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Abstract

Segmenting images of low quality or with missing data

is a challenging problem. Integrating statistical prior in-

formation about the shapes to be segmented can improve

the segmentation results significantly. Most shape-based

segmentation algorithms optimize an energy functional and

find a point estimate for the object to be segmented. This

does not provide a measure of the degree of confidence in

that result, neither does it provide a picture of other proba-

ble solutions based on the data and the priors. With a statis-

tical view, addressing these issues would involve the prob-

lem of characterizing the posterior densities of the shapes of

the objects to be segmented. For such characterization, we

propose a Markov chain Monte Carlo (MCMC) sampling-

based image segmentation algorithm that uses statistical

shape priors. In addition to better characterization of the

statistical structure of the problem, such an approach would

also have the potential to address issues with getting stuck

at local optima, suffered by existing shape-based segmenta-

tion methods. Our approach is able to characterize the pos-

terior probability density in the space of shapes through its

samples, and to return multiple solutions, potentially from

different modes of a multimodal probability density, which

would be encountered, e.g., in segmenting objects from mul-

tiple shape classes. We present promising results on a vari-

ety of data sets. We also provide an extension for segment-

ing shapes of objects with parts that can go through inde-

pendent shape variations. This extension involves the use of

local shape priors on object parts and provides robustness

to limitations in shape training data size.

1. Introduction

Prior knowledge about the shapes to be segmented is

required for segmentation of images involving limited and

low quality data. In many applications, object shapes come

from multiple classes (i.e., the prior shape density is “mul-
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Figure 1. Examples of MCMC sampling. First row: on an object

with a unimodal shape density. Second row: on an object with a

multimodal shape density.

timodal”) and the algorithm does not know the class of the

object in the scene. For example, in the problem of seg-

menting objects in a natural scene (e.g., cars, planes, trees,

etc.), a segmentation algorithm should contain a training

set of objects from different classes. Another example of

a multimodal density is the shape density of multiple hand-

written digits, e.g., in an optical character segmentation and

recognition problem. In this paper, we consider segmen-

tation problems that involve limited and challenging im-

age data together with complex and potentially multimodal

shape prior densities.

The shape-based segmentation approach of Tsai et al.

[20] uses a parametric model for an implicit representation

of the segmenting curve by applying principal component

analysis to a training data set. Such techniques can han-

dle only unimodal, Gaussian-like shape densities and can-

not deal with “multimodal” shape densities. Kim et al. [12]

and Cremers et al. [6] propose nonparametric methods for

handling multimodal shape densities by extending Parzen

density estimation to the space of shapes. These methods

minimize an energy function containing both data fidelity

and shape terms, and find a solution at a local optimum.

Having such a point estimate does not provide any mea-

sure of the degree of confidence/uncertainty in that result



or any information about the characteristics of the posterior

density, especially if the prior shape density is multimodal.

Such a more detailed characterization might be beneficial

for further higher-level inference goals such as object recog-

nition and scene interpretation.

Our contributions in this paper are twofold. First, as the

major contribution, we present a Markov chain Monte Carlo

(MCMC) sampling approach that uses nonparametric shape

priors for image segmentation. Our MCMC sampling ap-

proach is able to characterize the posterior shape density by

returning multiple probable solutions and avoids the prob-

lem of getting stuck at a single local optimum. To the best

of our knowledge, this is the first approach that performs

MCMC shape sampling-based image segmentation through

an energy functional that uses nonparametric shape priors

and level sets. We present experimental results on several

data sets containing low quality images and occluded ob-

jects involving both unimodal and multimodal shape den-

sities. As a second contribution, we provide an extension

within our MCMC framework, that involves a local shape

prior approach for scenarios in which objects consist of

parts that can exhibit independent shape variations. This ex-

tension allows learning shapes of object parts independently

and then merging them together. This leads to more effec-

tive use of potentially limited training data. We demonstrate

the effectiveness of this approach on a challenging segmen-

tation problem as well.

Some exemplary results of our MCMC shape sampling

approach that uses nonparametric shape priors are illus-

trated in Figure 1. The first row of Figure 1 shows three

different samples obtained by our approach given the par-

tially occluded aircraft test image in the first column of the

corresponding row. In this experiment, the training set con-

tains only examples of aircraft shapes, i.e., the shape density

is unimodal, meaning that there are no well-defined sub-

classes. The second row of the figure contains an MCMC

shape sampling example on handwritten digits. In this ex-

ample, the training set consists of examples from ten differ-

ent digit classes. Here, our approach is able to find multiple

probable solutions from different modes of the shape den-

sity.

2. Related Work

Most of the sampling-based segmentation methods in the

literature use an energy functional that include only a data

fidelity term [2, 3, 9] which means that they are only capa-

ble of segmenting objects whose boundaries are mostly vis-

ible. Among these approaches, Fan et al. [9] have developed

a method that utilizes both implicit (level set) and explicit

(marker-based) representations of shape. The proposal dis-

tribution generates a candidate sample by randomly per-

turbing a set of marker points selected on the closed curve.

Due to the use of marker points in perturbation, this ap-

proach is only applicable to segmentation of simply con-

nected shapes, i.e., it cannot handle topological changes.

Later, Chang et al. [2] have proposed an efficient MCMC

sampling approach on a level set-based curve representa-

tion that can handle topological changes. Random curve

perturbation is performed through an addition operator on

the level set representation of the curve. Additive pertur-

bation is generated by sampling from a Gaussian distribu-

tion. They also introduce some bias to the additive pertur-

bation with the gradient of the energy function to achieve

faster convergence. The method is further extended in [3]

to achieve order of magnitude speed up in convergence by

developing a sampler whose samples at every iteration are

accepted. Additionally, they incorporate topological con-

straints to exploit prior knowledge of the shape topology.

Chen et al. [5] use the shape prior term suggested by Kim

et al. [12] and Cremers et al. [6] together with a data fidelity

term in the energy functional. Samples are generated by

constructing a smooth normal perturbation at a single point

on the curve which preserves the signed distance property

of the level set. The method is restricted to segmentation of

simply connected shapes due to its inability to handle topo-

logical changes. Therefore, the approach is not applicable

to shapes with complex boundaries.

De Bruijne et al. [7] propose a particle filter-based seg-

mentation approach that exploits both shape and appearance

priors. The method assumes that the underlying shape dis-

tribution is unimodal. Therefore, it cannot handle cases

when the shapes in the training set comes from a multi-

modal density.

Eslami et al. [8] propose a shape model that learns binary

shape distributions using a type of deep Boltzmann ma-

chine [19] and generates samples using block-Gibbs sam-

pling. The model is able to learn multimodal shape densi-

ties, however, samples generated from the distribution come

only from a particular class closest to the observed data.

3. Metropolis-Hastings Sampling in the Space

of Spaces

With a Bayesian perspective, segmentation can be

viewed as the problem of estimating the boundary C based

on image data:

p(C|data) ∝ exp(−E(C)) (1)

where,

E(C) = Edata(C) + Eshape(C) = − log p(data|C) − log pC(C)
(2)

In this paper, we present an algorithm to draw samples

from p(C|data) which is, in general, a complex distribution

and is not possible to sample from directly.
MCMC methods were developed to draw samples from

a probability distribution when direct sampling is non-
trivial. We use Metropolis-Hastings sampling [16] which



has been previously used for image segmentation [9, 5, 2].
In Metropolis-Hastings sampling, instead of directly sam-
pling from p, a proposal distribution q is defined and sam-
ples from q are accepted in such a way that samples from
p are generated asymptotically. The Metropolis-Hastings
acceptance probability is defined as

Pr
[

C(t+1) = C(t+1)|C(t)
]

= min

[

π(C(t+1))

π(C(t))
.
q(C(t)|C(t+1))

q(C(t+1)|C(t))
︸ ︷︷ ︸

Metropolis-Hastings ratio

, 1

]

.

(3)

The Metropolis-Hastings threshold, η, is randomly gen-

erated from the uniform distribution in [0, 1]. The candi-

date (proposed) sample C(t+1) is accepted if Pr
[

C(t+1) =

C(t+1)|C(t)
]

is greater than η. Otherwise, C(t+1) = C(t).

In Equation 3, C(t) and C(t+1) represent the current sam-

ple and proposed sample, respectively. The superscripts

(t) and (t + 1) denote the sampling iteration count, and

π(C) ∝ exp(−E(C)). After a sufficient number of it-

erations (i.e., the mixing time) a single sample from the

posterior is produced by converging to the stationary dis-

tribution. Evaluating the acceptance probability is a key

point in MCMC methods. Correct evaluation of the ac-

ceptance probability satisfies the sufficient conditions for

convergence to the desired posterior distribution: detailed

balance and ergodicity. Therefore, the problem turns into

the correct computation of forward q(C(t+1)|C(t)) and re-

verse q(C(t)|C(t+1)) transition probabilities of the proposal

distribution.

4. MCMC Shape Sampling using Nonparamet-

ric Shape Priors

We assume that the curve at the 0th sampling iteration,

C(0), is the curve that is found by minimizing only the data

fidelity term, Edata(C). We use piecewise-constant ver-

sion of the Mumford-Shah functional [18, 1] for data driven

segmentation. One can consider optimizing more sophis-

ticated energy functions such as mutual information [13],

J-Divergence [11], and Bhattacharya Distance [17] to ob-

tain C(0). Also, using an MCMC sampling based approach

for data driven segmentation can enrich the sampling space

since it would allow subsequent MCMC shape sampling to

use several initial curves to start from. After the curve finds

all the portions of the object boundary identifiable based on

the image data only (e.g., for a high SNR image with an

occluded object, one would expect this stage to capture the

non-occluded portions of the object reasonably well), we

activate the process of generating samples from the under-

lying space of shapes using nonparametric shape priors.

The overall proposed MCMC shape sampling algorithm

is given in Algorithm 1. The steps of the algorithm are ex-

plained in the following three subsections.

Algorithm 1 MCMC Shape Sampling

1: for i = 1 → M do ⊲ M : # of samples to be generated

2: Randomly select class of C(0) as introduced in Sec-

tion 4.1.

3: for t = 0 → (N − 1) do ⊲ N : # of sampling iterations

4: Generate candidate sample C̃(t+1) from curve

C̃(t) as introduced in Section 4.2.

⊲ The steps between 5 - 10 are introduced in Section 4.3

5: Calculate Metropolis-Hastings ratio, Pr

6: η = U[0,1]

7: if (t+ 1) = 1 OR η < Pr then

8: C̃(t+1) = C̃(t+1) ⊲ Accept the candidate

9: else

10: C̃(t+1) = C̃(t) ⊲ Reject the candidate

11: end if

12: end for

13: end for

4.1. Random class decision

Suppose that we have a training set C = {C1, . . . , Cn}
consisting of shapes from n different classes where each

class Ci = {Cij |j ∈ [1,mi] ∈ Z} contains mi different

example shapes. We align training shapes Cij into C̃ij us-

ing the alignment approach presented in Tsai et al. [20] in

order to remove the artifacts due to pose differences such as

translation, rotation, and scaling.

We exploit the shape prior term pC(C) proposed by Kim

et al. [12] to select the class of the curve C̃(0). The prior

probability density function of the curve evaluated at sam-

pling iteration zero is

pC(C̃
(0)) =

1

n

n
∑

i=1

1

mi

mi
∑

j=1

k(dL2(φC̃(0) , φC̃ij
), σ) (4)

where k(., σ) is a 1D Gaussian kernel with kernel size σ,

dL2(., .) is the L2 distance metric and φ denotes the level

set representation of a curve. Also, note that C̃(0) is the

aligned version of C(0) with the training set. By exploiting

Equation 4, we can compute the prior probability density of

the shapes in Ci evaluated at C̃(0), p′Ci
(C̃(0)), as follows

p′Ci
(C̃(0)) ∝

1

mi

mi
∑

j=1

k(dL2(φC̃(0) , φC̃ij
), σ). (5)

We randomly select a class for shape C̃(0) where the prob-

ability of selecting a class is proportional to the value of

p′Ci
(C̃(0)) computed in Equation 5. When we generate mul-

tiple samples, the random class selection step helps us ob-

tain more samples from the classes having higher probabil-

ities.



4.2. Generating a candidate sample

In this section, we explain how to generate a candidate

sample from the proposal distribution q. Once the class of

C̃(0) is randomly selected, we perform curve perturbation

exploiting the training samples in this class. Let C̃r be the

set that contains the training shapes from the selected class

r. We randomly choose γ training shapes from C̃r where

the probability of selecting each shape is proportional to its

similarity with C̃(t). We compute the similarity between a

training shape C̃rj and C̃(t) as the value of the probability

density function, s, at C̃rj where,

sC̃(t)(C̃rj) ∝ k(dL2(φC̃(t) , φC̃rj
), σ). (6)

Note that a training shape can be selected multiple times and

random training shape selection is repeated in each sam-

pling iteration. We represent the set composed of randomly

selected γ training shapes at sampling iteration t by C̃
(t)
R

.

Finally, we define the forward perturbation for the curve

C̃(t) with level sets as follows:

φ
C̃(t+1) = φC̃(t) + αf (t) (7)

We choose f (t) as the negative gradient of the energy func-
tion given in Equation 2 in order to move towards a more
probable configuration in each perturbation. Here, α indi-
cates the step size for gradient descent. Note that we use

randomly selected training samples, C̃Rj ∈ C̃
(t)
R

, for curve
perturbation. Mathematically this is expressed as

f
(t) = −

∂E(φ
C̃(t) )

φ
C̃(t)

=
∂ log p(data|C̃(t))

∂t

+
1

p
C̃(t) (C̃(t))

1

γ

1

σ

γ∑

j=1

k(dL2
(φ

C̃(t) , φC̃Rj
), σ)(φ

C̃Rj
− φ

C̃(t) )

(8)

In other words, updating the curve C̃(t) toward the nega-

tive gradient direction of the energy functional produces the

candidate curve C̃(t+1).

4.3. Evaluating the MetropolisHastings ratio

Computation of the first fraction in the Metropolis-

Hastings ratio in Equation 3 is straightforward since

π(C) ∝ exp(−E(C)). Recall that the candidate curve

C̃(t+1) is dependent on the forward perturbation f (t). There-

fore, we compute the forward perturbation probability by

considering the value of the probability density function, s,

for each randomly selected training shape C̃Rj ∈ C̃
(t)
R

as

follows:

q(C̃(t+1)|C(t)) =
∏

C̃Rj∈C̃
(t)
Rj

s(C̃Rj) (9)

Similarly, the reverse perturbation probability in sam-

pling iteration (t + 1) is computed as the probability of se-

lecting random shapes in C̃
(t−1)
R

which have been used to

produce the curve C̃(t):

q(C̃(t)|C̃(t+1)) =
∏

C̃Rj∈C̃
(t−1)
Rj

s(C̃Rj) (10)

Note that, given the above formulations, computation of

the reverse perturbation probability is not possible for can-

didate curve C̃(1), the curve at sampling iteration 1, since

we have to use information from sampling iteration −1 for

evaluation of Equation 10, which is not available. There-

fore, we accept the candidate sample C̃(1) without evaluat-

ing the Metropolis-Hastings ratio and consider the above-

mentioned steps for generating samples after sampling iter-

ation 1.

4.4. Discussion on sufficient conditions for MCMC
sampling

Convergence to the correct stationary distribution is cru-

cial in MCMC methods. Convergence is guaranteed with

two sufficient conditions: (1) that the chain is ergodic, and

(2) that detailed balance is satisfied in each sampling itera-

tion. Ergodicity is satisfied when the Markov chain is aperi-

odic and irreducible. Aperiodicity of a complicated Markov

chain is a property that is hard to prove as attested in the lit-

erature [10].

Detailed balance is satisfied as long as the Metropolis-

Hastings ratio in Equation 3 is calculated correctly. We have

already described how we compute the Metropolis-Hastings

ratio in the previous section. Empirical results show that a

stationary distribution is most likely reached since our sam-

ples converge. Related pieces of work in [9], [2], and [5]

argue that the Markov chain is unlikely to be periodic be-

cause the space of segmentations is so large. Similarly, we

can also assert that our Markov chain is unlikely to be pe-

riodic. Even if the chain is periodic in exceptional cases,

the average sample path converges to the stationary distri-

bution as long as the chain is irreducible. Irreducibility of

a Markov chain requires showing that transitioning from

any state to any other state has finite probability. Chen et

al. [5] and Chang et al. [2] provide valid arguments that the

Markov chain is irreducible whereas Fan et al. [9] does not

discuss this property. As explained in the previous section,

curve perturbation in our framework is performed with ran-

domly selected training samples C̃
(t)
R

and each shape has

finite probability to be selected at any sampling iteration.

With this perspective, we can also argue that each move be-

tween shapes has finite probability in our approach.

5. Extension to MCMC Sampling using Local

Shape Priors

In this section, we consider the problem of segmenting

objects with parts that can go through independent shape

variations. We propose to use local shape priors on object



parts to provide robustness to limitations in shape training

size [4, 15]. Let us consider the motivating example shown

in Figure 2. In this example, there are three images of walk-

ing silhouettes: two for training and one for testing. Note

that the left leg together with the right arm of the test silhou-

ette involves missing regions. When segmenting the test im-

age using nonparametric shape priors [12] based on global

training shapes1, the result may not be satisfactory (see the

rightmost image in the first row of Figure 2), because the

shapes in the training set do not closely resemble the test im-

age. This motivates us to represent shapes with local priors

such that resulting segmentation will mix and match infor-

mation from independent object parts (e.g., by taking infor-

mation about the the right arm from the first training shape

and about the left leg from the second training shape).

Training images Test image
Segmentation with

global priors

Local shape priors

with colored patches

Activated local

shape priors

Expected

segmentation

Figure 2. Motivating example for using local shape priors in walk-

ing silhouettes data set.

Our idea of constructing local shape priors is straight-

forward. Once the training shapes are aligned, we divide

the shapes into patches, such that each patch contains a

different local shape region. Each patch is indicated by a

different color in the second row of Figure 2. Note that

the patches representing the same local shape have identical

size. For MCMC shape sampling using local shape priors,

it is straightforward to adapt the formulation in the previous

sections to consider local priors. In particular, instead of

choosing random global shapes using the values computed

by Equation 6, we compute these values for each patch (lo-

cal shape) and select random patches among all training im-

ages. Note that evaluation of forward and reverse perturba-

tion probabilities should also be modified accordingly.

1Unless otherwise stated, the shape priors we use are global. We ex-

plicitly refer to global shape priors when we need to distinguish them from

local shape priors.

6. Experimental Results

In this section, we present empirical results of our

MCMC shape sampling algorithm on segmentation of po-

tentially occluded objects in low-quality images. Note that,

when dealing with segmentation of objects with unknown

occlusions, Edata(C) increases when the shape term delin-

eates the boundaries in the occluded region. This can lead

to overall increasing effect on E(C(t)) for a candidate curve

and to the rejection of the candidate sample. In order to in-

crease the acceptance rate of our approach, we use π(C) ∝
exp(−Eshape(C)) instead of π(C) ∝ exp(−E(C)) in our

experiments involving occluded objects (see supplementary

material for experiments involving missing data in which

we use π(C) ∝ exp(−E(C))). This does not cause any

problem in practice since the data fidelity term (together

with the shape prior term) is involved in the curve pertur-

bation step, enforcing consistency with the data.

We perform experiments on several data sets: air-

craft [12], MNIST handwritten digits [14], and walking sil-

houettes [6]. In the following subsections, we present quan-

titative and visual results together with discussions of the

experiments for each data set.

6.1. Experiments on the aircraft data set

The aircraft data set [12] contains 11 synthetically gen-

erated binary aircraft images as shown in the top row of

Figure 3. We construct the test images shown in the middle

and the bottom rows of the same figure by cropping the left

wings from the binary images to simulate occlusion and by

adding different amounts of noise. Note that the test im-

ages shown in the middle row of Figure 3 (test image set -

1) have higher SNR than the ones shown in the bottom row

(test image set - 2). In our experiments, we use this data set

in leave-one-out fashion, i.e., we use one image as test and

the remaining 10 binary images for training.

In Figure 4(a), we present some visual and quantita-

tive results on the first three images from the test im-

age set - 1 shown in Figure 3. In this experiment, we

generate 500 samples using our shape sampling approach

for each test image. We also obtain segmentations using

the optimization-based segmentation approach of Kim et

al. [12] (see the second column of Figure 4(a)). We com-

pare each sample and the result of Kim et al. [12] with the

corresponding ground truth image using precision - recall

values and the F-measure. The samples with the best F-

measure value are shown in the third column of Figure 4(a).

Finally, we plot the precision - recall values (PR plots) for

each sample and for the result of Kim et al. [12] in the fourth

column of Figure 4(a). Here, the data fidelity term keeps the

curve at the object boundaries and shape prior term helps to

complete the shape in the occluded part. In our approach,

since we select the most probable subset of training images

and evolve the curve with the weighted average of these im-



Figure 3. The aircraft data set. Top row: Training set, middle row: test image set - 1 and bottom row: test image set - 2. Note that we

remove the corresponding training image from the training set for each test image in our experiments.

ages, the results of our approach are more likely to produce

better fits for the occluded part. In the experiments shown in

Figure 4(a), our approach can generate better samples than

the result of Kim et al. [12] in all test images. Moreover, our

algorithm is able to generate many different samples in the

solution space. By looking at these samples, one can also

have more information about the confidence in a particular

solution.

We also perform experiments on the aircraft test image

set - 2 shown in Figure 3 and present results on the first

three images in Figure 4(b). The segmentation problem in

this image set is more challenging than the previous case

because of lower SNR. We perform experiments with the

same settings as in test image set - 1 and present the results

in the same way in Figure 4(b). In this case, we have to

give more weight to the shape prior term during evolution

to complete the occluded part because of the high amount

of noise. Because of the limited role of the data fidelity

term, the curve starts losing some part of the boundary after

the shape term is turned on since the role of the data term

is limited. Therefore, in this case, not only the occluded

part but also the other parts of the aircraft shape approach

a weighted average of the objects in the training set dur-

ing curve evolution. Note from Figure 4(b) that the results

of Kim et al. [12] on different test images are very similar

to one another. However, our sampling approach produces

more diverse samples including better ones than the result

of Kim et al. [12] in terms of F-measure in most cases. Ad-

ditional results on all remaining test images shown in Fig-

ure 3 can be found in the supplementary material.

6.2. Experiments on the MNIST data set

In this section, we present empirical results on the

MNIST handwritten digits [14] data set which includes a

multimodal shape density (i.e, training set contains shapes

from multiple classes corresponding to different modes of

the shape density). The MNIST handwritten digits data set

contains 60,000 training examples and 10,000 test images

from 10 different digit classes. In our experiments, we take

a subset of 100 images for training such that each class con-

tains 10 training examples. Test images, none of which are

contained in the training set, are obtained by cropping some

parts of the digits and adding noise. The test images that we

use in our experiments are shown in Figure 5.

In our experiments on the MNIST data set, we gener-

ate 1000 samples using our shape sampling approach. In

order to interpret our results, we use three methodologies:

(1) Compute the average energy for each class by consid-

ering the samples generated in that class. Choose the best

three classes with respect to average energy values. Dis-

play the best three samples from each class in terms of en-

ergy. These samples are most likely good representatives of

the modes of the target distribution, (2) Compute the his-

togram images H(x) which indicate in what percentage of

the samples a particular pixel is inside the boundary. This

can be simply computed by summing up all the binary sam-

ples and dividing by the number of samples [9]. H(x) can

be computed for each class for problems involving multi-

modal shape densities. We draw the marginal confidence

bounds, the bounds where H(x) = 0.1 and H(x) = 0.9,

over the test image for each class, (3) Count the number of

samples obtained from each class. This can allow a proba-

bilistic interpretation of the results.

Figure 6 demonstrates the average shape energy for each

class, Eshape(C), as a function of sampling iterations for

test image MNIST - 1. We note that while the average en-

ergy appears to be smoothly converging, the energy for each

sample path can sharply increase and decrease. The plot of

class 9 in Figure 6 exhibits such a such pattern because there

is only one sample generated from this class. As the num-

ber of samples generated in each class increases, the average

sample path converges to a stationary distribution.

Test Image
Digit Class

0 1 2 3 4 5 6 7 8 9

MNIST - 1 336 433 6 18 29 38 115 16 8 1

MNIST - 2 4 691 8 3 96 9 0 120 3 66

MNIST - 3 119 661 8 1 2 11 154 14 28 2

Table 1. Number of samples generated for each digit class in test

images from the MNIST data set.

Number of samples generated from each digit class for
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(a) Test image set - 1
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(b) Test image set - 2

Figure 4. Experiments on aircraft data set. Note that each

row contains the results for a different test image. In the PR

plots, ‘×’and ‘×’mark the samples produced by our approach

where ‘×’indicates the sample with the best F-measure value, and

‘×’marks that of segmentation of Kim et al. [12].

Figure 5. Test images from the MNIST data set. From left to right:

MNIST - 1, MNIST - 2, and MNIST - 3.

all the three test images is shown in Table 1. This allows us

to make a probabilistic interpretation of the segmentation

results. One can evaluate the confidence level of the results

by analyzing the number of samples generated from a class

over all samples.
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Figure 6. Average shape energy (Eshape(C)) across all sampling

iterations for all digit classes for test image MNIST - 1. Note

that the number of iterations start from 300 in x-axis because the

previous iterations involve segmentation with the data term only.

In different segmentation applications, one can investi-

gate solutions obtained from different parts of the posterior

probability density. Especially, in the case of multimodal

shape densities, segmentation results obtained from multi-

ple modes might be interesting and might offer reasonable

solutions. Figure 7 shows some visual results obtained from

the experiments on the MNIST data set. For each test im-

age, we display the results from the best three digit classes

where, the quality of each class is computed as the average

energy, E(C), of the samples in that class. Also, for each

class, we show three samples having the best energy values.

These results show that our algorithm is able to find reason-

able solutions from different modes of the posterior density.

In Figure 7, we also present marginal confidence bounds

(MCB images) obtained from the samples in each class.

The figure demonstrates the marginal confidence bounds at

different levels of the histogram image, H(x), for the best

classes in all test images. H(x) = 0.1 and H(x) = 0.9 in-

dicate the low probability and the high probability regions,

respectively.

6.3. Experiments on the walking silhouettes data set

In this experiment, we test the performance of local

shape priors extension of our MCMC shape sampling ap-

proach and compare it with the one that uses global shape

priors, as well as with the method of Kim et al. [12]. We

choose a subset of 30 binary images of a walking person

from the walking silhouettes data set [6]. A subset of 16

images shown in Figure 8 among these 30 binary images

are used for training. The remaining 14 binary images are

used to construct test images by adding a high amount of

noise.

For the sake of brevity, we present results on 3 test im-

ages in Figure 9. Additional results can be found in the sup-

plementary material. Similar to the evaluations performed

for the aircraft data set, we plot the PR values for each sam-

ple obtained by our approaches (with global and local pri-

ors) and by the approach of Kim et al. [12]. According to

the results, our proposed approach with global shape priors
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Figure 7. Experiments on the MNIST data set. Note that in MCB images, red and green contours are the marginal confidence bounds at

H(x) = 0.1 and H(x) = 0.9, respectively.
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Figure 9. Experiments on walking silhouettes data set. In the PR curves, the ‘×’marks the sample having the best F-measure value obtained

using the proposed approach (with either global or local shape priors), and the ‘×’marks that of segmentation of Kim et al. [12].

Figure 8. The training set for the walking silhouettes data set.

produces samples that have F-measure values better than or

equal to the result of Kim et al. [12] in all test images. By

using local shape priors, we can generate even better sam-

ples than both Kim et al. [12] and the approach with global

shape priors. Moreover, it seems that our approach based

on local shape priors is able to sample the space more ef-

fectively than the approach with global shape priors.

7. Conclusion

We have presented a MCMC shape sampling approach

for image segmentation that exploits prior information

about the shape to be segmented. Unlike existing MCMC

sampling methods for image segmentation, our approach

can segment objects with occlusion and suffering from se-

vere noise, using nonparametric shape priors. We also pro-

vide an extension of our method for segmenting shapes of

objects with parts that can go through independent shape

variations by using local shape priors on object parts. Em-

pirical results on various data sets demonstrate the po-

tential of our approach in MCMC shape sampling. The

implementation of the proposed method is available at

spis.sabanciuniv.edu/data_code.

spis.sabanciuniv.edu/data_code
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