + 1, j]√

e[i + 1, j]2 + f [i + 1, j]2
+

−f [i, j + 1]√
e[i, j + 1]2 + f [i, j + 1]2

)

= μv[i, j], (67)

exp{j∠(x[i, j])}
(

μ|x[i, j]| + e[i, j] + f [i, j]√
e[i, j]2 + f [i, j]2

+
−e[i + 1, j]√

e[i + 1, j]2 + f [i + 1, j]2
+

−f [i, j + 1]√
e[i, j + 1]2 + f [i, j + 1]2

)

= μv[i, j], (68)

μ|x[i, j]| + e[i, j] + f [i, j]√
e[i, j]2 + f [i, j]2

+
−e[i + 1, j]√

e[i + 1, j]2 + f [i + 1, j]2
+

−f [i, j + 1]√
e[i, j + 1]2 + f [i, j + 1]2

= μ|v[i, j]|. (69)

Next we consider the proximal mapping associated with the
TV of a real valued input. Solving Eq. (61), by setting b = 0,
d = 0, and defining:

proxT V (c) = arg min
a

∑
i,j

|∇a|[i, j] +
μ

2
(a[i, j] − c[i, j])2 ,

(70)

and

(∇1a) [i, j] = e′[i, j] = a[i, j] − a[i − 1, j], (71)

(∇2a) [i, j] = f ′[i, j] = a[i, j]| − a[i, j − 1]. (72)

Taking derivative of Eq. (70) with respect to a yields as in
Eq. (61):

∂
√

e′[i, j]2 + f ′[i, j]2

∂a[i, j]
+

∂
√

e′[i + 1, j]2 + f ′[i + 1, j]2

∂a[i, j]

+
∂
√

e′[i, j + 1]2 + f ′[i, j + 1]2

∂a[i, j]
+ μ(a[i, j] − c[i, j]) = 0,

(73)
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μa[i, j] +
e′[i, j] + f ′[i, j]√
e′[i, j]2 + f ′[i, j]2

+
−e′[i + 1, j]√

e′[i + 1, j]2 + f ′[i + 1, j]2
+

−f ′[i, j + 1]√
e′[i, j + 1]2 + f ′[i, j + 1]2

= μc[i, j]. (74)

At this point we use Lemma 2 to reach the following state-
ment. When all elements of the input image are non-negative, the
proximal mapping associated with the TV function will result
in an output image with non-negative elements only.

Next, let the input of proxT V (·) be |v|, which is popu-
lated with non-negative real elements only. Then the output
a′ has only non-negative elements. Setting x′[i, j] = |x′[i, j]| in
Eq. (74), we get:

μ|x′[i, j]| + e[i, j] + f [i, j]√
e[i, j]2 + f [i, j]2

+
−e[i + 1, j]√

e[i + 1, j]2 + f [i + 1, j]2
+

−f [i, j + 1]√
e[i, j + 1]2 + f [i, j + 1]2

= μ|v′[i, j]|. (75)

The resulting equation is exactly the same as (69). Thus, we
reach the result:

proxT V (|v|)[i, j] = x′[i, j] = |x[i, j]| =
∣∣∣proxT V (|·|)(v)[i, j]

∣∣∣ .

(76)

Equation (65), together with Lemma 1, implies preservation
of the phase ∠(v[i, j]). Hence, we reach the following result:

proxT V (|·|)(v)[i, j] = proxT V (|v|)[i, j] · exp{j∠(v[i, j])}

such that φ(x) = TV (|x|) .
(77)

that is the argument of Theorem 2.
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