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ABSTRACT 

We present an evaluation of the impact of a recently developed point-enhanced high range-resolution (HRR) radar 
profile reconstruction method on automatic target recognition (ATR) performance. We use several pattern recognition 
techniques to compare the performance of point-enhanced HRR profiles with conventional Fourier transform-based 
profiles. We use measured radar data of civilian ships and produce range profiles from such data. We use two types of 
classifiers to quantify recognition performance. The first type of classifier is based on the nearest neighbor technique. 
We demonstrate the performance of this classifier using a variety of extracted features, and a number of different 
distance metrics. The second classifier we use for target recognition involves position specific matrices, which have 
previously been used in gene sequencing. We compare the classification performance of point-enhanced HRR profiles 
with conventional profiles, and observe that point enhancement results in higher recognition rates in general. 

Keywords : High range-resolution radar, automatic target recognition, nearest neighbor, position specific matrices, 
Euclidean metric, Manhattan metric, Minkowski metric, ship target recognition, range profile, point enhancement, 
signal reconstruction. 

1. INTRODUCTION 
 
The problem of ship classification by high-range resolution (HRR) radar has recently attracted much interest.1-7 For 
most of these recognition tasks, finding the locations and the magnitudes of the dominant target scatterers is of key 
importance. Superresolution processing techniques for HRR profiles can help in the accurate extraction of such features, 
and there have been some recent efforts in this direction.8-11 There has also been some limited work evaluating such 
superresolution methods in terms of the recognition of ground targets, based on HRR data.12 

Recently a new method for superresolution, point-enhanced reconstruction of high range-resolution (HRR) radar 
profiles has been  proposed.13 This approach poses the problem of the formation of the HRR profiles from phase history 
data as an optimization problem. Resolution and feature enhancements are achieved by imposing non-quadratic 
regularizing constraints on the solution of the optimization problem. This method was emprically shown to preserve and 
enhance target features such as scatterer locations, better than conventional HRR profiles. In this work, we conduct an 
evaluation of the impact of this point-enhanced reconstruction method on automatic target recognition (ATR) 
performance. We use radar observations of three classes of civilian ships, and form HRR profiles using the conventional 
fast Fourier transform (FFT) technique, as well as the point enhancement technique. We then use these two types of 
profiles as inputs to a number of pattern recognition systems, and for each classification system we compare the 
recognition performance of point-enhanced and conventional profiles.  
 
We consider two fairly simple types of classifiers. The first type of classifier uses the well-known nearest neighbor rule.   
We form different versions of this classifier using three types of features, and three distance metrics. The three types of  
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features we use are based on: the amplitudes of the HRR profiles themselves; the lengths of the ships; and the estimated 
radar cross section (RCS). The three distance metrics we use are the so-called Euclidean, Manhattan, and Minkowski 
metrics, which essentially correspond to different types of vector norms. The second type of classifier we consider is 
inspired by ideas from gene sequencing, and is based on the so-called position specific matrices. The main idea is to 
quantize the amplitudes of the HRR profiles, and seek a good match to the hypothesized classes in terms of the 
quantization level at each spatial location in the profile. 
 
As a result of our recognition experiments, we observe that point-enhanced profiles have higher classification accuracy 
than conventional profiles in all the cases where classification decisions are made implicitly or explicitly based on 
point-based features, such as scatterer locations.  

 
2. POINT ENHANCEMENT TECHNIQUE 

 
In this section, we provide a brief overview of point-enhanced HRR profile formation. The details of the technique can 
be found in Ref. 13.  The problem addressed by this method is the inverse problem of obtaining a complex HRR profile 
from the received, pre-processed HRR phase history signal. To this end, let q be a vector representing the sampled HRR 
profile, and h be the noisy sampled phase history data vector at a particular observation angle. Then, we have the 
following observation model: 
  

wFqh +=       (1) 

where w is measurement noise, and F is a high resolution to low resolution discrete Fourier transform (DFT) matrix. 
This definition of F reflects the belief that the underlying object (hence its profile) possesses high-frequency features 
that are not captured by the resolution supported by the data. The conventional way to reconstruct the HRR profile is 
through an inverse DFT, which, in this framework can be represented by hFq H=CONVˆ , with appropriate normalization. 
In contrast, the point-enhancement approach formulates the HRR profile reconstruction problem as the following 
optimization problem: 
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q
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where J(q ) is chosen to be an objective function of the following form: 
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where p<2 and λ are scalar parameters, and 
p

⋅ denotes the pl -norm. The first term in the above objective function is a 

data fidelity term. The second term is a regularizing constraint whose role is to suppress artifacts and increase the 
resolvability of the scatterers in the HRR profile. The optimization problem in Eq. (4) can be solved by using an 
efficient iterative algorithm proposed in Ref. 13. 
 

This profile formation approach has relations to the field of adaptive signal representation. Adaptive signal 
representation addresses the problem of finding optimal representations of signals as combination of elements from an 
overcomplete dictionary. Such techniques have previously been used for feature extraction from HRR profiles. One 
adaptive signal representation technique, called basis pursuit denoising finds an optimal representation by minimizing 
an objective function of the same mathematical form as Eq. (4), with p=1. Hence, we can interpret the point-enhanced 
signal reconstruction method as one of finding the optimal basis pursuit-type denoised representation of the observed 
HRR data, in terms of the complex exponential dictionary elements. 

 



 

3. CLASSIFICATION 
 

In this section, we describe the two types of classifiers we use for evaluating the impact of the point enhancement 
technique on ship target recognition performance using HRR data. The first group of classifiers is based on the nearest 
neighbor rule, where each individual classifier uses a different distance metric, or a different feature. The second type of 
classifier is based on position specific matrices, an idea previously used in gene sequencing. 

3.1. Nearest Neighbor Algorithm 

The nearest neighbor technique is a well-known approach in statistical pattern recognition14. We choose to use this 
technique in classifying range profiles due mainly to its simplicity. The technique requires no explicit knowledge about 
the class probability density functions describing the variability of the range profiles. Its classification power is limited, 
however our goal in this study is not to use an advanced classifier, but rather to compare the recognition results of 
conventional versus point-enhanced HRR profiles, given a particular classifier. 

The nearest neighbor algorithm is a non-parametric technique, which uses minimum distance classification. Let X 
denote the set of labeled training feature vectors: 

{ }n21 ,,, xxxX L= .     (5) 

Given an observation feature vector y to be classified, we compute the distance (using an appropriate metric to be 
discussed below) between y and all the vectors in X. The observed vector y is assigned to the class of the vector  

{ }( )n,,1L∈iix , which yields the smallest distance. One might also use a generalization of this basic approach, known 
as the k-nearest neighbor technique, where the classification decision is made based on k vectors from X, which are 
closest to y, rather than just the single closest one. 

In determining the closeness between two vectors, one can use a variety of distance metrics that are appropriate for the 
problem at hand. In this work, we construct classifiers using Euclidean, Manhattan, and Minkowski distance metrics. 
The distances between two arbitrary column vectors x and y, based on each of these metrics are defined as follows: 

 
• Euclidean metric : 
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• Manhattan metric : 
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• Minkowski metric : 
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where x(i) and y(i) denote the i-th elements of x and y respectively, and  m denotes the total number of elements in these 
vectors.  
 
Now let us specify the features we use in the nearest neighbor classifier for the HRR recognition task. The first type of 
feature we consider is the reconstructed range profile amplitudes themselves. The second type of feature we use is RCS. 
In our study, the experimental radar used to collect the range profiles is calibrated before taking the actual 
measurements, by means of a spherical reflector with known RCS, which lets us obtain the RCS of ships from the range 



profiles. The third type of feature we use is the length of the ships. In order to obtain a length estimate, we assume that a 
target is fully contained within the range profile, and that there is a target free region near both range profile boundaries. 
This target free region is used to generate a noise estimate, which is used in conjunction with a threshold to detect the  
 

Position 

Symbol a b c d e f g h i j k l m n 

A 6 8 7 14 0 0 0 14 2 11 0 11 0 1 

B 2 1 6 0 14 14 14 0 1 2 14 3 5 7 

C 2 4 1 0 0 0 0 0 2 1 0 0 2 2 

D 4 1 0 0 0 0 0 0 9 0 0 0 7 4 

 

Table 1:  A sample position specific matrix. 

start and end point locations of the target. We use these three types of features in separate classifiers, although one 
might combine them in a single classifier. 
 
3.2. Position Specific Matrices 
 
The second type of classifier we consider is similar to a technique used in gene sequencing15. A DNA molecule can be 
represented by a sequence of letters, where each position in the sequence is equal to one of four possible letters. 
Position specific matrices (or substitution matrices) are a way of characterizing the structures of the DNA molecules in 
a database, which could then be used to determine how much a given sequence query is related to the known sequences 
in the database. Scoring the similarity of two sequences using substitution matrices is equivalent to measuring the 
probability of a random occurrence for such an alignment, and high scores indicate a small probability that such an 
alignment happened by chance.  
 

Without going further into the details of gene sequencing, we will now describe how we adapt these ideas and use them 
in HRR target recognition. Given a set of training profiles for a particular target class, which were aligned using a 
correlation-based algorithm, we first quantize the amplitudes of each profile into α levels. For illustration, let us say we 
choose α=4, then we can represent each spatial location in a profile by one of four letters (symbols) A, B, C, D. To 
characterize a particular class, we can then count the total number of occurrences (in our training set of profiles) of 
these four letters in each spatial location. We can represent this information as matrix with α rows and β columns, 
where each row corresponds to a particular quantization level, and each column corresponds to a particular spatial 
location. The number β is chosen in relation to the range resolution. The (i,j)-th entry of the matrix shows the total 
number of occurrences of the i-th quantized amplitude level, at the j-th spatial location index. Such a sample position 
specific matrix is shown in Table 1, where a set of 14 profiles was involved. We notice that for some positions all the 
sequences agree (e.g., columns d,e,f,g,h,k), but for others a high variability is observed (e.g., columns a,c,n). One can 
form such a matrix for each target class. 

Now, an observed, and quantized profile can be classified by evaluating its “likelihood” under each of the target 
hypotheses. The entries in a position specific matrix are proportional to the estimated probability of observing a 
particular symbol at that position. Therefore a “likelihood” score of an observed profile for a hypothesized class can be 
computed as follows. First we identify a single row for each column of the position specific matrix for the hypothesized 
class that corresponds to the quantized amplitude level in the observed profile at that spatial location. We then take the 
product of these matrix entries. For example, the observed, quantized range profile ACCABBBAACBBBA will have a 
likelihood score of 6*4*1*14*14*14*14*14*2*1*14*3*5*1, under the hypothesis represented by the matrix in Table 1. 



The observed profile is assigned to the class giving the highest score. If the training sets for each class contain different 
numbers of profiles, the position specific matrices could be normalized by the total number of profiles for that class. 

 

                                    

         (a) Sea Bus       (b) Ferry  

 

(c) Tanker 

Figure 1. Pictures of the types of ships used in the experiments: (a) Sea Bus, (b) Ferry, and  (c) Tanker. 

 
Target No. of profiles in the training set No. of profiles in the test set 
Tanker            246 285 
Sea Bus          92 81 
Ferry            149 139 

Table 2: Composition of the data set used in the recognition experiments. 

4. REAL DATA EXPERIMENTS 
 

We now evaluate the performance of the classifiers described in the previous section, given HRR profiles produced by 
point-enhanced versus conventional reconstruction. In our recognition experiments, we use three different civilian ship 
classes: oil tanker, sea bus and ferry. Pictures of these three types of ships are shown in Figure 1. Our training and test 
sets are composed of HRR data collected in distinct time periods during the same day. The numbers of each type of 
target profiles in each of these sets are shown in Table 2.  
 
We present the results of our evaluations in the form of classifier confusion matrices, which show the percentage of 
correct and incorrect classifications achieved on test inputs of each type. In particular, the entry in row i, column j in a 
confusion matrix shows the percentage of profiles from target type i classified as target j. A single number 
characterizing the classifier’s ability to recognize test inputs can be obtained through the total correct classification, 
which is defined as the percentage of all target test inputs that were correctly classified. 



Table 3 to 5 show the confusion matrices for the classification experiments where the amplitudes of the HRR profiles 
themselves are used as the features.  In the experiments with the Minkowski metric, p is chosen to be 3 in all cases. 

 Tanker Sea Bus Ferry 
Tanker            64 36 0 
Sea Bus          0 100 0 
Ferry            14 32 54 
Total Correct Classification : 66 % 

(a) Conventional HRR profiles. 
 

 Tanker Sea Bus Ferry 
Tanker            66 34 0 
Sea Bus          0 100 0 
Ferry             0 0 100 
Total Correct Classification : 81 % 

(b) Point-enhanced HRR profiles. 

Table 3: Confusion matrices summarizing the classification results using the nearest neighbor technique with the Euclidean distance 
metric, where profile amplitudes are used as the features. 

 
 Tanker Sea Bus Ferry 
Tanker            62 28 10 
Sea Bus           0 100 0 
Ferry            14 34 52 
Total Correct Classification : 64 % 

(a) Conventional HRR profiles. 
 

 Tanker Sea Bus Ferry 
Tanker            62 33 5 
Sea Bus          0 100 0 
Ferry              0 0 100 
Total Correct Classification : 79 % 

(b) Point-enhanced HRR profiles. 

Table 4: Confusion matrices summarizing the classification results using the nearest neighbor technique with the Manhattan distance 
metric, where profile amplitudes are used as the features. 

 Tanker Sea Bus Ferry 
Tanker           57 38 5 
Sea Bus          0 100 0 
Ferry             15 33 52 
Total Correct Classification : 62 % 

(a) Conventional HRR profiles. 
 

 Tanker Sea Bus Ferry 
Tanker            61 35 4 
Sea Bus          61 39 0 
Ferry             0 0 100 
Total Correct Classification : 68 % 

(b) Point-enhanced HRR profiles. 

Table 5: Confusion matrices summarizing the classification results using the nearest neighbor technique with the Minkowski 
distance metric, where profile amplitudes are used as the features. 



 Tanker Sea Bus Ferry 
Tanker            56 40 4 
Sea Bus           18 82 0 
Ferry           5 7 88 
Total Correct Classification : 68 % 

(a) Conventional HRR profiles. 
 

 Tanker Sea Bus Ferry 
Tanker            73 17 10 
Sea Bus           5 91 4 
Ferry               10 22 68 
Total Correct Classification : 75 % 

(b) Point-enhanced HRR profiles. 

Table 6: Confusion matrices summarizing the classification results using the nearest neighbor technique with the Euclidean distance 
metric, where the RCS feature is used. 

 
 Tanker Sea Bus Ferry 
Tanker            61 8 31 
Sea Bus           0 100 0 
Ferry              6 3 91 
Total Correct Classification : 75 % 

(a) Conventional HRR profiles. 
 

 Tanker Sea Bus Ferry 
Tanker            59 39 2 
Sea Bus            0 100 0 
Ferry              5 5 90 
Total Correct Classification : 74 % 

(b) Point-enhanced HRR profiles. 

Table 7: Confusion matrices summarizing the classification results using the nearest neighbor technique, where the ship length 
feature is used. 

 Tanker Sea Bus Ferry 
Tanker            51 0 49 
Sea Bus          57 42 1 
Ferry             9 1 90 
Total Correct Classification : 60 % 

(a) Conventional HRR profiles. 
 

 Tanker Sea Bus Ferry 
Tanker            100 0 0 
Sea Bus            0 75 25 
Ferry              39 0 61 
Total Correct Classification : 85 % 

(b) Point-enhanced HRR profiles. 

Table 8: Confusion matrices summarizing the classification results using position specific matrices. 

Each of these tables contains results for a different distance metric. We observe that point-enhanced profiles result in 
significantly higher correct classification percentages than the conventional FFT-based profiles with all three distance 
metrics. We also observe that the Euclidean metric performs better than the other metrics in this experiment. 



Next, in Table 6, we present the results of nearest neighbor classification experiments where the feature used is RCS, 
together with a Euclidean distance metric. Again, point-enhanced profiles yield better recognition performance than 
conventional profiles. 

Table 7 shows the results for the case where the ship length is used as a feature. We extract the length feature as 
described in Section 3.1. In these experiments, the total length of the range profiles were chosen to be 200 meters 
(longer than the length of any of the targets), so we always have a target-free region at the ends of the range profiles. 
We observe that point-enhanced profiles do not provide any improvement over conventional profiles when the ship 
length feature is used. This result is not surprising. While point-enhanced reconstruction aims to preserve localized, 
point features such as scatterer locations, it does not attempt to preserve spatially distributed features, such as length. 
Therefore point enhancement is not a good match for classification tasks where distributed features are to be used. In 
that case, a feature-enhancement technique that preserves region-based, distributed features would be of interest. One 
such region-enhanced reconstruction method has previously been applied in synthetic aperture radar imaging16, and 
could potentially be useful for the HRR problem as well. We should also note that the data we used were limited in 
aspect angles, and the ship length feature may not be very reliable by itself when more diverse aspect angles are 
involved. 

Finally, we present the classification results based on position specific matrices. In these experiments, we choose β 
based on the largest range resolution in the database, which is three meters, and we set the number of quantization 
levels α to 30. The results in Table 8 suggest that point-enhanced reconstruction provides a very significant 
improvement over conventional profiles in this case. In fact, point-enhanced profiles together with position specific 
matrices result in the best performance over all other combinations considered in this study. In forming the position 
specific matrices, we have not optimized the parameters α and β. We believe that a careful choice of these parameters 
might improve the recognition performance further. 
 
 

5. CONCLUSION 
 

We have presented a preliminary analysis of the impact of point-enhanced HRR profile reconstruction on ship target 
recognition performance. We have considered a three-class target recognition problem to compare the recognition 
performance of point-enhanced profiles and conventional profiles. We have constructed a classifier based on the nearest 
neighbor rule, and a classifier based on position specific matrices. In nearest neighbor classification, we have 
considered a number of different features, as well as various distance metrics. We have observed that point 
enhancement results in significant improvements in recognition performance in all cases, except when ship length (a 
distributed feature not preserved by point enhancement) is the feature used in classification. We believe that HRR 
profile reconstruction methods that preserve and enhance features which are implicitly or explicitly used by the 
recognition system, have a potential of improving target recognition performance. In the case of point enhancement, 
which we have analyzed here, the peak locations and relative amplitudes of these peaks are better predicted than in 
conventional profiles. This results in better recognition performance, especially with the classifier based on position 
specific matrices, which strongly relies on these features. Therefore we could say that the point enhancement technique 
with the position specific matrices is a good choice for ship classification by HRR. 
 
The preliminary analysis we have presented here could be extended in a variety of ways. We intend to run extensive 
experiments using a larger number of target classes, under various sensing conditions. Furthermore, an evaluation based 
on more advanced classifiers is also a topic of interest for future work. 
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