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Abstract
Objective. In this work we propose the use of conditional random fields with long-range
dependencies for the classification of finger movements from electrocorticographic recordings.
Approach. The proposed method uses long-range dependencies taking into consideration time-
lags between the brain activity and the execution of the motor task. In addition, the proposed
method models the dynamics of the task executed by the subject and uses information about
these dynamics as prior information during the classification stage. Main results. The results
show that incorporating temporal information about the executed task as well as incorporating
long-range dependencies between the brain signals and the labels effectively increases the
system’s classification performance compared to methods in the state of art. Significance. The
method proposed in this work makes use of probabilistic graphical models to incorporate
temporal information in the classification of finger movements from electrocorticographic
recordings. The proposed method highlights the importance of including prior information about
the task that the subjects execute. As the results show, the combination of these two features
effectively produce a significant improvement of the system’s classification performance.

Keywords: Brain-computer interfaces, ECoG, synchronous classification, temporal dynamics,
probabilistic graphical models

(Some figures may appear in colour only in the online journal)

1. Introduction

A brain-computer interface (BCI) provides an alternative
communication path with the environment for people suffer-
ing from diseases that produce a loss of motor control. The
lack of ability to communicate with the environment con-
siderably affects the quality of life of such individuals, and
restoring this ability is the main motivation for the

development of BCIs. Although most BCIs make use of
electroencephalography (EEG) recordings, a considerable
amount of work using electrocorticographic (ECoG) record-
ings has been done in the last decade and BCIs based on
ECoG have been proposed previously [1–7].

BCIs based on sensorimotor rhythms rely on the fact that
the execution of an imaginary motor task involves the same
cortical areas required to execute an actual movement [8]. The
poor spatial resolution of EEG limits the tasks to be executed
by the subject to imaginary movements involving large
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cortical areas, as is the case for movements of the arms, legs,
feet, etc. In contrast, the high spatial resolution of ECoG
allows researchers to predict motor activity related to more
specific body parts. For example, individual finger move-
ments can be predicted or decoded using ECoG recordings
[9–13]. One aspect of ECoG that makes this possible is that
the spectrum of frequencies that can be recorded with ECoG
goes far beyond that of EEG. In practice, a limit of 40Hz is
usually assumed for EEG recordings, whereas in ECoG
recordings, frequency components up to 200 Hz can be
observed. In particular, the power of the signal components
with frequencies in the range of 70 to 200 Hz reflect the
neuronal activity of areas in the cortex that are related to the
execution of specific tasks [14].

Several previous works considered the problem of finger
movement decoding in synchronous and asynchronous sce-
narios. In a synchronous scenario the subjects are requested to
perform a particular task at a particular instant, therefore the
beginning and the end of the performed task are known
a priori in the training set as well as for the testing set. In [11]
a set of features based on the amplitude of the ECoG signals
in different frequency bands are used for classification of
finger movement in a synchronous scenario. The authors
compare Hidden Markov Models (HMM) and Support Vector
Machines (SVM) showing that the results obtained with these
classifiers are comparable. Interestingly, it was shown in [11]
that the results obtained with HMM can be improved by
restricting the structure of the model so as not to allow
transitions to previously visited states. More recently, also in
a synchronous scenario, the authors in [12] have shown that it
is possible to classify finger movements above the chance
level using EEG recordings. In this approach the features are
obtained using spectral decomposition of the EEG signal and
principal component analysis. Subsequently, classification is
done using SVM. The same technique was applied to ECoG
data in [12] showing good performance with accuracy above
90%. In [10], a different approach is taken by including prior
information about the movement of the fingers. This prior
information corresponds to the patterns of finger flexion and
finger extension executed by the subject. The method pro-
posed in [10] makes use of a Bayesian decoding method to
incorporate the constrains about flexion/extension of the
fingers in the graphical structure of a probabilist model.
Although this approach does not aim to improve the classi-
fication rate related to which finger moves, it is suggested by
the authors that it provides a better estimation of the flexion
and extension of a particular finger.

In an asynchronous scenario, the authors in [9] show that
it is possible to decode the flexion and extension of individual
fingers with reasonable precision. For this, brain signals from
the area contralateral to the hand executing the movement
were recorded. A linear combination of the brain signals was
used to predict the time course signal that describes the
flexion and extension of the fingers. Similar results were
obtained in [13] where a switching linear model was
employed. The authors in [13] proposed an inference
approach composed of two main blocks. The first block is
composed of a linear model that infers which finger is

moving. The linear model proposed is learned using simul-
taneous sparse approximation (SSA) which provides a sparse
solution aiming to avoid over-fitting. The output of the first
block determines which finger is moving and it is used by the
second block to select a model (one for each finger plus one
model for rest periods) that describes the dynamics of the
movements. In this approach, correct classification of the
moving finger (first block output) is critical for the inference
of the flexion and extension of the fingers (second block
output). With a similar perspective, the authors in [15] pro-
posed a method based on principal component analysis (PCA)
and machine learning techniques such as linear discriminant
analysis and support vector machines for the classification of
finger movements.

In the last decade, techniques based on probabilistic
graphical models have been proposed for BCI [10, 16–21].
These techniques have the advantage of being probabilistic
approaches that provide an integrative framework for BCI
systems. They have the ability to incorporate information
about the temporal dynamics of the task that the subject is
executing [18] and also the temporal dynamics of the brain
signals [17, 21].

In this work we propose the use of a probabilistic gra-
phical model approach based on conditional random fields
(CRF) for asynchronous classification of finger’s movements
from ECoG signals. The proposed method incorporates
information about the temporal dynamics of the task as prior
information. The results show that incorporating temporal
information on the modeling of the ECoG signals sig-
nificantly improves the ability of the a BCI system to predict
finger movements, compared to existing methods for asyn-
chronous classification.

2. Signal analysis

2.1. Dataset description

We used an ECoG dataset publicly available from the BCI
competition IV [22]. ECoG signals from three subjects were
recorded over the course of 10 minutes. The subjects sat in
front of a screen and were requested to move their fingers
according to a stimulus presented on the screen indicating the
name of the finger to move. The cue was displayed for two
seconds and was followed by two seconds of rest. During the
rest periods the screen was blank. Additionally, the subjects
wore a data-glove that was used to record the actual move-
ment of the fingers. Signals from the data-glove are used as
ground truth. ECoG signals were recorded using a grid of
electrodes (the number of electrodes was different for each
subject) ranging from 48 to 64 electrodes. The subjects were
required to execute the movements with the hand contralateral
to the placement of the grid of electrodes. The sampling
frequency was set to 1000Hz for the ECoG recordings and
25 Hz for the data-glove. Given that the data-glove signals are
available, these can be used to determine the beginning and
end of the finger’s movement which makes it possible to treat
this problem as a synchronous problem. However, we
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developed an asynchronous approach as this more closely
resembles the actual mode of operation of practical BCIs.

2.2. Frequency selection and feature extraction

Frequency components of the brain signals in the range of 70
—170 Hz (high gamma) were extracted using a band-pass
Butterworth IIR filter of order eight. The limits of the fre-
quency bands were selected to avoid the first and third har-
monic of the 60 Hz line noise. Based on previous work [23] it
is assumed that the power of the brain signals in high gamma
is correlated with neuronal firing rate and neural synchrony in
regions related to the execution of a specific task. We cal-
culated the envelope of band-passed brain signals using the
absolute value of the analytic signal, which is calculated with
the help of the Hilbert transform. The envelope obtained was
then low-pass filtered to allow frequencies up to 6 Hz. The
value of 6 Hz was selected because it is the maximum fre-
quency at which the subject moves the finger, and the
envelope of the ECoG signals in the selected frequency band
is assumed to reflect the dynamics of the task [9, 24]. In
particular for the task executed by the subjects in this work,
the power in high-gamma is assumed to be correlated with
movement of the fingers, and therefore muscle activity. The
filtered envelope was downsampled taking samples every
50 ms.

3. CRFs for classification of finger movements

The classification task corresponds to labeling the periods of
time during which one specific finger is moving. For this, we
build a conditional random field (CRF) for modeling the
activity of all fingers. This scenario describes a six-class
classification problem that includes the movement of five
fingers and rest periods.

Referring to figure 1, the brain signal features (envelope
of high gamma in each electrode) are represented by
= ¼x xx , , n1{ }, where n represents the time points and

Îx Ri
d , where d is the number of electrodes. The labels, the

ground truths of which are obtained from the data-glove
signals, are represented by = ¼y yy , , n1{ }, with Îy 1, 6[ ],
with 1, 2, 3, 4, 5, 6 representing resting, movement of thumb,
index, middle, ring and pinky fingers, respectively.

The conditional probability of the labels given the
observed brain signal features is modeled as:

 Q = Y F
= =

-p
Z

y x y yy x,
1

, , 1
i

n

i i i
i

n

i i i
1 2

1( ∣ ) ( ) ( ) ( )

where Z is a normalization factor, Y y x,i i i( ) is a node potential
function and F -y y,i i i 1( ) is an edge potential function. The
node potential functions are defined according to:

Y = å q=y x e, 2i i i
f x y,

j
d

v j
T

v j i j i1 ,( ) ( )( )

where =f x y x, 1v j i j i y i j, ,i
( ) , where1yi

is a column vector with a
non-zero entry in the yi position and with length equal to six
(the number of classes); xi j, is a real number. The parameter
qvj is a set of weights, one for each class, which has the same
size of 1yi

. The expression qå = f x y,j
d

v j
T

v j i j i1 ,( ) is a measure of
the compatibility between the brain signals xi and the
movement of the finger represented by the label yi.

In the particular case of the application addressed in the
present work, the movement of the fingers lags brain signals
activity in the selected frequency band by 50 to 100 ms [9]. In
order to include this information in the model, we modify the
standard CRF-chain shown in figure 3 to allow the inclusion
of long range dependencies as presented in figure 2. These
long range dependencies allow samples in past time instants
to be included in the prediction of the label at the current time
point. In order to include this characteristic in the model, we
modify the potential function in equation (2) as follows:

Y = å å q
- = =

-
-y x e, 3i i i k i

f x y
:

,
j
d

l
k

v k j
T

vj i k j i1 0
1

, ,( ) ( )( )
( )( ) ( )

where = ¼- - - +x x x x, , ,i k i i k i k i: 1{ }. The index k defines the
number of samples previous to the current time point i that are
used to predict the label yi. The function fvj

is the same
described above and the parameter qvk j, is an augmented set of

Figure 1. The CRF Model. The circles represent variables and the lines represent direct dependencies. The shaded circles represent observed
variables. The brain signal features extracted from the ECoG signals are represented by the variable = ¼x xx , , n1{ }, and the labels that
indicate which finger is in motion are represented by the variable = ¼y yy , , n1{ }.
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weights, one for each class and each value of k. Therefore, the
term qå =

-
-f x y,l

k
v
T

v i k j i0
1

,k j j,
( )( )( )

is a measure of the compatibility
between the brain signals -xi k i: and the movement of the
finger represented by the label yi.

The edge potential function is defined as:

F = q
- -y y e, 4i i i

f y y
1

,e
T

e i i 1( ) ( )( )

where =- -
f y y, 1e i i y y1 ,i i 1

( ) . The term
-

1y y,i i 1
is a column vector

of length 36 (the number of all the possible transitions
between classes), with a non-zero entry at the position that
represents the transition -y y,i i 1( ). The parameter qe is a set of
weights of the same length as

-
1y y,i i 1

. Therefore, the product

q -f y y,e
T

e i i 1( ) is a measure of the compatibility between the
current state and the previous state, i.e., it provides a prior on
the transition probabilities between classes. This information
is useful given that it is known that the subject does not
execute rapid changes between movement and rest. In this
way, information about the dynamics of the task executed by
the subject is incorporated in the model.

We learn the model parameters using training data by
maximizing the following objective function

åq q l
s

q= -  L P y xlog ,
1

2
, 5

i
i i 2

2( ) ( ∣ ) ( )

Figure 2. The CRF Model with long range dependencies. The label yi at any time point i has a direct dependency on the current and two
previous sample points of the brain signal features (0, 50 and 100 ms previous to the current time point.)

Figure 3. Comparison of the method’s ouput classification for the same segment of brain signals. (Acc, Kappa, (s Kappa( ))) A. True Labels,
B. Logistic Regression (Acc = 0.69, Kappa = 0.49(0.016)), C. Simultaneous Sparse Approximation (Acc = 0.67%, Kappa = 0.50(0.016)),
D. Proposed method. (Acc = 0.71, Kappa = 0.54(0.017)).
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where the first term in (5) is the log-likelihood of the data.
The second term corresponds to a regularization term which is
the log of a Gaussian prior with variance s2 and it is used to
avoid over-fitting. The parameter λ is a regularization factor
that determines how much penalty is imposed in the
magnitude of the parameters θ. We used a quasi-Newton
optimization algorithm using Hessian updates based on the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula to
search for the optimal parameter values *q q= qLarg max ( ).
Given a new test sample x and parameter values *q induced
from the training set, the label for a test sample is selected
according to:

= Qxy P yarg max , 6
y

( ∣ ) ( )

Figure 4. Classification results in terms of accuracy (confusion matrices) for each method across all subjects. Diagonals display the correct
classification rate for each class.

Table 1. Overall accuracy for each subject.

Method Subject 1 Subject 2 Subject 3 Average

LR 0.53 0.68 0.59 0.60
SSA 0.52 0.64 0.57 0.58
CRF 0.62 0.69 0.65 0.65

Table 2. Overall Coen’s Kappa for each subject. (Standard error)

Method Subject 1 Subject 2 Subject 3 Average

LR 0.40
(0.0078)

0.45
(0.0095)

0.46
(0.0084)

0.43

SSA 0.41
(0.0077)

0.45
(0.0090)

0.45
(0.0082)

0.43

CRF 0.53
(0.0085)

0.49
(0.0095)

0.54
(0.0089)

0.52

Figure 5. Estimated correlation matrix for the data-glove signals. Classes with labels 2-6 correspond to the movement of the fingers. Signals
for rest are not included. For clarity, numerical values above the main diagonal, representing the correlations between adjacent fingers are
shown.
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4. Results

The whole data for each subject was divided into three
sequential segments. A 3-fold cross-validation procedure was
implemented, using each time two segments for training and
the remaining segment for testing. The training set was further
divided in two new sets in order to find the best value for the
regularization factor λ. We compared our method against a
baseline approach: logistic regression (LR). LR makes use of
linear combination of the brain features to decide which finger
is moving and it has this in common with the methods found
in the literature. We also compared the proposed method to
the Simultaneous Sparse Approximation (SSA) method pro-
posed in [13] for detection of finger movements (see [25] for
details on SSA). As discussed before, in the CRF model, long
range dependencies can be used to account for the delay
between the time that the brain signal is produced and the
time that the fingers are moved. In the methods used for
comparison (LR and SSA) this cannot be done directly. To
address this limitation, and to make a fair comparison, we
augmented the feature vector for LR and SSA in a way that it
contains the actual signals and a delayed version of them with
lags of 50 ms and 100 ms, which is equivalent to the use of
long range dependencies in CRF.

The advantage of the CRF method is evidenced by the
results displayed in figure 3. The proposed method takes into
account the dynamics of the task and does not allow fast
transitions in the predicted output. Contrary to this, LR and
SSA methods produce an unstable output while detecting
which finger is in motion. Further insight can be obtained by
observing the classification results in terms of accuracy. To
this end, for each time point the output of the classifier is
compared with the ground truth and the percentage of correct
number of classifications is reported. In order to have a better
understanding of the performance of the classifiers, we pre-
sent the confusion matrices averaged across subjects and
cross-validation folds for each method in figure 4. The
diagonal of each matrix shows the classification accuracy
obtained for each class. Table 1 summarizes the results
obtained for each subject in terms of classification accuracy.
However, given that the number of samples for each class is
not balanced in the data-set, we included the Coen’s Kappa
coefficient. Given that the subject passes from movement to
rest before starting another movement, class 1 (rest) contains
much more samples than the other classes. Therefore, acc-
uracy above the chance level (17% for a six class classifica-
tion problem) can be obtained by assigning all the outputs to
class 1. Under these circumstances the classification accuracy
could provide an unrealistic measure of the performance of
the system. The Coen’s Kappa coefficient does not present the
sames issues described above for the classification accuracy,
because it takes into consideration the empirical distribution
of each class, which can be calculated using information from
the confusion matrix [26] according to:

=
-
-

kappa
p p

p1
, 7e

e

0 ( )

where p0 is the accuracy and pe is the chance agreement given
by:

å
= +p

n n

N
8e

i

M
i i1 : :

2
( )

where n i: and ni: are the sum of the ith column and the sum of
the ith row of the confusion matrix, respectively. M is the
number of classes and N is the total number of samples to test.
Note that for a classification problem in which the number of
samples for each class is equal, the parameter pe is equal to M

1 .
The standard error for kappa is obtained by:

å
s =

+ - +

-
kappa

p p n n N

p N1
9

e
M

i i

e

0
2

1 : :
3

( )
( ( ) )

( ) ( )
( )

The standard error can be used to determine if the dif-
ference between two kappa values is statistically significant.
Table 2 shows the kappa values obtained for each subject and
the corresponding standard error. Using the standard error
values we determined the statistical significance for the
comparison between the proposed method and each one of the
methods used for comparison. Statistically significant differ-
ences exist if the difference between the kappa values for two
different methods is larger than two times the standard error.
The results indicate that the improvement of the proposed
method, over the methods used for comparison, is statistically
significant as can be observed in table 2.

It is worth noting that logistic regression and conditional
random fields belong to a general type of model known as a
Log-linear model and the difference observed in the perfor-
mance is entirely due to the incorporation of the information
about the dynamics of the executed tasks. The proposed
graphical model learns from the data (from the labels) that
there are no rapid changes between the executed movements
of the fingers. This information is captured by the model
thanks to the incorporation of edge potentials (see
equation (4)). These edge potentials measure the compat-
ibility between the execution of a task in a particular time
instant with the task executed in the previous time point.

From the confusion matrices in figure 4 we can observe
that logistic regression only provides a better accuracy for the
detection of the rest periods (periods of time in which the
subject does not move any finger). However, this seems to be
produced by a bias of the logistic regression towards this
particular class. This bias is evidenced by results on the first
row of the confusion matrix. These values indicate that the
classifier, in many cases, confuses the movements of the
fingers with rest periods. This can be explained by the fact
that the number of samples in the training data for the rest
periods are greater than the number of samples for any of the
other classes. This issue is less critical in the proposed method
while the SSA approach makes most of the mistakes con-
fusing the movements of adjacent fingers.

Figure 4 shows that the highest misclassification rates are
obtained between adjacent fingers. This could imply that
when the subject is moving one finger, he or she also moves
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the adjacent fingers. In order to verify this, we calculated the
matrix of correlation values among the data-glove signals,
which is displayed in figure 5. The correlation values found
between adjacent fingers are statistically different from zero
( <p 0.01). Also, the patterns observed in figures 4 and 5 are
similar, which might support the idea that the subject may be
moving more than one finger at the time, and that this might
as well be the cause for the missclassification rate patterns
found in figure 4. However, the correlation values observed
could also be explained by the fact that there is a mechanical
coupling among the sensors in the data-glove. Furthermore,
the musculoskeletal structure of the hand will produce such an
effect as well. Finally, neither the mechanical coupling of the
data-glove sensors nor the musculoskeletal structure of the
hand would alter the brain signals, and it is the brain signals
on which the classification is based. We conclude that the
correlations found between adjacent fingers cannot explain
the pattern observed in the classification rates of the confusion
matrices in figure 4. We conjecture that similar activity pat-
terns are produced in the brain during the movement of
adjacent fingers and that this explains the observed patterns in
the confusion matrices. We propose that the incorporation of
spatial relationships between different brain regions, together
with the temporal structure of the signals, should be modeled
in order to improve the classification performance. We
believe that this spatio-temporal structure could be efficiently
modeled using probabilistic graphical models.

5. Conclusion

In this work, we propose a method based on conditional
random fields to classify finger movements from ECoG sig-
nals. The proposed method makes use of information about
the activity in high gamma (including long range dependen-
cies) as well as information about the temporal dynamics of
the task executed by the subject. The results show that the
performance of the system is effectively increased by adding
and modeling the extra piece of information related to the
dynamics of the task. We suggest that this type of model
holds the potential to incorporate temporal dynamics as well
as spatial features (such as which areas of the brain are acti-
vated and how they interact). This could provide a model that
better explains the brain signals generated during the execu-
tion of specific mental tasks.
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