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Abstract—We present an alternating direction method of mul-
tipliers (ADMM) based autofocused Synthetic Aperture Radar
(SAR) imaging method in the presence of unknown 1-D phase
errors in the phase history domain, with undersampled mea-
surements. We formulate the problem as one of joint image
formation and phase error estimation. We assume sparsity of
strong scatterers in the image domain, and as such use sparsity
priors for reconstruction. The algorithm uses `p-norm mini-
mization (p ≤ 1) [8] with an improvement by integrating the
phase error updates within the alternating direction method of
multipliers (ADMM) steps to correct the unknown 1-D phase
error. We present experimental results comparing our proposed
algorithm with a coordinate descent based algorithm in terms of
convergence speed and reconstruction quality.

I. INTRODUCTION

Phase errors in Fourier domain must be corrected before
forming synthetic aperture radar (SAR) images. The phase
errors occur due to non-ideal propagation media or navigation
errors. The errors degrade image quality. There are several
algorithms that can estimate and correct the phase error,
however these algorithms have not been proven to work well
in the context of compressed sensing. While sparsity-driven
autofocused SAR imaging has been proposed before [1], [2],
[3], [4], [5], computationally efficient algorithms for practical
use remains a challenge. Our contribution here is an improved
and computationally efficient alternating direction method of
multipliers (ADMM) based algorithm for autofocused com-
pressive SAR imaging.

ADMM is an augmented Lagrangian method based al-
gorithm that solves a given problem by dividing it into two
easier sub-problems and augmenting each sub-problem with a
Lagrangian term for fast convergence. The resulting algorithm
converges under mild conditions [6]. The method has been
shown to be useful and fast for SAR formulation [7], [8].

In this study, we tackle the problem of reconstructing syn-
thetic aperture radar (SAR) images from compressive measure-
ments, while estimating 1-D phase error in azimuth direction in
the phase history domain. We solve a problem similar to [1]
using ADMM framework. The augmented Lagrangian helps
speed up the convergence of the algorithm. We demonstrate
the effectiveness of the algorithm on two datasets: a synthetic
[9], and an experimental [10]. We demonstrate the algorithm
on the experimental data collected with SARPERTM, airborn
SAR system developed by ASELSAN [10]. We show the im-

provements on the image quality and the speed of convergence
over a previous proposed framework in terms of RMSE [1].

II. BACKGROUND

A. Observation Model

A linear observation model can be considered as SAR
observation model in relating the image to collected data
vector. Although we will refer to matrix notation, the matrices
are not formed explicitly. We assume that the data lies in phase
history domain, and the forward model is simply the selection
of some elements in Fourier transformation of the reflectivity
field, and the operations including the forward model are
carried out using fast Fourier transform (FFT) algorithm. Let
B ∈ CMxN with M < N denote the forward operator,
y ∈ CM denote the data vector, and x ∈ CN denote the
vector formed by concatenating image into vector form. Let
the unknown 1-D phase error term be denoted by φ ∈ <n, n
being the number of samples in the azimuth direction. Let us
define B as forward model:

B = MU, (1)

where M ∈ <MxN is the element selection matrix, and U
is the 2-D Fourier transformation matrix. Let us now define
corrected data as:

y(φ) = y · exp{jφ}, (2)

where the multiplication is defined as multiplying each ele-
ment yi of y with the corresponding phase correction element
φ[i]. Here multiple elements of the data vector corresponds to
the same element in φ depending on the row that y lies in.
The measurement vector y(φ) is given by the model:

y(φ) = Bx + η, (3)

where η ∈ CM denotes the additive noise vector.

B. Sparsity Driven Autofocus (SDA)

The outlined problem of 1-D autofocus is a problem of
estimation of the phase error vector φ. There are several
sparsity driven approaches in the literature that attack this



problem [2], [3], [11], [4]. The methods usually solve a sparsity
enhancing optimization problem by minimizing the functional:

J(f ,φ) = ‖y −B(φ)f‖22 + λ‖f‖1, (4)

where B(φ) denotes phase corrected model. Here, note
that the problems Eq. (2) and Eq. (4) are equivalent.

The proposed method in [2] minimizes objective function
J(f ,φ) over both f , and φ. The algorithm separates for two
variables, then applies coordinate descent to solve it. It uses
conjugate gradient for the minimizing with respect to f , and
analytical solution for minimizing with respect to φ. We only
deal with 1-D phase errors, however, [2] includes solving
the proposed problem for 1-D, 2-D separable, and 2-D non-
separable cases. For this reason, we only give the analytical
solution for 1-D phase error as:

φ
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III. AUTOFOCUSING ADMM

In this section we propose recovering SAR images by
solving an optimization problem with a computationally effi-
cient algorithm. A previous version of the algorithm solves the
problem using a coordinate descent structure with a conjugate
gradient or ADMM to update the image estimate in each outer
step of the iterations [1], [2]. Here, we propose an ADMM
based algorithm that converges quickly using the power of
ADMM, within a linear model [1], [2], [7]. We assume that the
scene is sparse, and the unknown phase error is 1-dimensional.
Hence, we solve the following problem [1], [2]:

minimize
x,φ

f (x)

subject to ‖Bx− y · exp {jφ}‖2 ≤ ε
, (7)

where f(·) denotes the sparsity prior such as `p-norm with p ≤
1, B denotes the forward model of masked Fourier transform,
y denotes received signal, φ denotes the unknown phase, and ε
denotes the bound on data-fidelity. In order to find an optimal
x in (7), we use ADMM, which in its most general form solves
problems of the type:

minimize
x

f1(x) + f2(z)

subject to Gx + Qz−m = 0
. (8)

In (8) we let

z =

 z(1)

z(2)

φ

 , G =

[
I
B

]
,

Q =

[
−I 0 0
0 −I 0

]
, m = 0, f1(x) = 0 (9)

and

f2(z) = f
(
z(1)

)
+ ιE(ε,I,y·exp{jφ})

(
z(2)

)
, (10)

where ιE(ε,I,y·exp{jφ}) (x) accounts for the indicator function
associated with the data fidelity constraint ‖Bx−y‖2 ≤ ε as:

E(ε,A,y) =
{
x ∈ CN : ‖Ax− y‖2 ≤ ε

}
, (11)

ιS(s) =

{
0, if s ∈ S
+∞, if s /∈ S . (12)

This setting ensures that Gx = z, and consequently: x =
z(1),Bx = z(2) and that there is no constraint on φ. Note
that φ ∈ Rn1 , and not Rn1xn2 , where n1 and n2 denote the
size of the reconstructed image in two dimensions. y·exp{jφ}
denotes the phase correction step of the data. i-th element of
the result is calculated as y[i] exp{jφ[m]}, where m is the
azimuth index corresponding to data point y[i].

ADMM consists of the following iterations:

xn+1 = argmin
x

f1(x) +
µ

2
‖ (Gx + Qzn + dn) ‖22 (13)

zn+1 = argmin
z

f2(z) +
µ

2
‖ (Gxn+1 + Qz + dn) ‖22 (14)

dn+1 = dn + Gxn+1 + Qzn+1 (15)

Then, x-update step is a simple least squares solution, and an
efficient solution has been previously provided in the SAR
imaging context [7], using two FFTs per iteration. The z-
update step consists of two separable equations as in [12]:

z
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f(z(1)) +

µ

2
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(16)
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2
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The update step related to (16) is known as the Moreau
proximal mapping [12] of f . In this study, we use `p-norm
as the objective function, for which an approximation to the
associated proximal mapping has been previously defined [8].

Next we reformulate (17) by putting the problem into the
constrained form as follows:

z
(2)
k+1 = arg min

z(2),φ

∥∥∥Bxk+1 − z(2) − d
(2)
k

∥∥∥2
2

subject to ‖z(2) − y · exp {jφ}‖2 ≤ ε. (18)

The solution can be found in two steps. Let yk = y ·
exp {jφk}, and s = Bxk+1 − d

(2)
k . Then for fixed φ,

the solution to the equation is a simple projection onto the
hypersphere, given by:

ΨιE(ε,I,yk)
(s) =

{
s, if ‖s− yk‖2 ≤ ε
yk + ε (s−yk)

‖s−yk‖2 , if ‖s− yk‖2 > ε
.

(19)

Hence, the solution always lies on the line between yk and s.
Choosing φ to minimize the Euclidian distance between yk
and s, we obtain an analytical solution for φ in (17) through

φk+1 = argmin
φ
‖y · exp {jφk} − s‖22, (20)



the solution of which can be derived as [1], [2]:

φ[m] = − arctan 2
(
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})
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where arctan2 denotes the four-quadrant arctangent, and m de-
notes the azimuth index. Consequently, z(2) can be calculated
using (19) with a simple projection.

The resulting method is given in Algorithm 1.

Algorithm 1: ADMM based Autofocusing Iteratively Re-Weighted
Augmented Lagrangian Method
1. Set k = 0

choose µ > 0, z
(1)
0 , z

(2)
0 , d

(1)
0 , d

(2)
0 , 0 < p < 1

2. repeat
3. qk+1 = B

(
z
(1)
k + d

(1)
k

)
4. xk+1 = z

(1)
k + d

(1)
k + 1

2BH
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z
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k − qk+1

)
5. Bxk+1 = 1

2

(
z
(2)
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(2)
k + qk+1

)
6. wk+1 = (x + β)(1−p)

7. z
(1)
k+1 = 1

w soft(w × (xk+1 − d
(1)
k ), p/µ)

8. φ1−D[m]k+1 = − arctan 2
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Im
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9. z
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k

)
10. d
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k+1 = d

(1)
k − xk+1 + z

(1)
k+1

11. d
(2)
k+1 = d

(2)
k −Bxk+1 + z

(2)
k+1

12. k ← k + 1
13. until some stopping criterion is satisfied.

While the guarantees for convergence to global minimum
in the convex case [6] do not apply here, we observe that
the algorithm performs successfully, even for smaller p values
such as p = 0.1, as studied in the next section.

IV. RESULTS

We implemented the algorithm in MATLAB and ran the
reconstruction routines on a workstation with dual Intel Xeon
E5-2650 v2 and 64 GB of RAM. The values of all dual
variables (z(1), z(2),d(1),d(2)) were initialized to zero.

First, we show the results on a simulated dataset. For this
purpose, we purposely add 1-D phase error in azimuth direc-
tion on a backhoe image [9]. Then, we subsample the image in
the Fourier domain to 39% of full-data using a random binary
mask. We consider two reduced data scenarios (1) rectangular
sub-sampling which models limitations in signal bandwidth
or azimuth aperture length, and (2) random subsampling to
model an irregular data limitation scenario. We also study the
performance of the method with a rectangular mask by sub-
sampling the image at a rate of 25% with respect to the full
data in the Fourier space centered around the origin. We run the
proposed autofocused ADMM algorithm and AIRWALM [1]
using different p values. Figure 1 and Fig. 2 show the change of
error in the estimated phase values with respect to the number
of iterations for both algorithms, with different values of p.
Coordinate descent with smaller values of p does not converge,
which is the reason for the absence of the corresponding curves
in Fig. 1 and Fig. 2. We note that the smaller values of p yield
better performance (smaller phase error) for both algorithms,
while convergence of coordinate descent is compromised with
smaller p. Figure 3 shows the reference image with phase
error (Fig. 3a), undersampled image with a rectangular mask

Fig. 1. RMSE in Phase Error estimation in Radians versus iteration for
Autofocusing ADMM and AIRWALM(Coordinate Descent) with different p
values using a random mask for data reduction in the Fourier space.

(Fig. 3b), and reconstruction results for p = 1 and p = 0.1
(Fig. 3c–d). As it can be seen, reconstruction images can
successfully estimate and cancel undersampling and phase
error effects.

Next, we show the results on real data obtained with
SARPER

TM
– airborne SAR system developed by ASELSAN

[10]. Again, just as in the previous experiment, we subsample
the image to 39% using a random binary mask. Then, we run
the proposed algorithm with different values of p. Figure 4
shows the reconstructions of the proposed method for different
p-values at the end of 200 iterations. Before reconstruction, the
image has both phase error and undersampling artifacts as it
can be seen in Fig. 4a and Fig. 4b. The reconstruction images
show an improvement with no artifact present. As p decreases,
point scatterers are enhanced even further, and hence the dark
spots on the figures constitute visibly higher contrast.

V. CONCLUSION

In this study, we proposed an augmented Lagrangian
method based algorithm for autofocused compressive SAR
imaging. We derived the method based on alternating di-
rection method of multipliers, and experimentally studied its
performance on simulated and real datasets. We compared the
algorithm to a previous approach based on coordinate descent
and observed better performance in terms of the number of
iterations as well as phase-error and focusing ability.
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