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Visual sensor networks (VSNs) consist of image sensors, embedded processors and wireless transceivers
which are powered by batteries. Since the energy and bandwidth resources are limited, setting up a
tracking system in VSNs is a challenging problem. In this paper, we present a framework for human track-
ing in VSNs. The traditional approach of sending compressed images to a central node has certain disad-
vantages such as decreasing the performance of further processing (i.e., tracking) because of low quality
images. Instead, we propose a feature compression-based decentralized tracking framework that is better
matched with the further inference goal of tracking. In our method, each camera performs feature extrac-
tion and obtains likelihood functions. By transforming to an appropriate domain and taking only the sig-
nificant coefficients, these likelihood functions are compressed and this new representation is sent to the
fusion node. As a result, this allows us to reduce the communication in the network without significantly
affecting the tracking performance. An appropriate domain is selected by performing a comparison
between well-known transforms. We have applied our method for indoor people tracking and demon-
strated the superiority of our system over the traditional approach and a decentralized approach that
uses Kalman filter.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

With the birth of wireless sensor networks, new applications
are enabled by large-scale networks of small devices capable of
(i) measuring information from the physical environment, such
as temperature, pressure, etc., (ii) performing simple processing
on the extracted data, and (iii) transmitting the processed data to
remote locations by also considering the limited resources such
as energy and bandwidth. More recently, the availability of inex-
pensive hardware such as CMOS cameras that are able to capture
visual data from the environment has supported the development
of Visual Sensor Networks (VSNs), i.e., networks of wirelessly inter-
connected devices that acquire video data.

Using a camera in a wireless network leads to unique and chal-
lenging problems that are more complex than the traditional wire-
less sensor networks might have. For instance, most sensors
provide measurements of temporal signals that represent physical
quantities such as temperature. On the other hand, at each time
instant image sensors provide a 2D set of data points, which we
see as an image. This richer information content increases the com-
plexity of data processing and analysis. Performing complex tasks,
such as tracking, recognition, etc., in a communication-constrained
VSN environment is extremely challenging. With a data compres-
sion perspective, the common approach is to compress images
and collect them in a central unit to perform the tasks of interest.
In this strategy, the main goal is to focus on low-level communica-
tion. The communication load is decreased by compressing the raw
data without regard to the final inference goal based on the infor-
mation content of the data. Since such a strategy will affect the
quality of the transmitted data, it may decrease the performance
of further inference tasks. In this paper, we propose a different
strategy for decreasing the communication that is better matched
to problems with a defined final inference goal, which, in the con-
text of this paper, is tracking.

There has been some work proposed for solving the problems
mentioned above. To minimize the amount of data to be commu-
nicated, in some methods simple features are used for communica-
tion. For instance, 2D trajectories are used in [1]. In [2], 3D
trajectories together with color histograms are used. Hue histo-
grams along with 2D position are used in [3]. Moreover, there
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are decentralized approaches in which cameras are grouped into
clusters and tracking is performed by local cluster fusion nodes.
This kind of approaches have been applied to the multi-camera tar-
get tracking problem in various ways [4–6]. For a nonoverlapping
camera setup, tracking is performed by maximizing the similarity
between the observed features from each camera and minimizing
the long-term variation in appearance using graph matching at the
fusion node [4]. For an overlapping camera setup, a cluster-based
Kalman filter in a network of wireless cameras is proposed in
[5,6]. Local measurements of the target acquired by members of
the cluster are sent to the fusion node. Then, the fusion node esti-
mates the target position via an extended Kalman filter, relating
the measurements acquired by the cameras to the actual position
of the target by nonlinear transformations.

Previous works proposed for VSNs have some handicaps. The
methods in [1–3] that use simpler features may be capable of
decreasing the communication, but they are not capable of main-
taining robustness. In order to adapt to bandwidth constraints,
these methods choose to change the features from complex and ro-
bust to simpler but not so effective ones. As in the methods pro-
posed in [4–6], performing local processing and collecting
features to the fusion node may not satisfy the bandwidth require-
ments in a communication-constrained VSN environment. In par-
ticular, depending on the size of image features and the number
of cameras in the network, even collecting features to the fusion
node may become expensive for the network. In such cases, further
approximations on features are necessary. An efficient approach
that reduces the bandwidth requirements without significantly
decreasing the quality of image features is needed.

In this paper, we propose a framework that fits with energy and
bandwidth constraints in VSNs. It is capable of performing multi-
person tracking without significant performance loss. Our method
is a decentralized tracking approach in which each camera node in
the network performs feature extraction by itself and obtains im-
age features (likelihood functions). Instead of directly sending like-
lihood functions to the fusion node, a block-based compression is
performed on likelihoods by transforming each block to an appro-
priate domain. Then, in this new representation we only take the
significant coefficients and send them to the fusion node. Hence,
multi-view tracking can be performed without overloading the
network. The main contribution of this work is the idea of perform-
ing goal-directed compression in a VSN. In the tracking context,
this is achieved by performing local processing at the nodes and
compressing the resulting likelihood functions which are related
to the tracking goal, rather than compressing raw images. To the
best of our knowledge, compression of likelihood functions com-
puted in the context of tracking in a VSN has not been proposed
in previous work.

We have used our method within the context of a well-known
multi-camera human tracking algorithm [7]. We have modified the
method in [7] to obtain a decentralized tracking algorithm. In order
to choose an appropriate domain for likelihood functions, we have
performed a comparison between well-known transforms. A tradi-
tional approach in camera networks is transmitting compressed
images. Both by qualitative and quantitative results, we have
shown that our method can work under VSN constraints without
degrading the tracking performance and it is better than the tradi-
tional approach of sending compressed images and a decentralized
Kalman filter approach similar to the method in [5].

In Section 2, how we integrate multi-view information in our
decentralized approach is described. Section 3 presents our fea-
ture compression framework in detail and contains a comparison
of various domains for likelihood representation. Experimental
setup and results are given in Section 4. Finally in Section 5, we
conclude and suggest a number of directions for potential future
work.
2. Multi-camera integration

2.1. Decentralized tracking

In a traditional setup of camera networks, which we call central-
ized tracking, each camera acquires an image and sends this raw
data to a central unit. In the central unit, multi-view data are col-
lected, relevant features are extracted and combined, finally, using
these features, the positions of the humans are estimated. Hence,
integration of multi-view information is done in raw-data level by
pooling all images in a central unit. The presence of a single global
fusion center leads to high data-transfer rates and the need for a
computationally powerful machine, thereby, to a lack of scalability
and energy efficiency. Compressing raw image data may decrease
the communication in the network, but since the quality of images
drops, it might also decrease the tracking performance. Thus, cen-
tralized trackers are not very appropriate for use in VSN environ-
ments. In decentralized tracking, there is no central unit that
collects all raw data from the cameras. Cameras are grouped into
clusters and nodes communicate with their local cluster fusion
nodes only [8]. Communication overhead is reduced by limiting
the cooperation within each cluster and among fusion nodes.

After acquiring the images, each camera extracts useful features
from the images it has observed and sends these features to the lo-
cal fusion node. The processing capability of camera nodes in
emerging VSNs enable feature extraction at the camera nodes
without the need to send the images to the central unit [9–12].
Using the multi-view image features, tracking is performed in
the local fusion node. Hence, we can say that in decentralized
tracking, multi-view information is integrated in feature-level by
combining the features in small clusters. This both reduces the
communication in the network and removes the need of powerful
processors in the fusion node.

The decentralized approaches fits very well to VSNs in many as-
pects. The processing capability of each camera is utilized by per-
forming feature extraction at camera-level. Since cameras are
grouped into clusters, the communication overhead is reduced by
limiting the cooperation within each cluster and among fusion
nodes. In other words, by a decentralized approach, feature extrac-
tion and communication are distributed among cameras in clus-
ters, therefore, efficient estimation can be performed.

Modeling the dynamics of humans in a probabilistic framework
is a common perspective of many multi-camera human tracking
methods [7,13–15]. In tracking methods based on a probabilistic
framework, data and/or extracted features are represented by like-
lihood functions, pðyjxÞ where y 2 Rd and x 2 Rm are the observa-
tion and state vectors, respectively. In other words, for each
camera, a likelihood function is defined in terms of the observa-
tions obtained from its field of view. In centralized tracking, of
course, the likelihood functions are computed after collecting the
image data of each camera at the central unit. For a decentralized
approach, since each camera node extracts local features from its
field of view, these likelihood functions can be evaluated at the
camera nodes and they can be sent to the fusion node. Then, in
the fusion node the likelihoods can be combined and tracking
can be performed in the probabilistic framework. A flow diagram
of the decentralized approach is illustrated in Fig. 1. Following this
line of thought, we have converted the tracking approach de-
scribed in Section 2.2 to a decentralized tracker as explained in
Section 2.3.
2.2. Multi-camera tracking algorithm

In this section we describe the tracking method of [7], as we ap-
ply our proposed approach within in the context of this method in



Fig. 1. The flow diagram of a decentralized tracker using a probabilistic framework.
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this paper. In [7], the visible part of the ground plane is discretized
into a finite number G of regularly spaced 2D locations. Let
Lt ¼ ðL1

t ; . . . ; LN�

t Þ be the locations of individuals at time t, where
N� stands for the maximum allowable number of individuals. Gi-
ven T temporal frames from C cameras, I ¼ ðI1; . . . ; ITÞ where
It ¼ ðI1

t ; . . . ; IC
t Þ, the goal is to maximize the posterior conditional

probability:

PðL1 ¼ l1
; . . . ; LN� ¼ lN� jIÞ ¼ PðL1 ¼ l1jIÞ

YN�

n¼2

PðLn ¼ lnjI; L1 ¼ l1
; . . . ; Ln�1 ¼ ln�1Þ

ð1Þ

where Ln ¼ ðLn
1; . . . ; Ln

TÞ is the trajectory of person n. Simultaneous
optimization of all the Lis would be intractable. Instead, one trajec-
tory after the other is optimized. Ln is estimated by seeking the
maximum of the probability of both the observations and the tra-
jectory ending up at location k at time t:

UtðkÞ ¼ max
ln1 ;...;l

n
t�1

PðI1; L
n
1 ¼ ln

1; . . . ; It ; L
n
t ¼ kÞ ð2Þ

Under a hidden Markov model, the above expression turns into the
classical recursive expression:

UtðkÞ ¼ PðIt jLn
t ¼ kÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Appearance model

max
s

PðLn
t ¼ kjLn

t�1 ¼ sÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Motion model

Ut�1ðsÞ ð3Þ

The motion model PðLn
t ¼ kjLn

t�1 ¼ sÞ is a distribution into a disc of
limited radius and center s, which corresponds to a loose bound
on the maximum speed of a walking human.

From the input images It , by using background subtraction,
foreground binary masks, Bt , are obtained. Let the colors of the pix-
els inside the blobs are denoted as Tt and Xt

k be a Boolean random
variable denoting the presence of an individual at location k of the
grid at time t. It is shown in [7] that the appearance model in Eq.
(3) can be decomposed as:

PðItjLn
t ¼ kÞ

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Appearance model

/ PðLn
t ¼ kjXt

k ¼ 1;TtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Color model

PðXt
k ¼ 1jBtÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Ground plane occupancy

ð4Þ

In [7], humans are represented as simple rectangles and these rect-
angles are used to create synthetic ideal images that would be ob-
served if people were at given locations. Within this model, the
ground plane occupancy is approximated by measuring the similar-
ity between ideal images and foreground binary masks.

Let Tc
t ðkÞ denote the color of the pixels taken at the intersection

of the foreground binary mask, Bc
t , from camera c at time t and the
rectangle Ac
k corresponding to location k in that same field of view.

Say we have the reference color distributions (histograms) of the
N� individuals present in the scene, lc

1; . . . ;lc
N� . The color model

of person n in Eq. (4) can be expressed as:

PðLn
t ¼ kjXt

k ¼ 1;TtÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Color model

/ PðTt jLn
t ¼ kÞ ¼ PðT1

t ðkÞ; . . . ; TC
t ðkÞjL

n
t ¼ kÞ

¼
YC

c¼1

PðTc
t ðkÞjL

n
t ¼ kÞ ð5Þ

In [7], by assuming the pixels whose colors are represented by Tc
t ðkÞ

are independent, PðTc
t ðkÞjL

n
t ¼ kÞ is evaluated by a product of the mar-

ginal color distribution lc
n at each pixel,– PðTc

t ðkÞjL
n
t ¼ kÞ ¼Q

r2Tc
t ðkÞ

lc
nðrÞ. In this approach, a patch with constant color intensity

corresponding to the mode of the color distribution would be most
likely. Hence, this approach may fail to capture the statistical color
variability represented by the full probability density function esti-
mated from a spatial patch. Instead, we represent PðTc

t ðkÞjL
n
t ¼ kÞ by

comparing the observed and reference color distributions, which is
a well known approach used in many computer vision methods
[16–18]. In particular, we compare the estimated color distribution
(histogram) of the pixels in Tc

t ðkÞ and the color distribution lc
n with

a distance metric – PðTc
t ðkÞjL

n
t ¼ kÞ / expð�SðHc;k

t ;lc
nÞÞwhere Hc;k

t de-
notes the histogram of the pixels in Tc

t ðkÞ and Sð:Þ is a distance metric.
As a distance metric, we use the Bhattacharya coefficient between
two distributions. In this way, we can evaluate the degree of match
between the intensity distribution of an observed patch and the ref-
erence color distribution.

By performing a global search with dynamic programming
using Eq. (3), the trajectory of each person can be estimated.

2.3. Decentralized version of the tracking algorithm

From the above formulation, we can see that there are two dif-
ferent likelihood functions defined in the method. One is the
ground plane occupancy map (GOM), PðXt

k ¼ 1jBtÞ, approximated
using the foreground binary masks. The other is the ground plane
color map (GCM), PðLn

t ¼ kjXt
k ¼ 1;TtÞ, which is a multi-view color

likelihood function defined for each person individually. This
map is obtained by combining the individual color maps,
PðTc

t ðkÞjL
n
t ¼ kÞ, evaluated using the images each camera acquired.

Since foreground binary masks are simple binary images that can
be easily compressed by a lossless compression method, they can
be directly sent to the fusion node without overloading the net-
work. Therefore, we keep these binary images as in the original
method and GOM is evaluated at the fusion node. In our



S. Cos�ar, M. Çetin / J. Vis. Commun. Image R. 25 (2014) 864–873 867
framework, we evaluate GCM in a decentralized way (as presented
in Fig. 1): At each camera node (c ¼ 1; . . . ;C), the local color likeli-
hood function for the person of interest (PðTc

t ðkÞjL
n
t ¼ kÞ) is evalu-

ated by using the image acquired from that camera. Then, these
likelihood functions are sent to the fusion node. At the fusion node,
these likelihood functions are integrated to obtain the multi-view
color likelihood function (GCM) (Eq. (5)). By combining GCM and
GOM with the motion model, the trajectory of the person of inter-
est is estimated at the fusion node using dynamic programming
(Eq. (3)). The whole process is run for each person in the scene.

Fusion node selection and sensor resource management (sensor
tasking) is out of scope of this paper. We have assumed that one of
the camera nodes, relatively more powerful one, has been selected
as the fusion node. In a practical implementation, resource manage-
ment can be performed using existing works in [19–23]. For tracking
methods that use data from multiple cameras, some form of time
synchronization among cameras needs to be performed. Here, we
assume this has been done, and the cameras are already synchro-
nized when our approach is used. Since each camera keeps a refer-
ence color histogram individually for each person in the scene,
data association between different people is performed at the cam-
era level. Then, at the fusion node, assuming there is only one person
in the scene in the beginning of the tracking process, we assign an ID
number for each likelihood function coming from cameras to the fu-
sion node. Likelihoods with the same ID number from different cam-
eras are associated with one another at the fusion node.

3. Feature compression framework

3.1. Compressing likelihood functions

The bandwidth required for sending local likelihood functions
depends on the size of likelihoods (i.e., the number of ‘‘pixels’’ in
a 2D likelihood function) and the number of cameras in the net-
work. To make the communication in the network feasible, we pro-
pose a feature compression framework. In our framework, similar
to image compression, we compress the likelihood functions by
transforming them to a proper domain and keeping only the signif-
icant coefficients, assuming significant parts of the likelihood func-
tions are sufficient for performing tracking. At each camera node,
we first split the likelihood function into blocks. Then, we trans-
form each block to a proper domain and take only the significant
coefficients in the new representation. Instead of sending the func-
tion itself, we send this new representation of each block. In this
way, we reduce the communication in the network.

Mathematically, we have the following linear system:

yb
c ¼ A � xb

c ð6Þ
Fig. 2. Our Likelihood compression scheme. On the left, there is a local likelihood func
transform each block to the domain represented by matrix A and obtain the representat
representation ~xb

c . For each block, we send this new representation to fusion node. Finally
where yb
c and xb

c represent the bth block of the likelihood function of
camera c (for a person of interest in a particular time instant,
PðTc

t ðkÞjL
n
t ¼ kÞ in Eq. (5)) and its representation, respectively, and

A is the domain we transform yb
c to. In most of the compression

methods, the matrix A is chosen to be a unitary matrix. Hence, we
can obtain xb

c by multiplying yb
c with the Hermitian transpose of A:

xb
c ¼ A� � yb

c ð7Þ

Fig. 2 illustrates our likelihood compression scheme. Based on
existing work on VSN hardware platforms, we believe it is reason-
able to expect that the computational power of cameras in VSNs
are sufficient for performing the camera-level likelihood computa-
tions required by our approach.

By distributing image processing tasks among cameras and
sending compressed features to the fusion node, we reduce the
communication in the network. Distributing the tasks among cam-
eras also allows us to reduce the computational load in the fusion
node. In addition, since the size of likelihoods are much smaller
than the size of images, our approach is computationally lighter
than a centralized approach in which compressed images are sent
to a central node. In Section 4.3, both communication and compu-
tational gains are quantitatively presented.

Notice that in our feature compression framework, we do not
require the use of specific image features or likelihood functions.
The only requirement is that the tracking method should be based
on a probabilistic framework, which is a common approach for
modeling the dynamics of humans. Hence, our framework is a gen-
eric framework that can be used with many probabilistic tracking
algorithms in a VSN environment.

In all camera nodes and fusion nodes, the matrix A is common,
therefore, at the fusion node, likelihood functions of each camera
can be reconstructed simply by multiplying the new representa-
tion with the matrix A. In general, this may require an offline coor-
dination step to decide the domain that is matched with the task of
interest. In the next subsection, we go through the question of
which domain should be selected in Eq. (6).
3.2. A proper domain for compression

By sending the compressed likelihoods to the fusion node, our
goal is to decrease the communication in the network without
affecting the tracking performance significantly. On one hand, we
want to send less coefficients, on the other hand, we do not want
to decrease the quality of the likelihoods, i.e., we want to have
small reconstruction error. Thus, we need to select a domain that
is well-matched to the likelihood functions, providing the opportu-
nity to accurately reconstruct the likelihoods back using a small
number of coefficients.
tion (PðTc
t ðkÞjL

n
t ¼ kÞ in Eq. (5)). First, we split the likelihood into blocks, then we

ion xb
c . We only take significant coefficients in this representation and obtain a new

, by reconstructing each block we obtain the whole likelihood function on the right.
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Image compression using transforms is a mature research area.
Numerous transforms such as the discrete cosine transform (DCT),
the Haar transform, symmlets, coiflets have been proposed and
proven to be successful [24–26]. DCT is a well-known transform
that has the ability to analyze non-periodic signals. Haar wavelet
is the first known wavelet basis that consists of orthonormal func-
tions. In wavelet theory, number of vanishing moments and size of
support are two important properties that affect the ability of
wavelet bases to approximate a particular class of functions with
few non-zero wavelet coefficients [27]. In order to reconstruct like-
lihoods accurately using from a small number of coefficients, we
wish wavelet functions to have large number of vanishing mo-
ments and small size of support. Coiflets [28] are a wavelet basis
with large number of vanishing moments and Symmlets [29] are
a wavelet basis that have minimum size of support. The perfor-
mance of these domains has been analyzed in the context of our
experiments and a proper domain has been selected accordingly
as described in Section 4.2.
4. Experimental results

4.1. Setup

In the experiments, we have simulated the VSN environment by
using the indoor multi-camera dataset in [7]. This dataset includes
four people sequentially entering a room and walking around. The
sequence was shot by four synchronized cameras in a 50 m2 room.
The cameras were located at each corner of the room. In this se-
quence, the area of interest was of size 5.5m� 5:5 m ’ 30 m2

and discretized into G ¼ 56� 56 ¼ 3136 locations, corresponding
to a regular grid with a 10cm resolution. For the correspondence
between camera views and the top view, the homography matrices
provided with the dataset are used. The size of the images are
360� 288 pixels and the frame rate for all of the cameras is 25
fps. The sequence is approximately 2.5 min (’ 3;800 frames) long.
A sample set of images is shown in Fig. 3.

Although the sequence is 3800 frames long, the original method
[7] successfully works until the 2000th frame. In the following
frames, it fails to preserve identities. For this reason, in our exper-
iments we have used the part of the sequence for which the meth-
od in [7] works reasonably well.

4.2. Comparison of domains

As discussed in Section 3.2, it is very important to select a do-
main (matrix A in Eq. (6)) that can compress the likelihood func-
tions effectively. To select a proper domain, we have performed a
comparison between DCT, Haar, Symmlet, and Coiflet domains
and examined the errors in reconstructing the likelihoods using
various number of coefficients. For the Symmlet domain, the size
of support is set to 8 and for the Coiflet domain, the number of van-
ishing moments is set to 10. In the comparison, we have used 20
different likelihood functions obtained from the tracker in [7].
Fig. 3. A sample set of images from th
We have also analyzed the effect of block size by choosing two dif-
ferent block sizes: 8�8 and 4�4. We run experiments varying the
number of transform coefficients kept in the reconstruction, hence
varying the compression level. In particular, we consider using 1, 2,
3, 4, 5, and 10 most significant coefficient (s) per transform block.
For instance, for a block size of 8�8, taking the most significant 2
coefficients results in 98 coefficients in total. Depending on the
structure of the likelihood functions, the elements in a block may
all be zero. For such a block all the coefficients would be zero,
thereby we would not need to use any coefficients. Thus, we may
end up with even smaller number of coefficients than the number
obtained by multiplying the maximum number of coefficients per
block and the number of blocks.

Fig. 4 shows the average of reconstruction errors of each do-
main for different block sizes. Each data point in the plot corre-
sponds to the average error calculated by reconstructing using 1,
2, 3, 4, 5 and 10 most significant coefficient (s) per block, respec-
tively. As explained above, the total number of significant coeffi-
cients used for reconstruction may change depending on the
structure of likelihoods. Thus, the x-axis in Fig. 4 corresponds to
the average total number of coefficients obtained per likelihood
function by taking the 1, 2, 3, 4, 5 and 10 most significant coeffi-
cient (s) per block. We can see that using DCT with a block size
of 8�8 outperforms other domains. Following this observation, in
our tracking experiments, this setting has been used.
4.3. Tracking results

In this subsection, we present the performance of our method
used for multi-view multi-person tracking. In the experiments,
we have compared our method with the traditional centralized ap-
proach of compressing raw images and a decentralized method in
which, similar to [5], a Kalman filter is used in the fusion node to
estimate the position of a person in the scene using the observa-
tions coming from cameras. In the centralized approach, after the
raw images are acquired by the cameras, similar to JPEG compres-
sion, each color channel in the images are compressed and sent to
the central node. In the central node, features are extracted from
the reconstructed images and tracking is performed using the
method in [7]. In the decentralized Kalman method, after likeli-
hood functions are computed, each camera sends the peak point
of the distribution to the fusion node as its observation. In the fu-
sion node, the observations of each camera are spatially averaged
and using the average position as the overall observation, a Kalman
filter is applied to estimate the position of the person on ground
plane. The positions of all people in the scene are estimated by run-
ning an individual Kalman filter for each person.

For both our method and the centralized approach we have
used DCT domain with a block size of 8�8 and took only the 1,
2, 3, 4, 5, 10, and 25 most significant coefficient (s). Consequently,
in our method with the likelihoods of 56�56 size, at each camera
in total we end up with at most 49, 98, 147, 196, 245, 490 and
1225 coefficients per person. Since there are four individuals in
e indoor multi-camera dataset [7].



Fig. 4. The average reconstruction errors of DCT, Haar, Symmlet, and Coiflet domain for block sizes of 8�8 and 4�4 using 1, 2, 3, 4, 5 and 10 most significant coefficient (s) per
block.

Fig. 5. The average tracking errors of the centralized approach (‘‘ic-dct8x8‘‘), our
framework (‘‘fc-dct8x8‘‘) both using DCT with 8�8 blocks, the decentralized
Kalman approach that is similar to the method in [5] (‘‘decentKalman’’) and another
decentralized method (‘‘decent‘‘) that directly sends likelihood functions versus the
total number of significant coefficients used in reconstruction.
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the scene at maximum, each camera sends at most 196, 392, 588,
784, 980, 1960 and 4900 coefficients. As mentioned in the previous
section, these are the maximum number of coefficients, since there
may be some all-zero blocks. To make a fair comparison, in the
centralized approach we compress the images with 360�288 size
and 3 color channels. Hence, at each camera we end up with
4860, 9720, 14580, 19440, 24300, 48600 and 121500 coefficients.
In the decentralized Kalman method, for each person, each camera
sends only 2 points, xy-point of the peak point, to the fusion node.
In total, we end up with a maximum of 8 points for four
individuals.

A groundtruth for this sequence is obtained by manually mark-
ing the people on ground plane, in intervals of 25 frames. Tracking
errors are evaluated via Euclidean distance between the tracking
and manual marking results (in intervals of 25 frames). Fig. 5 pre-
sents the average of tracking errors over all people versus the total
number of significant coefficients used in communication for the
centralized approach and for our method. Since the total number
of significant coefficients sent by a camera in our method may
change depending on the structure of likelihood functions and
the number of people at that moment, the maximum is shown in
Fig. 5. It can be clearly seen that the centralized approach is not
capable of decreasing the communication without affecting the
tracking performance. It needs at least 121500 significant coeffi-
cients in total to achieve an error of around 1 pixel in the grid on
average. On the other hand, our method, down to using 3 signifi-
cant coefficients per block, achieves an error of around 1 pixel in
the grid on average. In our experiments, this led to sending at most
408 coefficients for four people. Taking less than 3 coefficients per
block affects the performance of the tracker and produces an error
of 11.5 pixels in the grid on average. But in overall, our method sig-
nificantly outperforms the centralized approach. In Fig. 5, we also
present the performance of the decentralized Kalman approach.
We can see that, by using this approach, we can obtain a huge
reduction in the communication, but we cannot perform robust
tracking. Our framework is also advantageous over an ordinary
decentralized approach that directly sends likelihood functions to
the fusion node. In such an approach, we send each data point in
the likelihood function, resulting a need of sending 12544 values
for tracking four people. The performance of this approach is also
given in Fig. 5. It can be seen that we can both achieve the same
level of tracking accuracy and decrease the communication in the
network.
The tracking errors for each person and the tracking results, ob-
tained by the centralized approach using 48600 coefficients in to-
tal, are given in Fig. 6(a) and (b), respectively. It can be seen that
although the centralized approach can track the first and the sec-
ond individuals very well, there is an identity association problem
for the third and fourth individuals. Fig. 7 shows the tracking errors
of each person and tracking results obtained by the decentralized
Kalman approach. It can be seen that it fails to track the people
in the scene. Nearly for all people, there occurs identity association
problems. In some frames, it loses the track of the person and starts
tracking a virtual person in the scene (frame No. 1173 in Fig. 7(b).
The reason of these failures is that the amount of information com-
ing from cameras is not enough to perform robust tracking. Before
combining multi-view likelihoods, the peak point of the likelihood
function of each view does not provide accurate information about
the location of the person. Because of these inaccurate observa-
tions the method fails to track the humans in the scene. In
Fig. 8(a) and (b), we present the tracking errors for each person
and the tracking results obtained by our method using 3 coeffi-
cients per block, respectively. Clearly, we can see that all people



(a)

(b)
Fig. 6. (a) The tracking errors for each person and (b) tracking results obtained by the centralized approach using 48600 coefficients in total used in communication.
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in the scene can be tracked very well by our method. The reason of
the peak error value in the third person is because the tracking
starts a few frames after the third person enters the room. Thus,
there is a big error at the time third person enters the room. When
the number of coefficients taken per block is less then 3, we also
observe identity problems. But by selecting the number of coeffi-
cients per block greater than or equal to 3, we can track all the peo-
ple in the scene accurately. The centralized approach, in total,
requires at least more than two orders of magnitude coefficients
to achieve this level of accuracy. Unlike the decentralized Kalman
approach, our compression scheme enables us to decrease the
communication and at the same time keep sufficient information
to perform robust tracking.

In the light of the results we obtained, we can say that our
framework successfully decrease the communication in the net-
work without affecting the tracking performance significantly.
For the same tracking performance, our framework saves 99.6%
of the bandwidth compared to the centralized approach and



(a)

(b)
Fig. 7. (a) The tracking errors for each person and (b) tracking results obtained by the decentralized Kalman approach.
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achieves saving up to 96.75% compared to the ordinary decentral-
ized approach. In terms of computational load, the centralized
approach requires processing 45 blocks in x-axis and 36 blocks in
y-axis (for images of 360�288 and 8�8 blocks). Thereby, we end
up with 1620 blocks in total. On the other hand, our method only
requires processing 49 blocks overall, i.e., 7 blocks in x and y axes
(for likelihoods of 56�56 and 8�8 blocks). Consequently, we
achieve a computational reduction of 96%. Compared to the decen-
tralized Kalman approach, we achieve much less reduction in com-
munication. However, our method accurately tracks all the people
in the scene.
5. Conclusion

Visual sensor networks constitute a new paradigm that merges
two well-known topics: computer vision and sensor networks.
Consequently, it poses unique and challenging problems that do
not exist either in computer vision or in sensor networks. This pa-
per presents a novel method that can be used in VSNs for multi-
camera person tracking applications. In our framework, tracking
is performed in a decentralized way: each camera extracts useful
features from the images it has observed and sends them to a
fusion node which collects the multi-view image features and



(a)

(b)
Fig. 8. (a) The tracking errors for each person and (b) tracking results obtained by our framework using 3 coefficients per block used in communication.
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performs tracking. In tracking, extracting features usually results a
likelihood function. Instead of sending the likelihood functions it-
self to the fusion node, we compress the likelihoods by first split-
ting them into blocks, and then transforming each block to a
proper domain and taking only the most significant coefficients
in this representation. By sending the most significant coefficients
to the fusion node, we decrease the communication in the network.
At the fusion node, the likelihood functions are reconstructed back
and tracking is performed. The idea of performing goal-directed
compression in a VSN is the main contribution of this work. Rather
than focusing on low-level communication without regard to the
final inference goal, we propose a different compressing scheme
that is better matched to the final inference goal, which, in the con-
text of this paper, is tracking.

This framework fits well to the needs of the VSN environment in
two aspects: (i) the processing capabilities of cameras in the net-
work are utilized by extracting image features at the camera-level,
(ii) using only the most significant coefficients in network commu-
nication saves energy and bandwidth resources. We have achieved
a goal-directed compression scheme for the tracking problem in
VSNs by performing local processing at the nodes and compressing
the resulting likelihood functions which are related to the tracking
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goal, rather than compressing raw images. To the best of our
knowledge, this method is the first method that compresses likeli-
hood functions and applies this idea for VSNs. Another advantage
of this framework is that it does not require the use of a specific
tracking method. Without making significant changes on existing
tracking methods (e.g., using simpler features, etc.), which may de-
grade the performance, such methods can be used within our
framework in VSN environments. In the light of the experimental
results, we can say that our feature compression approach can be
used together with any robust probabilistic tracker in the VSN
context.

We believe that trying different dictionaries that are better
matched to the structure of likelihood functions, thereby, leading
to further reductions in the communication load, can be a possible
direction for future work. In addition, an interesting future work
direction can be the implementation of our method in a real VSN
setup.
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