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a b s t r a c t

Recent developments in low-cost CMOS cameras have created the opportunity of bringing imaging capabil-

ities to sensor networks and a new field called visual sensor networks (VSNs) has emerged. VSNs consist of

image sensors, embedded processors, and wireless transceivers which are powered by batteries. Since energy

and bandwidth resources are limited, setting up a tracking system in VSNs is a challenging problem. In this

paper, we present a framework for human tracking in VSN environments. The traditional approach of sending

compressed images to a central node has certain disadvantages such as decreasing the performance of further

processing (i.e., tracking) because of low quality images. Instead, in our decentralized tracking framework,

each camera node performs feature extraction and obtains likelihood functions. We propose a sparsity-driven

method that can obtain bandwidth-efficient representation of likelihoods extracted by the camera nodes. Our

approach involves the design of special overcomplete dictionaries that match the structure of the likelihoods

and the transmission of likelihood information in the network through sparse representation in such dictio-

naries. We have applied our method for indoor and outdoor people tracking scenarios and have shown that

it can provide major savings in communication bandwidth without significant degradation in tracking per-

formance. We have compared the tracking results and communication loads with a block-based likelihood

compression scheme, a decentralized tracking method and a distributed tracking method. Experimental re-

sults show that our sparse representation framework is an effective approach that can be used together with

any probabilistic tracker in VSNs.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past decade, large-scale camera networks have enjoyed

increased use in a wide range of applications, especially in security

and surveillance. With the developments in wireless sensor networks

and the availability of inexpensive image sensors, a new field has

emerged: Visual sensor networks (VSNs), i.e., networks of wirelessly

interconnected battery-operated devices that acquire video data.

Using a camera in a wireless network poses unique and chal-

lenging problems that do not exist either in traditional multi-

camera video analysis systems or in sensor networks. In most of

the multi-camera video analysis systems, a centralized approach,

in which the raw data acquired by cameras are collected in a cen-

tral unit and analyzed to perform the task of interest, is followed.

However, performing complex tasks, such as tracking, recognition,

etc., in a communication-constrained VSN environment is extremely
∗ Corresponding author.

E-mail addresses: serhancosar@sabanciuniv.edu (S. Coşar), mcetin@sabanciuniv.
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hallenging. For such constraints, with a data compression perspec-

ive, the common approach is to compress images in the process of

ransmission to the central unit. This strategy essentially focuses on

ow-level data compression without regard to the final inference goal.

uch a strategy may not be appropriate for use under scenarios with

evere bandwidth limitations and might cause significant degrada-

ion in tracking performance with large compression ratios. We pro-

ide a more in-depth review of existing work in Section 2.

In this paper, we propose a different strategy that is better

atched to the final inference goal, which, in the context of this pa-

er, is tracking. We propose a sparsity-driven tracking method that is

uitable for energy and bandwidth constraints in VSNs. Our method is

decentralized tracking approach in which each camera node in the

etwork performs feature extraction by itself and obtains image fea-

ures (likelihood functions). In scenarios with overlapping cameras,

racking is performed by fusing the likelihoods obtained from each

iew. Instead of directly sending likelihood functions to the fusion

ode, we compute and transmit sparse representations of the like-

ihoods. By sending such sparse representations to the fusion node,

ulti-view tracking can be performed without overloading the net-

ork. We design special overcomplete dictionaries for the sparse

http://dx.doi.org/10.1016/j.cviu.2015.04.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.04.010&domain=pdf
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epresentation of likelihood functions. The main contribution of this

ork is building a sparse representation framework and designing

vercomplete dictionaries that are matched to the structure of likeli-

oods. In particular our dictionaries are designed in an adaptive man-

er by exploiting the specific known geometry of the measurement

cenario and by focusing on the problem of human tracking. Each ele-

ent in the dictionary for each camera corresponds to the likelihood

hat would result from a single human at a particular location in the

cene. Hence actual likelihoods extracted from real observations from

cenes containing multiple individuals can be very sparsely repre-

ented in our approach. By using these dictionaries, we can represent

ikelihoods with a very small number of coefficients, and thereby de-

rease the communication between camera and fusion nodes. To the

est of our knowledge, such sparse representation based compres-

ion of likelihood functions computed in the context of tracking in a

SN has not been proposed in previous work.

We have used our method within the context of two multi-camera

uman tracking algorithms [1,2]. We have modified these methods in

rder to obtain decentralized tracking algorithms. Both by qualitative

nd quantitative results, we have shown that our method is better

han using the block-based compression scheme in [3], the decen-

ralized tracking method in [4], the distributed tracking methods in

5,6] and a traditional centralized approach that compresses raw im-

ges acquired by each camera. The sparse likelihood representation

ramework we present can be used within any probabilistic tracking

ethod under VSN constraints without significantly degrading the

racking performance.

In Section 2, existing pieces of work on tracking in VSNs are

eviewed. Section 3 presents our decentralized approach for multi-

amera tracking in detail. In Section 4, our sparse representation

ramework and the details of our specially designed overcomplete

ictionaries are described. Experimental results are presented

n Section 5. Finally in Section 6, we provide a summary and

onclusions.

. Related work

There exists some previous work on tracking in VSNs. In several

ieces of work, basic features or techniques are used to adapt central-

zed tracking methods to VSNs. For instance, visual hulls are used in

7,8] to detect the presence and number of humans. However, since a

isual hull presents the largest volume in which a human can reside,

he exact number of humans cannot be determined when humans

re positioned close to one another. To minimize the amount of data

o be communicated between cameras, in some methods simple fea-

ures are used for communication. For instance, 2D trajectories are

sed in [9]. In [10], 3D trajectories together with color histograms are

sed. Hue histograms along with 2D position are used in [11].

Moreover, there are decentralized approaches in which cameras

re grouped into clusters and tracking is performed by local clus-

er fusion nodes. This kind of approach has been applied to the

ulti-camera target tracking problem in various ways [4,12,13]. For

nonoverlapping camera setup, tracking is performed by maximiz-

ng the similarity between the observed features from each camera

nd minimizing the long-term variation in appearance using graph

atching at the fusion node [12]. For an overlapping camera setup,

cluster-based Kalman filter in a network of wireless cameras has

een proposed in [4,13]. In this work, local measurements of the tar-

et acquired by members of the cluster are sent to the fusion node.

hen, the fusion node estimates the target position via an extended

alman filter, relating the measurements acquired by the cameras to

he actual position of the target by nonlinear transformations.

To further increase scalability and to reduce communication

osts, distributed estimation operates without local fusion centers.

he estimates generated in a camera are transmitted to its imme-

iate neighbors only. The received estimates are used to refine the
stimates at these immediate neighbors, and these refined estimates

re then transmitted to the next group of neighbors [5,6,14]. This

rocess ends after a predefined number of steps after all cameras

iewing the target are visited or when the uncertainty has decreased

elow a desired value. In [5], the Kalman–Consensus algorithm [15]

s adapted to take into account the directional nature of video sensors

nd the network topology. Each camera estimates the locations of

he people in the scene based on its own sensed data which is

hen shared locally with the neighboring cameras in an iterative

ashion, and a final estimate is arrived at in the network using the

alman–Consensus algorithm. As an extension of this approach, in

6] authors presented the Information Weighted Consensus filter that

eights the estimates coming from neighboring cameras by their

nformation. Thus a camera node which has less information about a

erson’s state is given less weight in the overall estimation process.

wireless embedded smart camera system for cooperative human

racking has been proposed in [14]. At each camera lightweight fore-

round detection and color histogram based tracking algorithms are

mplemented and run. Important portions of video and trajectories

re determined by detecting events of interest that are pre-defined

y users. Communication in the network is minimized by sending

essages only when an event of interest occurs.

There are certain limitations of previous work which motivate fur-

her research. The methods in [7–11] that use simple features may be

apable of decreasing the communication, but they are not capable

f maintaining robustness of tracking performance in the case of re-

uced communication. For the sake of bandwidth efficiency, these

ethods choose to change the features from complex and robust

o simpler, but not so effective ones. Distributed tracking methods

5,6,14] fit well to the needs of VSNs, but suffer from several disad-

antages. In the literature of multi-camera tracking, there are many

lgorithms that can perform robust tracking. In order to use such al-

orithms in VSN environments, we need to implement existing cen-

ralized trackers in a distributed way. In order to do that, usually, one

eeds to modify pretty much each step from feature extraction to fi-

al inference, which is not a straight-forward task and which can af-

ect the performance of the tracker. Performing local processing and

ollecting features to the fusion node, as in [4,12,13], may not satisfy

he bandwidth requirements in a communication-constrained VSN

nvironment. In particular, depending on the size of image features

nd the number of cameras in the network, even collecting features

o the fusion node may become expensive for the network. In such

ases, further approximations on features are necessary.

Over the last decade, an alternative sampling/sensing theory,

nown as “compressed sensing” has emerged. Compressed sensing

nables the recovery of signals, images, and other data from what

ppear to be undersampled observations. Compressed sensing is

technique for acquiring and reconstructing a signal from small

mount of measurements utilizing the prior knowledge that the sig-

al has a sparse representation in a proper space. As a consequence,

ompressed sensing and sparse representation (SR) have become

mportant signal recovery techniques because of their success for

cquiring, representing, and compressing high-dimensional signals

n various application areas [16–19]. In the past few years, variations

nd extensions of l1 minimization have been applied to many vision

asks, including face recognition [20], denoising and inpainting

17], background modeling [21], and image classification [22]. Com-

ressed sensing has also been combined with distributed estimation

o perform distributed video coding in VSNs [23]. In almost all of

hese applications, using sparsity as a prior leads to state-of-the-art

esults [24].

Following the observations about SR and considering the prob-

ems of existing methods, we propose a decentralized approach

hat fits well to the needs of VSNs and exploits desirable fea-

ures of a successful centralized tracking algorithm. By transmitting

parse representations of image features, our method can reduce
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the bandwidth requirements without significantly decreasing their

quality.

3. Tracking in visual sensor networks

3.1. Decentralized tracking

In a traditional setup of camera networks, which we call central-

ized tracking, each camera acquires an image and sends this raw data

to a central unit. In the central unit, multi-view data are collected,

relevant features are extracted and combined, finally, using these fea-

tures, the positions of the humans are estimated. Hence, integration

of multi-view information is done at the raw-data level by pooling

all images into a central unit. The presence of a single global fusion

center leads to high data-transfer rates and the need for a computa-

tionally powerful machine. Such an approach cannot satisfy the scala-

bility, bandwidth-efficiency, and energy-efficiency requirements of a

VSN. Compressing raw image data may decrease the communication

in the network, however high compression ratios imposed by severe

bandwidth limitations could lead to degraded tracking performance.

For this reason, centralized trackers are not very appropriate for use

in VSN environments. In decentralized tracking, there is no central

unit that collects all raw data from the cameras. Cameras are grouped

into clusters and nodes communicate with their local cluster fusion

nodes only [25]. Communication overhead is reduced by limiting the

cooperation within each cluster and among fusion nodes.

After acquiring the images, each camera extracts useful features

from the images it has observed and sends these features to the local

fusion node. The processing capability of camera nodes in emerging

VSNs enable feature extraction at the camera nodes without the need

to send the images to the central unit [26–29]. Using the multi-view

image features, tracking is performed in the local fusion node. Hence,

in decentralized tracking, multi-view information is integrated in

feature-level by combining the features in small clusters. This both

reduces the communication in the network and removes the need of

powerful processors in the fusion node.

Decentralized approaches are appropriate for VSNs in many as-

pects. The processing capability of each camera is utilized by per-

forming feature extraction at the camera-level. Since cameras are

grouped into clusters, the communication overhead is reduced by

limiting the cooperation within each cluster and among fusion nodes.

In other words, by a decentralized approach, feature extraction and

communication are distributed among cameras in clusters, therefore,

efficient estimation can be performed.
Fig. 1. The flow diagram of a decentralized tr
Modeling the dynamics of humans in a probabilistic framework is

common perspective of many multi-camera human tracking meth-

ds [1,30–33]. In tracking methods based on a probabilistic frame-

ork, data and/or extracted features are represented by likelihood

unctions, p(y|x) where y ∈ R
d and x ∈ R

m are the observation and

tate vectors, respectively. In other words, for each camera, a likeli-

ood function is defined in terms of the observations obtained from

ts field of view. In centralized tracking, of course, the likelihood func-

ions are computed after collecting the image data of each camera

t the central unit. For a decentralized approach, since each camera

ode extracts local features from its field of view, these likelihood

unctions can be evaluated at the camera nodes and they can be sent

o the fusion node. Then, in the fusion node the likelihoods can be

ombined and tracking can be performed in the probabilistic frame-

ork. A flow diagram of a generic decentralized approach is illus-

rated in Fig. 1. Following this line of thought, we have converted the

racking approaches in [1,2] to decentralized trackers as explained in

he next section.

.2. Multi-camera tracking algorithms

We have applied our proposed framework within the context of

wo different tracking methods. In this section, we describe these

racking methods and explain how we have converted these trackers

o decentralized trackers.

Fusion node selection and sensor resource management (sensor

asking) is out of scope of this paper. We have assumed that one of the

amera nodes, a relatively more powerful one, has been selected as

he fusion node. In a practical implementation, resource management

an be performed using existing work in [34–37].

.2.1. Algorithm 1

In this section we describe the tracking method of [1]. In [1], the

isible part of the ground plane is discretized into a finite number G of

egularly spaced 2D locations. Let Lt = (L1
t , . . . , LN∗

t ) be the locations

f individuals at time t, where N∗ stands for the maximum allow-

ble number of individuals. Given T temporal frames from C cameras,

t = (I1
t , . . . , ICt ), t = {1 . . . T}, the goal is to estimate the trajectory of

erson n, Ln = (Ln
1
, . . . , Ln

T
), by seeking the maximum of the probabil-

ty of both the observations and the trajectory ending up at location

at time t:

n
t (k) = max

ln
1
,...,ln

t−1

P
(
I1, Ln

1 = ln
1 , . . . , It , Ln

t = k
)

(1)

nder a hidden Markov model, it turns into the classical recursive

xpression:
acker using a probabilistic framework.
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t (k) = P

(
It

∣∣Ln
t = k

)
︸ ︷︷ ︸

Appearance model

max
τ

P
(
Ln

t = k
∣∣Ln

t−1 = τ
)

︸ ︷︷ ︸
Motion model

�t−1(τ ) (2)

he motion model P(Ln
t = k|Ln

t−1
= τ ) is a circular uniform distribu-

ion with a limited radius and center τ , which corresponds to a loose

ound on the maximum speed of a walking human.

From the input images It, by using background subtraction, fore-

round binary masks, Bt, are obtained. Let the colors of the pixels

nside the blobs be denoted by Tt and let Xt
k

be a Boolean random

ariable denoting the presence of an individual at location k of the

rid at time t. It is shown in [1] that the appearance model in Eq. (2)

an be decomposed as:

ppearance model︷ ︸︸ ︷
P
(
It

∣∣Ln
t = k

)
∝ P

(
Ln

t = k
∣∣Xt

k = 1, Tt

)
︸ ︷︷ ︸

Color model

P
(
Xt

k = 1
∣∣Bt

)
︸ ︷︷ ︸

Ground plane occupancy

(3)

n [1], humans are represented as simple rectangles used to create

ynthetic ideal images that would be observed if people were at given

ocations. Within this model, the ground plane occupancy is approx-

mated by measuring the similarity between ideal images and fore-

round binary masks.

Let T c
t (k) denote the color of the pixels taken at the intersection

f the foreground binary mask, Bc
t , from camera c at time t and the

ectangle Ac
k

corresponding to location k in that same field of view.

ay we have the color distributions of the N∗ individuals present in

he scene, μc
1
, . . . ,μc

N∗ . The color model of person n in Eq. (3) can be

xpressed as:(
Ln

t = k
∣∣Xt

k = 1, Tt

)
∝ P

(
Tt

∣∣Ln
t = k

)
= P

(
T 1

t (k), . . . , TC
t (k)

∣∣Ln
t = k

)

=
C∏

c=1

P
(
T c

t (k)
∣∣Ln

t = k
)

(4)

ifferent from [1], we represent P(T c
t (k)|Ln

t = k) by comparing the

stimated color distribution (histogram) of the pixels in T c
t (k) and

he color distribution μc
n with the Bhattacharya coefficient between

wo distributions [3]. By performing a global search with dynamic

rogramming using Eq. (2), the trajectory of each person can be esti-

ated.

.2.2. Decentralized version of Algorithm 1

From the above formulation, we can see that there are two dif-

erent likelihood functions defined in the method. One is the ground

lane occupancy map (GOM), P(Xt
k

= 1|Bt ), approximated using the

oreground binary masks. The other is the ground plane color map

GCM), P(Ln
t = k|Xt

k
= 1, Tt ), which is a multi-view color likelihood

unction defined for each person individually. This map is obtained by

ombining the individual color maps, P(T c
t (k)|Ln

t = k), evaluated us-

ng the images each camera acquires. Since foreground binary masks

re simple binary images that can be easily compressed by a lossless

ompression method, they can be directly sent to the fusion node

ithout overloading the network. Therefore, we keep these binary

mages as in the original method and GOM is evaluated at the fu-

ion node. In our framework, we evaluate GCM in a decentralized way

as presented in Fig. 1): At each camera node (c = 1, . . . ,C), the local

olor likelihood function for the person of interest (P(T c
t (k)|Ln

t = k))

s evaluated by using the image acquired from that camera. Then,

hese likelihood functions are sent to the fusion node. At the fusion

ode, these likelihood functions are integrated to obtain the multi-

iew color likelihood function (GCM) (Eq. (4)). By combining GCM

nd GOM with the motion model, the trajectory of the person of in-

erest is estimated at the fusion node using dynamic programming

Eq. (2)). The whole process is run for each person in the scene.

Since each camera keeps a reference color histogram individually

or each person in the scene, data association between different peo-

le is performed at the camera level. After the likelihoods are trans-
itted to the fusion node, the association of these likelihoods ob-

ained by each camera should be performed in the fusion node. Since

he main focus of this paper is to decrease communication in the

etwork using sparse representation, we have followed a simple ap-

roach for data association in the fusion node. By assuming there is

nly one person in the scene in the beginning of the tracking process,

e assign an ID number for each likelihood function coming from

ameras to the fusion node. Likelihoods with the same ID number

rom different cameras are associated with one another at the fusion

ode, which avoids high level of computations in the fusion node. For

cenarios that do not satisfy our assumption, a color-based data asso-

iation algorithm can be used before running our approach. We have

resented such a case in Section 5.2 and shown that the likelihoods

f four people can be correctly matched using a color-based data as-

ociation algorithm. More advanced data association algorithms that

an reliably work under severe conditions such as significantly vary-

ng lighting conditions across cameras or a very crowded scene, are

eyond the scope of this paper.

.2.3. Algorithm 2

This section describes the second tracking algorithm [2] used to-

ether with our proposed approach. In [2], a planar homographic oc-

upancy constraint that fuses foreground likelihood information from

ultiple views to resolve occlusions and localize people on a refer-

nce scene plane is developed. For better performance, this process

s extended to multiple planes parallel to the reference plane in the

ramework of plane to plane homography. The formulation of like-

ihood function in this approach (p(y|x) where y and x are the image

bservation and position of the person, respectively) is compactly de-

cribed by:

p(y|x) =
H∏

h=1

p(yh|x) =
H∏

h=1

C∏

c=1

p(yc,h|x) (5)

ere, p(yc, h|x) represents the foreground likelihood information ex-

racted from camera c and projected onto plane h, p(yh|x) represents

he fused foreground likelihood information from multiple views on

lane h, and finally H and C represent the number of parallel planes

nd cameras, respectively.

Unlike the method in [2], we have used the human detection

lgorithm in [38] for extracting foreground likelihood information

p(yc, h|x)). The human detector outputs a probability map that repre-

ents the probable locations of people in the image plane. We project

his probability map onto the ground plane (Z=0) and onto planes

t different heights (Z=200, 400, . . . , 1600) that are parallel to the

round. Then, we combine these multi-layered projected probabil-

ty maps and obtain a likelihood function for a camera view. Similar

o the first tracker described in Section 3.2.1, after the fusion of likeli-

oods from multiple views for multiple planes, a posterior probabil-

ty is obtained by combining the likelihood with a motion model and

he position of people are estimated by running dynamic program-

ing on the posterior probability. The association of observations to

eople is achieved in two levels: at the camera level based upon ap-

earance (color) and at the fusion node based on motion information.

.2.4. Decentralized version of Algorithm 2

In our framework, we evaluate the multi-layer projected proba-

ility maps (p(yh|x)) in a decentralized way (Fig. 1). In [2], fusion

s first performed on camera views and then on parallel homogra-

hy planes. Here, we switch this order by first fusing the likelihood

nformation on parallel planes. At each camera node, the likelihood

unctions obtained by the human detection algorithm [38] (p(yc, h|x))

re projected on multiple parallel planes and combined to obtain the

ingle-view likelihood function:

p(yc|x) =
H∏

h=1

p(yc,h|x) (6)
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Then, this likelihood is sent to the fusion node. In the fusion node,

the likelihoods are fused on camera views to obtain the multi-view

likelihood function:

p(y|x) =
C∏

c=1

p(yc|x) (7)

Using the multi-view likelihood function and the motion model, the

position of people in the scene are estimated at the fusion node using

dynamic programming.

4. Sparse representation of likelihood functions

4.1. Overview

The bandwidth required for sending local likelihood functions de-

pends on the size of likelihoods (i.e., the number of “pixels” in a 2D

likelihood function) and the number of cameras in the network. To

make the communication in the network feasible, in [3] a block-based

transform domain compression scheme is followed. In this block-

based compression scheme, after each camera node performs fea-

ture extraction and obtains likelihood functions, likelihood functions

are split into blocks and each block is transformed to an appropri-

ate wavelet domain. Then, by taking only the significant coefficients,

the likelihood functions are compressed and this new representation

is sent to the fusion node. Here, following the great success of com-

pressed sensing in different application areas, we propose a sparse

representation framework. At each camera node we propose to repre-

sent the likelihood functions sparsely in a proper dictionary and then

send this representation instead of sending the function itself. If one

can find a dictionary through which the likelihood functions can be

represented accurately by a small number of coefficients, then this

approach would have the potential to contribute to accurate track-

ing with minimal use of communication resources. The main contri-

bution of this paper is designing overcomplete dictionaries that are

matched to the structure of likelihoods and building a sparse repre-

sentation framework for bandwidth-efficient decentralized tracking

in VSNs. Thanks to the developments in processor technology and fast

solver algorithms for l1-minimization problems, we believe sparse

representation based methods, such as our approach, also have a high

potential for real-world scenarios.

Mathematically, we have the following linear system:

yc = Ac · bc (8)

where yc and bc represents the likelihood function of the camera c

(e.g., P(T c
t (k)|Ln

t = k) in Eq. (4) or p(yc|x) in Eq. (6)) and its sparse co-

efficients, respectively, and Ac is the overcomplete1 dictionary ma-

trix for camera c that represents the domain in which yc has a

sparse representation. To obtain the sparse representation of the like-

lihood function, at each camera we solve the optimization problem in

Eq. (9).

min
bc

||yc − Ac · bc||2 + λ||bc||1 (9)

Notice that in our sparse representation framework, we do not re-

quire the use of specific image features or likelihood functions. The

only requirement is that the tracking method should be based on a

probabilistic framework, which is a common approach for modeling

the dynamics of humans. Hence, our framework is a generic frame-

work that can be used with many probabilistic tracking algorithms

in a VSN environment. In fact, we have applied our framework using

two different tracking algorithms (Section 3.2) and shown the track-

ing results in Section 5.

At the fusion node, likelihood functions of each camera can be re-

constructed simply by multiplying the new representation with the
1 The number of columns is bigger than the number of rows.

t

b

b

atrix Ac. In general, this may require an initialization step to decide

he sparsifying space (Ac) at each camera that is matched with the

ask of interest and to send all dictionary matrices to the fusion node.

n the next subsection, we go through the question of how one can

esign the representation dictionary Ac in Eq. (8).

.2. Designing overcomplete dictionaries

In [3], it has been shown that the block-based compression ap-

roach can be used to reduce bandwidth. However, this approach

oes not offer a natural representation for likelihood functions, as

t does not exploit the specific spatial structure exhibited by these

unctions. The block-based processing breaks the global structure of

he likelihoods. For these reasons, we need a special dictionary that

s matched to the structure of the likelihood functions. A well-known

pproach to obtain such a dictionary is to learn from training data

39,40]. However, such a learning-based approach is mostly used

n signal/image denoising or restoration problems and the training

ata consist of signal/image patches [40]. In the problem of track-

ng, Aharon et al. [39] would treat likelihoods as arbitrary images

nd would not properly exploit the knowledge on the structure of

he likelihood functions. Hence, it might not be perfectly matched for

arsimonious representation of likelihoods, for the objective of re-

ucing the bandwidth. For this reason, rather than a generic learning-

ased method, we follow a different approach by building a dictio-

ary exploiting the geometry of the measurement scenario. In par-

icular, for an extremely parsimonious representation, we assert that

atural atoms of the dictionary for each camera view would be like-

ihood functions generated by targets at each possible location in the

cene.

The likelihood functions we obtain from the color model in [1]

ave a special structure. As it has been explained in Section 3.2.1,

he color model likelihood functions for a person of interest are ob-

ained by comparing the color histogram of rectangular patches in

he foreground image and the color distribution of the person of in-

erest. Hence, a similarity score is obtained for each grid cell on the

round plane. In Fig. 2, two sample foreground images and the like-

ihood function obtained from these foreground images are shown.

ig. 2(a) and (c) show foreground images captured from two differ-

nt camera views when there is only one person in the scene and

hen the scene is crowded, respectively. The likelihood functions ob-

ained from these image are shown in Fig. 2(b) and (d). Here, x and y

oordinates represent the grid cell coordinates on the ground plane.

e can clearly see that likelihood functions consist of quadrilateral-

haped components. A person in the scene creates a quadrilateral-

haped component in the likelihood function. One of the important

roperties of these components is that their shape do not depend on

he value of the foreground pixels. The values inside the quadrilat-

ral change according to the color pixel intensities in the foreground

mage. But the shape of the quadrilateral only depends on the cam-

ra view and the position of the foreground pixels. For this reason,

e can say that these quadrilateral-shaped components are build-

ng blocks of likelihood functions. By creating a dictionary from these

uilding blocks, we can naturally and properly exploit the structure

f the likelihood functions.

As we have mentioned above, the scale and orientation of the

uadrilateral depends on the camera view and the position of the

oreground pixels. In order to find all the building blocks of likelihood

unctions, we need to create likelihood functions from all the possi-

le foreground images. Similar to a 2D Dirac delta function, we create

foreground image that is all-black except a single white pixel and

btain a likelihood function from this image (Fig. 3). By changing the

osition of the white pixel and obtaining the likelihood function from

hat foreground image, we can create a pool composed of building

locks. For each camera, we create the dictionary matrix (Ac in Eq. (8))

y arranging the building blocks of likelihoods as the columns of
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Fig. 2. Foreground images captured from two different camera views (a) when there is only one person in the scene, (c) when the scene is crowded and (b) and (d) color model

likelihood functions obtained from the images based on the approach in [1].

Fig. 3. (a) A sample foreground image that is all-black except a white pixel (pointed with a red arrow) and (b) the likelihood function obtained from this foreground. (For interpre-

tation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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he matrix. Note that dictionaries constructed in this manner depend

n the geometry of the observation scenario. Hence, our dictionaries

aturally adapt to and exploit the geometry of the sensing scenario.

In the tracking method [2], the likelihood functions of each cam-

ra view are obtained by fusing the projection of foreground maps ob-

ained by the human detection step on parallel planes. A sample fore-

round image and a foreground map obtained from this foreground

mage are shown in Fig. 4. Again, we can observe that a person in

he scene creates a quadrilateral-shaped component in the projected

ikelihood function. In order to find the building blocks of these like-
ihood functions, we imitate a person in the scene by setting a 100 ×
0 rectangular patch in an all-zero likelihood function and projecting

his likelihood onto the ground plane (Fig. 5). Similar to the proce-

ure above, as we shift this rectangular patch, we can create a pool of

uilding blocks and consequently build the dictionary.

.3. Comparison of solvers for l1-minimization

Solving optimization problems with l1 constraints has become a

ell-established research area. Many solvers have been proposed for
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Fig. 4. (a) A foreground image and (b) likelihood function obtained from the image based on the approach in [2].

Fig. 5. (a) A sample foreground map that is all-black except a white 100 × 30 rectangular patch and (b) the likelihood function obtained from this foreground.
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l1-minimization. In [41], popular solvers have been compared in or-

der to find the fastest solver to be used in sparsity-driven face recog-

nition. Following this work, we have compared these solvers in order

to choose a solver that is fast and accurate for our sparse representa-

tion framework.

In the comparison, we have used 20 different likelihood functions

obtained from the tracker in [1] as a test set. Our specially designed

dictionaries, that have been created using the approach described in

Section 4.2, have been used as the Ac matrix in Eq. (9). Homotopy

[42], L1LS [43], SpaRSA [44], FISTA [45], and ALM [41] algorithms have

been used to solve the optimization problem in Eq. (9) and find the

sparse representation of likelihood functions in the test set. The reg-

ularization parameter in Eq. (9), λ, is set to several values: 0.1, 0.5,

1, 10, 100, 200. The average run-times of the solvers in seconds for

different λ values are shown in Table 1. To avoid trivial solutions, we

have also checked the number of iterations of each algorithm . The

average iteration counts of solvers for different λ values are given in

Table 2.

We can see that ALM algorithm for λ values between 0.1–10 and

SpaRSA algorithm for λ = 200 are the fastest solvers. But, average it-

eration counts of ALM and SpaRSA show that they find the trivial so-

lution. When we look at the Homotopy algorithm, we can see that,

independent of the λ parameter, Homotopy algorithm works fast and

does not give the trivial solution. We have observed that selecting

λ = 0.1 enforces sufficient level of sparsity to achieve reasonable re-

sults. Therefore, we select the Homotopy algorithm and set λ = 0.1 in

our tracking experiments.
. Experimental results

This section contains results of a set of experiments testing the

erformance of our approach in various tracking scenarios and com-

aring it with several existing techniques proposed for tracking appli-

ations in VSNs. In Section 5.1, we have demonstrated the use of our

pproach within the framework of the tracking algorithm in [1] and

resented comparisons of our method with a block-based compres-

ion framework in [3], a decentralized method [4] and a centralized

pproach. In Section 5.2, we have demonstrated the use of our ap-

roach within the framework of the tracking algorithms in [1,2] and

e have presented the comparisons of our approach with distributed

ethods in [5,6]. In all experiments, the first camera node is assumed

o be the most powerful node and selected as the fusion node.

.1. Comparison with a block-based compression framework

In this subsection, we present experimental results based on the

racking framework in [1]. We have compared our method with a

lock-based compression framework [3], a traditional centralized ap-

roach of compressing raw images, and a decentralized method in

hich, similar to [4], a Kalman filter is used in the fusion node to

stimate the position of a person in the scene using the observa-

ions coming from cameras. In the centralized approach, after the

aw images are acquired by the cameras, similar to JPEG compres-

ion, each color channel in each image is compressed and sent to

he central node. In the central node, features are extracted from the
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Table 1

Average run-times of solvers in seconds for different regularization parameters.

λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 100 λ = 200

Homotopy [42] 0.60133 0.64638 0.62925 0.62143 0.49892 0.32343

L1_LS [43] 816.1898 134.1769 81.6986 30.0675 13.7835 12.8253

SpaRSA [44] 24.695 22.9193 22.1939 21.7195 22.0352 0.063627

FISTA [45] 636.0806 381.3541 343.2617 206.3525 130.385 131.4214

ALM [41] 0.085406 0.078551 0.079087 0.078963 6.8105 127.8755

Table 2

Average iteration counts of solvers for different regularization parameters.

λ = 0.1 λ = 0.5 λ = 1 λ = 10 λ = 100 λ = 200

Homotopy [42] 15.4792 15.4792 15.4792 15.1042 8.6354 1.3125

L1_LS [43] 20.8333 17.9479 18.8542 21.1979 20.5104 21.5833

SpaRSA [44] 833.5938 848.9271 833.5729 813.4583 826.0208 0.5

FISTA [45] 269.9688 144.4583 121.9375 47.7917 7.8542 4.75

ALM [41] 2 2 2 2 206.0313 3498.6563
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econstructed images and tracking is performed using the method in

1]. In this decentralized method, after likelihood functions are com-

uted, each camera sends the peak point of the distribution to the

usion node as observation.2 In the fusion node, the observations of

ach camera are spatially averaged and using the average position as

ts observation, a Kalman filter is applied to estimate the position of

he person on the ground plane. The positions of all people in the

cene are estimated by running an individual Kalman filter for each

erson.

.1.1. Setup

In the experiments, we have simulated the VSN environment by

sing the indoor and outdoor multi-camera dataset in [1]. The indoor

ataset consists of a video sequence of four people sequentially enter-

ng a room and walking around. The sequence was shot by four syn-

hronized cameras that were located at each corner of the room. In

his sequence, the area of interest was discretized into G = 56 × 56 =
136 locations. The outdoor dataset was shot in a university campus

nd it includes up to four individuals appearing simultaneously. This

equence was shot by three synchronized cameras. The area of in-

erest for this sequence was discretized into G = 40 × 40 = 1600 lo-

ations. For the correspondence between camera views and the top

iew, the homography matrices provided with the dataset are used.

he size of the images are 360 × 288 pixels and the frame rate for all

f the cameras is 25 fps.

Using the procedure described in Section 4.2, we have created the

ictionaries for each view. For the indoor dataset, we end-up with

ictionaries with 36,073, 46,986, 28,155 and 30,195 atoms for the

rst, second, third and fourth view, respectively. Some elements of

hese dictionaries are presented in Fig. 6. For the outdoor dataset, we

nd-up with dictionaries with 12,777, 11,984, and 19,846 atoms for

he first, second, and third view, respectively.

Following our observations in Section 4.3, we have solved the op-

imization problem using the Homotopy algorithm [42] with λ set to

.1 for all dictionaries.

.1.2. Indoor tracking results

In this subsection, we present the performance of our method

sed for indoor multi-person tracking and compare it with the block-

ased compression approach of [3], our implementation of the de-

entralized approach in [4] and a traditional centralized approach

f compressing raw images. For the block-based compression frame-
2 Previously, the word “observation” was used to refer to the data acquired by cam-

ras. Here, we use it as the information, that is obtained by feature extraction at the

amera nodes, shared by cameras to be used as ”data” by the tracker.

f

i

F

s

ork and the centralized approach, we use DCT for compression with

block size of 8 × 8 with several levels of compression, taking 1, 2,

, 4, 5, 10, and 25 most significant coefficient(s) per block. Conse-

uently, with 56 × 56 likelihoods, at each camera in total we end up

ith at most 49, 98, 147, 196, 245, 490 and 1225 coefficients per per-

on. Since there are four individuals in the scene at most, each camera

ends at most 196, 392, 588, 784, 980, 1960 and 4900 coefficients. In

he centralized approach we compress three color channels of each

mage. Since the images used in this experiment are composed of

60 × 288 pixels, at each camera we end up with 4860, 9720, 14,580,

9,440, 24,300, 48,600 and 121,500 coefficients. In our method, af-

er sparse representation of color model likelihood of a person of in-

erest is found, we considered transmission of 10, 15, 20, 25, 50 and

00 most significant coefficients. Since there are four individuals in

he scene at most, each camera ends up sending at most 40, 60, 80,

00, 200 and 400 coefficients to the fusion node. In the decentralized

ethod that uses a Kalman filter, for each person, each camera sends

nly two points, namely the 2D position of the peak point, to the fu-

ion node. In total, we end up with eight points in maximum for four

ndividuals.

A ground truth for this sequence is obtained by manually mark-

ng the people in the ground plane, in intervals of 25 frames. Track-

ng errors are evaluated via Euclidean distance between the tracking

nd manual marking results (in intervals of 25 frames). We have also

sed two evaluation metrics [46]: Returning-Fragments (R-Frag) and

eturning-ID Switches (R-IDS). R-Frag corresponds to the total num-

er of times that there is a link between two trajectories which rep-

esents a person leaving and returning to the scene in groundtruth,

ut there is no link in the tracking result. R-IDS is the total number

f times that there is no link between two trajectories which means

hey represent different people in groundtruth, but there is a link in

he tracking results. Table 3 shows the average of tracking errors over

ll people, and the R-Frag and R-IDS metrics obtained for each ap-

roach. Since people do not exit the scene in this sequence, R-Frag

etric is zero for all methods. Note that the actual number of signifi-

ant coefficients sent by a camera at each time point depends on the

umber of people in the scene at that moment. The number of signif-

cant coefficients shown in Table 3 is computed based on the worst

ase assumption of the presence of four people in the scene all the

ime. So this is actually an upper bound on the number of coefficients

hat will be sent by each camera at each time point. Note this is han-

led in exactly the same way for all methods, so our comparison is

air. Table 3 also presents the bandwidth requirement of each method

n Kbps calculated using a 32-bit precision for each coefficient value.

ig. 7 presents the average tracking errors versus the total number of

ignificant coefficients used in communication for all methods.
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Fig. 6. Each row presents some elements of the dictionary of each view created for the indoor dataset by the procedure described in Section 4.2.

Fig. 7. Indoor sequence: The average tracking errors vs. the number of coefficients for

the centralized approach (blue square), the block-based compression framework in [3]

(red), our sparse representation framework (blue circles), the decentralized Kalman

approach (purple) and a decentralized method (green) that directly sends the likeli-

hood functions. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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It can be clearly seen that by using custom-designed dictionar-

ies, our sparse representation framework achieves much more band-

width reduction than the block-based compression framework and

the centralized method. To achieve an error of 1 pixel in the grid on
verage and zero ID switch (R-IDS), our sparse representation frame-

ork using custom-designed dictionaries needs at least 20 coeffi-

ients per person, whereas the block-based compression framework

eeds at least 147 coefficients per person. The centralized approach

s not capable of decreasing the communication without affecting

he tracking performance. It needs at least 121,500 significant coef-

cients in total. By using the decentralized Kalman approach, we can

btain a huge reduction in communication, but we cannot perform

obust tracking. R-IDS metric shows that in 144 frames the people

re misassociated. Our framework is also advantageous over an ordi-

ary decentralized approach that directly sends likelihood functions

o the fusion node. In such an approach, we send each data point in

he likelihood function, resulting in the transmission of 3136 values

er person. It can be seen that our approach can significantly reduce

he amount of communication in the network as compared to this

pproach while achieving the same level of tracking accuracy.

The tracking results of the block-based compression framework

sing 49 coefficients per person, the decentralized Kalman approach,

nd our sparse representation framework using 20 coefficients per

erson are given in Figs. 8, 9, and 10, respectively. It can be seen

hat, although the block-based compression approach can track the

rst and the second individuals very well, there is an identity associ-

tion problem for the third and fourth individuals. The decentralized

alman approach fails to track the people in the scene. Nearly for all

eople, there occurs identity association problems. In some frames,

t loses the track of the person and starts tracking a virtual person in

he scene (frame no. 1173 in Fig. 9(b)). These failures occur because

he amount of information coming from cameras is not enough to
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Table 3

Indoor sequence: Tracking results of (a) a centralized approach that sends com-

pressed images to central node (“IC”), (b) the block-based compression framework

in [3] (“FC”), (c) the decentralized Kalman approach (“DecentKalman”) and a de-

centralized method that directly sends the likelihood functions (“Decent”), and (d)

our sparse representation framework for several levels of compression.

Number of BW (Kbps) Tracking R-Frag R-IDS

coefficients error

a

IC 4860 3888 27.9838 0 162

IC 9720 7776 16.3918 0 164

IC 14,580 11,664 11.7918 0 139

IC 19,440 15,552 17.7786 0 183

IC 24,300 19,440 16.3503 0 183

IC 48,600 38,880 8.6414 0 82

IC 121,500 97,200 0.9508 0 0

b

FC 136 108.8 11.5734 0 76

FC 272 217.6 11.5734 0 76

FC 408 326.4 1.0092 0 0

FC 544 435.2 1.0092 0 0

FC 680 544 1.0092 0 0

FC 1360 1088 1.0207 0 0

FC 3400 2720 1.0207 0 0

c

Decent 12,544 10,035.2 1.0207 0 0

DecentKalman 8 6.4 11.0319 0 144

d

Designed-Dict 40 32 4.984 0 23

Designed-Dict 60 48 4.9246 0 23

Designed-Dict 80 64 1.0367 0 0

Designed-Dict 100 80 1.0367 0 0

Designed-Dict 200 160 1.0367 0 0

Designed-Dict 400 320 1.0367 0 0

Bold lines represent the best tracking and bandwidth reduction performance.
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Fig. 8. (a) The tracking errors for each person and (b) tracking results for the indoor

dataset obtained by the block-based compression framework in [3] using 49 coeffi-

cients per person used in communication.
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erform robust tracking. In [4], the decentralized Kalman filtering ap-

roach has only been tested on a simple scenario that involves track-

ng people using cameras mounted on the ceiling, and the approach

oes not perform very well on the more challenging tracking scenario

e consider in this paper. In Fig. 10, we observe that all people in the

cene can be tracked very well by our sparse representation frame-

ork. All methods suffer from an error for the third person around

he 700th frame, because tracking starts a few frames after the third

erson enters the room. When the number of coefficients taken per

erson is fewer than 20, since the quality of likelihoods decreases,

e also observe identity problems. We can also observe this in Fig. 11

hich shows average PSNR values between the original and recon-

tructed likelihoods versus the number of coefficients. However, by

electing the number of coefficients per person greater than or equal

o 20, we can track all the people in the scene accurately. The block-

ased compression framework, in total, requires at least five times

ore coefficients to achieve this level of accuracy.

In the light of the results we obtained, for the same tracking per-

ormance, our sparse representation based method saves 80.39% of

he bandwidth used by the block-based compression approach and

ses only 0.06% of the bandwidth required by the centralized ap-

roach. As compared to the ordinary decentralized approach trans-

itting full likelihood functions, our approach saves 99.37% of the

andwidth, while achieving the same level of tracking accuracy.

.1.3. Outdoor tracking results

The performance of our sparse representation based method for

utdoor multi-person tracking is presented in this subsection. Again,

e have compared our sparse representation framework with the

lock-based compression framework in [3] and the centralized ap-

roach using DCT domain with a block size of 8 × 8 and the decen-

ralized Kalman approach in [4]. For the block-based compression ap-

roach, we again considered several levels of compression, taking 5,
0, 15, 20, 30, and 50 most significant coefficient(s) per block. Con-

equently, with 40 × 40 likelihoods, at each camera in total we end

p with at most 125, 250, 375, 500, 750 and 1250 coefficients per

erson. Since there are four individuals in the scene at most, each

amera sends at most 500, 1000, 1500, 2000, 3000, and 5000 coef-

cients. For the centralized approach, we considered taking only 1,

, 3, 4, 5, 10, and 25 most significant coefficient(s) per block. Hence,

t each camera we end up with 4860, 9720, 14,580, 19,440, 24,300,

8,600 and 121,500 coefficients. In our method, after sparse repre-

entation of color model likelihood of a person of interest is found,

e considered transmitting 5, 10, 15, 20, 25, 50 and 100 the most sig-

ificant coefficients. Since there are four individuals in the scene at

ost, each camera ends up sending at most 20, 40, 60, 80, 100, 200

nd 400 coefficients to the fusion node. As mentioned in the previous

ection, in the decentralized Kalman approach, we end up sending at

ost eight points for four individuals.

As in the indoor sequence, tracking errors are evaluated via the

uclidean distance between the tracking and manual marking results.

e have also computed the R-Frag and R-IDS metrics. Table 4 shows

he average of tracking errors over all people, and the R-Frag and R-

DS metrics obtained for our sparse representation framework. Fig. 12

resents the average of tracking errors over all people versus the total

umber of significant coefficients used in communication for our ap-

roach. The performance of the block-based compression framework,

he decentralized Kalman approach and the centralized approach



50 S. Coşar, M. Çetin / Computer Vision and Image Understanding 139 (2015) 40–58

Fig. 9. (a) The tracking errors for each person and (b) tracking results for the indoor

dataset obtained by the decentralized Kalman approach. Fig. 10. (a) The tracking errors for each person and (b) tracking results for the indoor

dataset obtained by our sparse representation framework using 20 coefficients per per-

son used in communication.

Fig. 11. Indoor sequence: The average PSNR vs. the number of coefficients for our

sparse representation framework together with average tracking errors.
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are also presented in Table 4 and Fig. 12. It can be clearly seen

that our sparse representation framework works better in decreasing

the communication than the block-based compression framework.

The block-based compression framework requires at least 375 coef-

ficients per person to achieve an error of 2 pixels in the grid on av-

erage and minimum number of ID switches. The R-IDS metric results

show that, using fewer coefficients with this approach causes iden-

tity association problems. On the other hand, by using our sparse

representation framework, we achieve a similar tracking error and

even less number of ID switches with 10 coefficients per person. The

decentralized Kalman approach enables a huge reduction in the com-

munication, but cannot perform robust tracking. The R-IDS metric re-

sults show that people are misassociated in 124 frames. For the cen-

tralized approach, at least 121,500 coefficients are required to achieve

robust tracking. Our framework is also advantageous over an ordinary

decentralized approach that directly sends each data point in the like-

lihood functions to the fusion node. Such an approach requires send-

ing 1600 values per person. The performance of this approach is also

shown in Table 4 and Fig. 12. It can be seen that we can achieve the

same level of tracking accuracy as the ordinary decentralized method

while significantly decreasing the communication in the network.

The tracking results of the block-based compression framework

using 250 coefficients per person, the decentralized Kalman ap-

proach, and our sparse representation based approach with custom-

designed dictionaries using 10 coefficients per person are given in

Figs. 13, 14, and 15, respectively. It can be seen that, block-based

compression fails to preserve identities with this level of compres-
ion. In particular, when a person leaves the scene and comes back,

he person cannot be recognized and he or she is considered as a new

erson in the scene. For the decentralized Kalman approach, nearly

or all people, there occurs identity association problems. Usually,

t loses the track of the person and starts tracking a virtual person

n the scene (Fig. 14(b)). As in the indoor tracking results presented
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Table 4

Outdoor sequence: Tracking results of (a) a centralized approach that sends com-

pressed images to central node (“IC”), (b) the block-based compression framework

in [3] (“FC”), (c) the decentralized Kalman approach (“DecentKalman”) and a de-

centralized method that directly sends the likelihood functions (“Decent”), and

(d) our sparse representation framework for several levels of compression.

Number of BW (Kbps) Tracking R-Frag R-IDS

coefficients error

a

IC 4860 3888 18.0632 2 79

IC 9720 7776 12.7814 2 79

IC 14,580 11,664 8.5199 1 47

IC 19,440 15,552 7.8093 2 45

IC 24,300 19,440 7.7203 2 43

IC 48,600 38,880 7.8957 2 47

IC 121,500 97,200 3.0881 1 8

b

FC 575 460 8.58 2 35

FC 1150 920 8.6179 2 34

FC 1725 1380 2.1823 1 12

FC 2300 1840 2.1823 1 12

FC 3450 2760 2.1823 1 12

FC 5750 4600 1.9346 1 4

c

Decent 6400 5120 1.9346 1 4

DecentKalman 8 6.4 23.3423 2 124

d

Designed-Dict 20 16 3.1662 1 9

Designed-Dict 40 32 1.9432 1 3

Designed-Dict 60 48 2.1819 1 12

Designed-Dict 80 64 1.9341 1 4

Designed-Dict 100 80 1.9406 1 4

Designed-Dict 200 160 1.9406 1 4

Designed-Dict 400 320 1.9406 1 4

Bold lines represent the best tracking and bandwidth reduction performance.

Fig. 12. Outdoor sequence: The average tracking errors vs. the number of coefficients

for the centralized approach (blue square), the block-based compression framework

in [3] (red), our sparse representation framework (blue), the decentralized Kalman

approach (purple) and a decentralized method (green) that directly sends likelihood

functions. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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Fig. 13. (a) The tracking errors for each person and (b) tracking results for the outdoor

dataset obtained by the block-based compression framework in [3] using 250 coeffi-

cients per person in communication.
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n the previous section, these failures occur because the amount of

nformation coming from cameras is not enough to perform robust

racking. In Fig. 15, we observe that likelihoods can be reconstructed

roperly and all people in the scene can be tracked very well by our

pproach with custom-designed dictionaries using five times fewer

oefficients. This can also be observed in the plot of PSNR values ver-

us the number of coefficients in Fig. 16.

Based on these results, we can say that, by using the custom-

esigned dictionaries, our sparse representation framework success-
ully decreases communication load in the network without signif-

cantly degrading tracking performance. For the same tracking per-

ormance, our approach saves 97.62% of the bandwidth used by the

lock-based compression approach and uses only 0.03% of the band-

idth required by the centralized approach. As compared to the or-

inary decentralized approach, our approach uses only 0.63% of the

andwidth needed by the decentralized approach. Hence what we

ropose is a bandwidth-efficient approach.

.2. Comparison with a distributed approach

In this subsection, we compare our method with a distributed ap-

roach in which each camera node fuses its observations with track-

ng results received from its neighbors and sends the updated esti-

ates to the next neighbor. For this comparison, we have used the

istributed tracking methods in [5,6] within the tracking frameworks

n [1,2].
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Fig. 14. (a) The tracking errors for each person and (b) tracking results for the outdoor

dataset obtained by the decentralized Kalman approach.

Fig. 15. (a) The tracking errors for each person and (b) tracking results for the out-

door dataset obtained by our sparse representation framework using 10 coefficients

per person in communication.

Fig. 16. Outdoor sequence: The average PSNR vs. the number of coefficients for our

sparse representation framework together with average tracking errors.
In [5], at each camera node, the position of each person on the

ground plane is estimated by applying individual Kalman–Consensus

filters (KCF) [15] on its own observations together with observations

and estimates coming from neighboring cameras. In [6], rather than

a Kalman–Consensus filter, an information weighted consensus filter

(ICF) that weights the estimates coming from neighboring cameras by

their information matrix is used. The state of each person in the filters

is a four-element vector representing the position and velocity in the

horizontal and vertical directions on the ground plane. The observa-

tion vector of each camera is obtained by finding the local maximum

points of its likelihood function (P(T c
t (k)|Ln

t = k) and P(Xt
k

= 1|Bt ) in

Section 3.2.1, and p(yc|x) in Section 3.2.3). In the tracking framework

of [1], the local maximum points obtained from P(T c
t (k)|Ln

t = k) and

P(Xt
k

= 1|Bt ) are spatially averaged and the average position is used

as the observation. At each time step, camera nodes share their ob-

servation vectors and observation covariances together with the pre-

dicted states of each person.
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Fig. 17. Likelihoods extracted by each camera node (top) and corresponding 512-bin RGB color-histograms (bottom) for four people in the beginning of the PETS 2009 sub-sequence.

Color-histograms are used for data association in the beginning of the sequence.
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3 We refer to the information shared by cameras.
.2.1. Setup

In the experiments, we have simulated the VSN environment by

sing the PETS 2009 benchmark dataset [47]. The data were collected

n a university campus and it includes many people appearing simul-

aneously. We have used the four cameras that cover a rectangular

egion on the ground and a sub-sequence in which at most five peo-

le appear in the scene. The area of interest in this dataset is of size

m × 6 m and discretized into G = 40 × 40 = 1600 locations, corre-

ponding to a regular grid with a resolution of 15 cm. The calibration

arameters for each camera are provided within the dataset. The size

f the images are 720 × 576 pixels and the frame rate for all of the

ameras is 7 fps.

As we have described in Section 4.2, we design a dictionary for

ach camera by using the building blocks of the likelihood func-

ions. For the tracker in [2], we obtain dictionaries with 6932, 7870,

768 and 6844 atoms for the first, second, third, and fourth view,

espectively. For the tracker in [1], we obtain dictionaries with

8,380, 32,259, 28,399 and 20,505 atoms for the first, second, third,

nd fourth view, respectively. Again following our observations in

ection 4.3, we have solved the optimization problem using the Ho-

otopy algorithm [42] with λ set to 0.1 for all dictionaries.

In experiments within the tracker in [1], we have used a sub-

equence that includes four people in the beginning. In the fusion

ode, a color-based data association algorithm is used to match like-

ihoods extracted by each camera node. For the first frame of the se-

uence, likelihoods are sent to the fusion node together with a cor-

esponding 512-bin RGB color histogram. In the fusion node, the his-

ograms are matched using the intersection metric [48] and a vot-

ng procedure. Each histogram, corresponding to a likelihood func-

ion extracted for a person in each camera node, is compared with

he color histograms from other nodes using the intersection metric.

he ID of the closest histogram is taken as a vote for the correspond-

ng node. Then, the most voted ID is selected as the ID of the likeli-

ood. In order to obtain a globally consistent solution among cam-

ras, we run the procedure for each likelihood and find the globally

aximum voted ID. Fig. 17 presents the likelihood functions and the

orresponding color histograms for each person at each camera node.

sing this color-based data association algorithm we can correctly

atch the likelihoods and perform tracking in the fusion node.

.2.2. Tracking results

The results of the comparison between our method and the dis-

ributed methods in [5,6] are presented in this subsection. In both
istributed approaches, at each iteration of the filter, each camera

hares the observation3 vector (two element vector) and observation

ovariance (2 × 2 matrix) together with the predicted states (four

lement vector) with neighboring cameras. In our implementation,

e have selected a common observation covariance at each camera,

ence we save on communications by not sending this information.

onsequently, to estimate the position of a person using any tracker,

n total six elements are shared among cameras. Since there are four

ndividuals in the scene at most, each camera sends at most 24 ele-

ents. In our method, after sparse representation of the likelihood

f a person of interest is found, within the tracker in [2] we con-

ider the transmission of 30, 40, 45, 50, 75, and 100 most significant

oefficients and within the tracker in [1] we consider the transmis-

ion of 10, 20, 30, 40, 50, and 100 most significant coefficients. In ad-

ition, we have also compared our approach with the block-based

ompression framework in [3] and the centralized approach using

CT domain with a block size of 8 × 8 and the decentralized Kalman

pproach in [4]. For the block-based compression approach, we again

onsidered several levels of compression, taking 20, 30, 40, 50, and

0 most significant coefficient(s) per block within the tracker in [2]

nd taking 1, 2, 3, 4, 5, 10, and 20 most significant coefficient(s) per

lock within the tracker in [1]. Within the tracker in [2], we have also

ried transmitting all the coefficients which corresponds to 64 val-

es per block. Consequently, with 40 × 40 likelihoods, at each cam-

ra in total we end up with at most 500, 750, 1000, 1250, 1500 and

600 coefficients within the tracker in [2] and at most 25, 50, 75, 100,

25, 250, and 500 coefficients per person within the tracker in [1].

ince there are four individuals in the scene at most, each camera

ends at most 100, 200, 300, 400, 500, 1000, and 2000 coefficients

ithin the tracker in [1]. For the centralized approach within any

racker, we considered taking only 1, 2, 3, 4, 5, 10, and 25 most signif-

cant coefficient(s) per block. Hence, at each camera we end up with

9,440, 38,880, 58,320, 77,760, 97,200, 194,400 and 486,000 coeffi-

ients. For the decentralized Kalman approach, as we have mentioned

reviously, each camera sends eight points in maximum for four

ndividuals.

A ground truth for this sequence is obtained by manually marking

he people in the ground plane. Tracking errors are evaluated via Eu-

lidean distance between the tracking and manual marking results.

e have used the R-Frag and R-IDS metrics. Tables 5 and 6 present
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Table 5

PETS 2009 sequence using the tracker in [2]: Tracking results of (a) a centralized

approach that sends compressed images to central node (“IC”), (b) the block-based

compression framework in [3] (“FC”), (c) the decentralized Kalman approach (“De-

centKalman”), a decentralized method that directly sends the likelihood functions

(“Decent”), the distributed approach in [5] (“Distributed-KCF”) and the distributed

approach in [6] (“Distributed-ICF”), and (d) our sparse representation framework for

several levels of compression.

Number of BW (Kbps) Tracking R-Frag R-IDS

coefficients error

a

IC 19,440 4354.56 11.1148 1 185

IC 38,880 8709.12 9.0774 1 197

IC 58,320 13,063.68 9.0828 1 155

IC 77,760 17,418.24 4.1325 1 116

IC 97,200 21,772.8 4.1091 1 101

IC 194,400 43,545.6 8.1468 1 169

IC 486,000 108,864 2.9917 1 53

b

FC 480 107.52 8.7572 1 163

FC 720 161.28 8.4399 1 111

FC 960 215.04 4.9828 1 80

FC 1200 268.8 8.3583 1 175

FC 1440 322.56 8.5446 1 127

FC 1536 344.064 2.1815 1 30

c

Decent 1600 358.4 0.6056 1 30

DecentKalman 8 1.792 23.4272 1 249

Distributed-KCF 24 16.128 16.965 1 249

Distributed-ICF 24 16.128 19.4994 0 279

d

Designed-Dict 15 13.44 16.6413 0 215

Designed-Dict 30 26.88 13.5002 0 186

Designed-Dict 40 35.84 10.9498 0 131

Designed-Dict 45 40.32 11.0045 1 177

Designed-Dict 50 44.8 2.6001 1 32

Designed-Dict 75 67.2 2.6005 1 32

Designed-Dict 100 89.6 2.6005 1 32

Bold lines represent the best tracking and bandwidth reduction performance.

Fig. 18. PETS 2009 sequence using the tracker in [2]: The average tracking errors vs.

the number of coefficients for the centralized approach (blue square), the block-based

compression framework in [3] (red), our sparse representation framework (blue), the

distributed approach in [5] (red square), the distributed approach in [6] (red circle),

the decentralized Kalman approach (purple) and a decentralized method (green) that

directly sends likelihood functions. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Table 6

PETS 2009 sequence using the tracker in [1]: Tracking results of (a) a centralized

approach that sends compressed images to central node (“IC”), (b) the block-based

compression framework in [3] (“FC”), (c) the decentralized Kalman approach (“De-

centKalman”), a decentralized method that directly sends the likelihood functions

(“Decent”), the distributed approach in [5] (“Distributed-KCF”) and the distributed

approach in [6] (“Distributed-ICF”), and (d) our sparse representation framework for

several levels of compression.

Number of BW (Kbps) Tracking R-Frag R-IDS

coefficients error

a

IC 19,440 4354.56 14.3745 2 230

IC 38,880 8709.12 12.6730 2 133

IC 58,320 13063.68 9.4096 2 166

IC 77,760 17418.24 5.3548 1 103

IC 97,200 21772.8 4.8907 1 169

IC 194,400 43545.6 8.5290 1 105

IC 486,000 108864 1.2755 1 16

b

FC 105 23.52 13.9950 0 249

FC 210 47.04 15.7702 0 280

FC 315 70.56 17.7792 0 254

FC 420 94.08 18.1580 0 344

FC 525 117.6 16.3548 0 270

FC 1050 235.2 0.9529 0 12

FC 2100 470.4 0.9201 0 13

c

Decent 6400 1433.6 0.8099 0 13

DecentKalman 8 1.792 22.9449 1 454

Distributed-KCF 24 5.376 24.6673 0 467

Distributed-ICF 24 5.376 24.9856 1 453

d

Designed-Dict 40 8.96 7.4445 0 102

Designed-Dict 80 17.92 0.9583 0 12

Designed-Dict 120 26.88 0.9583 0 12

Designed-Dict 160 35.84 0.9583 0 12

Designed-Dict 200 44.8 0.9583 0 12

Designed-Dict 400 89.6 0.9583 0 12

Bold lines represent the best tracking and bandwidth reduction performance.

Fig. 19. PETS 2009 sequence using the tracker in [1]: The average tracking errors vs.

the number of coefficients for the centralized approach (blue square), the block-based

compression framework in [3] (red), our sparse representation framework (blue), the

distributed approach in [5] (red square), the distributed approach in [6] (red circle),

the decentralized Kalman approach (purple) and a decentralized method (green) that

directly sends likelihood functions. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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duction in communication in the network, but they cannot perform
the average of tracking errors over all people, as well as the R-Frag,

and R-IDS metrics for all methods within the trackers in [2] and [1],

respectively. Figs. 18 and 19 show the average tracking error versus

the total number of significant coefficients for all methods within

the trackers in [2] and [1], respectively. Since bandwidth usage is not

adjustable in distributed, ordinary decentralized, and decentralized
alman approaches, these methods are represented by single oper-

ting points in Figs. 18 and 19. Tables 5 and 6 also present band-

idth requirement of each method in Kbps calculated using a 32-bit

recision for each coefficient value. It can be clearly seen that the

istributed approaches within both trackers can provide a huge re-
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Fig. 20. PETS 2009 sequence: The average PSNR vs. the number of coefficients for our sparse representation framework together with average tracking errors within the tracker

(a) in [2] and (b) in [1].

Fig. 21. (a) The tracking errors for each person and (b) tracking results for the PETS

2009 dataset obtained by the distributed approach in [5] within the tracker in [2].
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obust tracking. Both KCF and ICF based distributed approaches we

onsider here appear to depend on each camera to provide good

racking performance on its own, and may not perform well in a chal-

enging tracking scenario when that is not satisfied as we observe

n our experiments. Our sparse representation framework achieves
smaller bandwidth reduction than the distributed approaches, but,

y using the custom-designed dictionaries, our framework has the

bility to decrease the communication without affecting the tracking

erformance significantly. Within the tracker in [2], by using at least

0 coefficients, our sparse representation framework reconstructs the

ikelihoods with minimum error. Thereby it achieves a tracking er-

or of 2.5 pixels in the grid on average and minimum number of ID

witches. Within the tracker in [1], by using at least 80 coefficients,

ur approach properly reconstructs the likelihoods and achieves an

rror of 0.95 pixels in the grid on average and only 12 ID switches.

his is also observed in PSNR values given in Fig. 20. On the other

and, while using 24 coefficients, the distributed approaches, within

he tracker in [2], has a tracking error of more than 16 pixels in the

rid on average and in more than 240 times the people in the scene

re misassociated and, within the tracker in [1], has a tracking error

f more than 24 pixels in the grid on average and in more than 450

imes the people in the scene are misassociated. Within both trackers,

ur method is also advantageous over the block-based compression

pproach, the centralized approach and the decentralized Kalman ap-

roach. The block-based compression approach fails to perform com-

ression on likelihoods without affecting the tracking accuracy. To

chieve robust tracking within the tracker in [2], it needs all coeffi-

ients to be transmitted to the fusion node. Within the tracker in [1],

t needs at least 1050 coefficients to be transmitted to the fusion node

or robust tracking. Within both trackers, the centralized approach re-

uires 486,000 coefficients to achieve an error of 1.3–3 pixels in the

rid on average and minimum number of ID switches. Although, the

ecentralized Kalman approach achieves a huge reduction in band-

idth, it cannot perform robust tracking. The R-IDS metric shows that

eople are misassociated in 249 and 454 frames within the tracker in

2] and [1], respectively. Our approach also achieves a better perfor-

ance than an ordinary decentralized approach that directly sends

ikelihood functions to the fusion node. In such an approach, we send

ach data point in the likelihood function, resulting in the transmis-

ion of 1600 values within the tracker in [2] and 6400 values within

he tracker in [1]. The performance of this approach is also presented

n Tables 5 and 6, and Figs. 18 and 19. Within the tracker in [2], by

sing all the information in likelihoods, the ordinary decentralized

pproach achieves marginally better tracking performance than our

ethod. However, our framework provides a significant reduction in

andwidth use while achieving a tracking performance very close to

he performance of the ordinary decentralized method.

The tracking results of the distributed approach in [5] and our

parse representation framework using 50 coefficients, within the
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Fig. 22. (a) The tracking errors for each person and (b) tracking results for the PETS

2009 dataset obtained by our sparse representation framework, within the tracker in

[2], using 50 coefficients per person used in communication.
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tracker in [2], are shown in Figs. 21 and 22, respectively. It can be

seen that, the distributed approach fails to preserve identities. For

all people in the scene, there occurs identity switches. One of the

main reasons of this problem is that the observations extracted from

single view likelihood functions are not sufficient for representing

the whole likelihood function. The distributed approaches appear

to equally incorporate all observations coming from cameras. Since

the observations are not extracted after fusing the multi-view like-

lihoods, noisy single view likelihoods create inaccurate observations

for tracking. An example for such a case is given in Fig. 23. We can see

that, since the observations extracted from likelihoods of each view
Fig. 23. (a)–(d) Inaccurate observations extracted from the likelihoods of camera 1,3 and 4 (w

[5]. Since the person of interest is not visible in camera 2, we do not have an observation com

the reader is referred to the web version of this article.)
re inaccurate, the estimated position of the person is not accurate.

ence, the distributed approach fails to track the people. On the other

and, in our sparse representation framework, we first fuse the sin-

le view likelihoods and then use the multi-view likelihood function

n tracking. By using the custom-designed dictionaries, we represent

he likelihood functions with small number of coefficients without

ignificantly reducing the amount of information they contain. Thus,

he multi-view likelihoods, obtained by fusing the reconstructed sin-

le view likelihoods, are accurate enough to perform robust tracking

nder severe bandwidth limitations. In Fig. 22, it can be seen that our

ramework can successfully preserve identities and track all people

n the scene robustly. Even if a person leaves the scene and comes

ack (the first person in Fig. 22(b)), he or she is recognized and a true

abel is assigned to the person. Occasionally in this sequence, a person

nters the scene while another person leaves. For this reason, some-

imes our method starts tracking a few frames after the person en-

ers the scene or ends tracking before the person leaves the scene.

hereby, it suffer from some errors. When the number of coefficients

aken is fewer than 50, we also observe identity problems. But by se-

ecting the number of coefficients greater than or equal to 50, we can

rack all the people in the scene accurately.

In the light of the results we obtained, we can say that our sparse

epresentation based method outperforms the both KCF and ICF

ased distributed approaches in [5,6]. By using the custom-designed

ictionaries, we can both decrease the communication in the network

nd perform robust tracking. Our method requires only 3.12% of the

andwidth needed by the ordinary decentralized method in order to

chieve a tracking performance very close to that method. In the dis-

ributed approaches in [5,6], since the observations are modeled with

ingle Gaussian distributions, we only share mean and covariance in-

ormation with the fusion center. However such a simple model is

ften insufficient for robust tracking [49]. There are particle filter-

ng based distributed algorithms in which the particles sampled from

ikelihood functions are approximated using models (e.g., mixture of

aussians) or quantized in order to reduce communications [49,50].

ince our approach involves representing likelihood functions using

ustom-designed dictionaries, we expect to obtain more parsimo-

ious representations, and hence more efficient communication than

uch methods.

. Conclusions

Using a camera in a wireless network leads to unique and chal-

enging problems. This paper presents a novel method that can be

sed in VSNs for multi-camera person tracking applications. In our

ethod, tracking is performed in a decentralized way: each camera

xtracts useful features from the images it has observed and sends

hem to a fusion node which performs tracking. Most probabilistic

racking systems involve computation of a likelihood function. In-

tead of sending the likelihood functions themselves to the fusion

ode, we compress the likelihoods via sparse representation. Spe-

ial overcomplete dictionaries that are matched to the structure of
hite stars) lead to (e) inaccurate estimation (blue star) in the distributed approach in

ing from this view. (For interpretation of the references to color in this figure legend,
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he likelihood functions are designed in an adaptive fashion exploit-

ng information about the geometry of the sensing scenario, and used

or sparse representation of likelihoods. This enables us to decrease

he communication between cameras and fusion nodes. To the best

f our knowledge, this is the first method that uses sparse repre-

entation and specially designed dictionaries to compress likelihood

unctions and applies this idea for VSNs. This framework fits well

ithin the needs of the VSN environment. By extracting image fea-

ures at the camera-level, the processing capabilities of cameras are

tilized. Transmitting only the most significant coefficients, obtained

rom the sparse representation of likelihoods, saves energy and band-

idth resources. In this manner, we have achieved a goal-directed

ompression scheme for the tracking problem in VSNs by perform-

ng local processing at the nodes and compressing the resulting

ikelihood functions which are related to the tracking goal, rather

han compressing raw images.

Another advantage of this framework is that it does not require

he use of a specific tracking method. In our experiments, we have

sed two different tracking algorithms and achieved bandwidth re-

uction in the network without degrading the tracking performance

ignificantly. We believe our sparse representation framework is an

ffective approach that can be used together with any probabilis-

ic tracker in VSNs. Thereby, existing centralized methods can be

sed within our framework in VSN environments without making

ignificant changes (e.g., using simpler features, etc.) which may de-

rade their performance. By using overcomplete dictionaries that are

atched to the structure of the likelihoods, for the same tracking per-

ormance, we achieve more bandwidth savings compared to existing

ethods.

In our experiments, we have also observed that there is a negative

orrelation between PSNR levels and the tracking error. This can be

sed to automatically choose an operating point (i.e., number of co-

fficients), e.g., based on the slope of the PSNR curve. While the abso-

ute value of the tracking error is scenario-dependent, this automatic

hoice would enable one to avoid the operating points with signifi-

antly high tracking errors and achieve a low tracking error without

sing unnecessarily large number of coefficients. While we do not

laim this is the best approach for automatic selection of the number

f coefficients in our approach, we believe it certainly provides a rea-

onable approach demonstrating the feasibility of automatic selec-

ion. We believe that trying our sparse representation framework in

onoverlapping VSN setups, by compressing feature descriptors used

or re-identification (such as in [46,51]), can be another possible di-

ection for future work.
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[3] S. Coşar, M. Çetin, Feature compression: A framework for multi-view multi-

person tracking in visual sensor networks, J. Visual Commun. Image Represent.
25 (5) (2014) 864–873.

[4] H. Medeiros, J. Park, A. Kak, Distributed object tracking using a cluster-based

kalman filter in wireless camera networks, IEEE J. Select. Top. Signal Process.
2 (4) (2008) 448–463, doi:10.1109/JSTSP.2008.2001310.

[5] B. Song, A.T. Kamal, C. Soto, C. Ding, J.A. Farrell, A.K. Roy-Chowdhury, Tracking
and activity recognition through consensus in distributed camera networks, IEEE

Trans. Image Process. 19 (10) (2010) 2564–2579, doi:10.1109/TIP.2010.2052823.
[6] A. Kamal, J. Farrell, A. Roy-Chowdhury, Information consensus for distributed
multi-target tracking, in: 2013 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), IEEE, 2013, pp. 2403–2410, doi:10.1109/CVPR.2013.311.
[7] D. Yang, H. Gonzalez-Banos, L. Guibas, Counting people in crowds with a

real-time network of simple image sensors, in: Proceedings of Ninth IEEE
International Conference on Computer Vision, 1, IEEE, 2003, pp. 122–129,

doi:10.1109/ICCV.2003.1238325.
[8] D. Yang, J. Shin, A.O. Ercan, L. Guibas, Sensor tasking for occupancy rea-

soning in a camera network, in: Proceedings of IEEE/ICST 1st Work-

shop on Broadband Advanced Sensor Networks (BASENETS’04), 2004.
http://geometry.stanford.edu//paper.php?id=yseg-basn-04.

[9] P.V. Pahalawatta, A.K. Katsaggelos, Optimal sensor selection for video-based tar-
get tracking in a wireless sensor network, in: Proceedings of the International

Conference on Image Processing (ICIP’04), IEEE, 2004, pp. 3073–3076.
[10] S. Fleck, F. Busch, W. Straß er, Adaptive probabilistic tracking embedded in smart

cameras for distributed surveillance in a 3d model, EURASIP J. Embed. Syst.

2007 (1) (2007) 24. http://dx.doi.org/10.1155/2007/29858.
[11] E. Oto, F. Lau, H. Aghajan, Color-based multiple agent tracking for wireless image

sensor networks, in: ACIVS06, Springer-Verlag, 2006, pp. 299–310.
[12] B. Song, A. Roy-Chowdhury, Robust tracking in a camera network: A multi-

objective optimization framework, IEEE J. Select. Top. Signal Process. 2 (4) (2008)
582–596, doi:10.1109/JSTSP.2008.925992.

[13] J. Yoder, H. Medeiros, J. Park, A. Kak, Cluster-based distributed face tracking

in camera networks, IEEE Trans. Image Process. 19 (10) (2010) 2551–2563,
doi:10.1109/TIP.2010.2049179.

[14] Y. Wang, S. Velipasalar, M. Casares, Cooperative object tracking and composite
event detection with wireless embedded smart cameras, IEEE Trans. Image Pro-

cess. 19 (10) (2010) 2614–2633, doi:10.1109/TIP.2010.2052278.
[15] R. Olfati-Saber, Distributed kalman filtering for sensor networks, in: 46th

IEEE Conference on Decision and Control, IEEE, 2007, pp. 5492–5498,

doi:10.1109/CDC.2007.4434303.
[16] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, R. Baraniuk, Single-

pixel imaging via compressive sampling, IEEE Signal Process. Mag. 25 (2) (2008)
83–91, doi:10.1109/MSP.2007.914730.

[17] J. Mairal, M. Elad, G. Sapiro, Sparse representation for color image restoration,
IEEE Trans. Image Process. 17 (1) (2008) 53–69, doi:10.1109/TIP.2007.911828.

[18] M. Plumbley, T. Blumensath, L. Daudet, R. Gribonval, M. Davies, Sparse represen-

tations in audio and music: From coding to source separation, Proc. IEEE 98 (6)
(2010) 995–1005, doi:10.1109/JPROC.2009.2030345.

[19] L. Potter, E. Ertin, J. Parker, M. Cetin, Sparsity and compressed sensing in radar
imaging, Proc. IEEE 98 (6) (2010) 1006–1020, doi:10.1109/JPROC.2009.2037526.

20] J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, Y. Ma, Robust face recognition via
sparse representation, IEEE Trans. Pattern Anal. Mach. Intell. 31 (2) (2009) 210–

227, doi:10.1109/JPROC.2010.2040797.

[21] V. Cevher, A.C. Sankaranarayanan, M.F. Duarte, D. Reddy, R.G. Baraniuk, R. Chel-
lappa, Compressive sensing for background subtraction, in: ECCV, Springer, Mar-

seille, France, 2008, pp. 155–168.
22] J. Mairal, F. Bach, J. Ponce, G. Sapiro, A. Zisserman, Discriminative learned

dictionaries for local image analysis, in: IEEE Conference on Computer
Vision and Pattern Recognition, 2008 (CVPR’08), IEEE, 2008, pp. 1–8,

doi:10.1109/CVPR.2008.4587652.
23] Y. Liu, X. Zhu, L. Zhang, S.H. Cho, Distributed compressed video sensing in camera

sensor networks, Int. J. Distrib. Sens. Netw. 2012 (2012) 1–10.

[24] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, S. Yan, Sparse representation for
computer vision and pattern recognition, Proc. IEEE 98 (6) (2010) 1031–1044,

doi:10.1109/JPROC.2010.2044470.
25] M. Taj, A. Cavallaro, Distributed and decentralized multicamera tracking, IEEE Sig-

nal Process. Mag. 28 (3) (2011) 46–58, doi:10.1109/MSP.2011.940281.
26] S. Hengstler, D. Prashanth, S. Fong, H. Aghajan, Mesheye: a hybrid-resolution

smart camera mote for applications in distributed intelligent surveillance, in:

Proceedings of the 6th International Conference on Information Processing
in Sensor Networks (IPSN’07), ACM, New York, NY, USA, 2007, pp. 360–369,

doi:10.1145/1236360.1236406.
[27] W. Wolf, B. Ozer, T. Lv, Smart cameras as embedded systems, Computer 35 (9)

(2002) 48–53, doi:10.1109/MC.2002.1033027.
28] B. Tavli, K. Bicakci, R. Zilan, J. Barcelo-Ordinas, A survey of visual sensor network

platforms, Multim. Tool Appl. 60 (3) (2012) 689–726, doi:10.1007/s11042-011-

0840-z.
29] I. Akyildiz, T. Melodia, K. Chowdury, Wireless multimedia sensor

networks: A survey, IEEE Wireless Commun. 14 (6) (2007) 32–39,
doi:10.1109/MWC.2007.4407225.

30] J. Yao, J.-M. Odobez, Multi-camera multi-person 3d space tracking with mcmc
in surveillance scenarios, in: ECCV Workshop on Multi Camera and Multi-modal

Sensor Fusion Algorithms and Applications, Springer, Berlin, Heidelberg, 2008.

[31] A. Gupta, A. Mittal, L. Davis, Constraint integration for efficient multi-
view pose estimation with self-occlusions, PAMI 30 (3) (2008) 493–506,

doi:10.1109/TPAMI.2007.1173.
32] M. Hofmann, D. Gavrila, Multi-view 3d human pose estimation combining single-

frame recovery, temporal integration and model adaptation, in: CVPR, IEEE, 2009,
pp. 2214–2221, doi:10.1109/CVPR.2009.5206508.

[33] M. Ayazoglu, B. Li, C. Dicle, M. Sznaier, O. Camps, Dynamic subspace-based coordi-

nated multicamera tracking, in: 2011 IEEE International Conference on Computer
Vision (ICCV), IEEE, 2011, pp. 2462–2469, doi:10.1109/ICCV.2011.6126531.

34] C. Yu, G. Sharma, Camera scheduling and energy allocation for lifetime maxi-
mization in user-centric visual sensor networks, IEEE Trans. Image Process. 19

(8) (2010) 2042–2055, doi:10.1109/TIP.2010.2046794.

http://dx.doi.org/10.13039/501100004412
http://dx.doi.org/10.13039/501100004410
http://dx.doi.org/10.1109/TPAMI.2007.1174
http://dx.doi.org/10.1109/TPAMI.2008.102
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0003
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0003
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0003
http://dx.doi.org/10.1109/JSTSP.2008.2001310
http://dx.doi.org/10.1109/TIP.2010.2052823
http://dx.doi.org/10.1109/CVPR.2013.311
http://dx.doi.org/10.1109/ICCV.2003.1238325
http://geometry.stanford.edu//paper.php?id=yseg-basn-04
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0009
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0009
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0009
http://dx.doi.org/10.1155/2007/29858
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0011
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0011
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0011
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0011
http://dx.doi.org/10.1109/JSTSP.2008.925992
http://dx.doi.org/10.1109/TIP.2010.2049179
http://dx.doi.org/10.1109/TIP.2010.2052278
http://dx.doi.org/10.1109/CDC.2007.4434303
http://dx.doi.org/10.1109/MSP.2007.914730
http://dx.doi.org/10.1109/TIP.2007.911828
http://dx.doi.org/10.1109/JPROC.2009.2030345
http://dx.doi.org/10.1109/JPROC.2009.2037526
http://dx.doi.org/10.1109/JPROC.2010.2040797
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0021
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0021
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0021
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0021
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0021
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0021
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0021
http://dx.doi.org/10.1109/CVPR.2008.4587652
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0023
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0023
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0023
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0023
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0023
http://dx.doi.org/10.1109/JPROC.2010.2044470
http://dx.doi.org/10.1109/MSP.2011.940281
http://dx.doi.org/10.1145/1236360.1236406
http://dx.doi.org/10.1109/MC.2002.1033027
http://dx.doi.org/10.1007/s11042-011-0840-z
http://dx.doi.org/10.1109/MWC.2007.4407225
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0030
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0030
http://refhub.elsevier.com/S1077-3142(15)00123-X/sbref0030
http://dx.doi.org/10.1109/TPAMI.2007.1173
http://dx.doi.org/10.1109/CVPR.2009.5206508
http://dx.doi.org/10.1109/ICCV.2011.6126531
http://dx.doi.org/10.1109/TIP.2010.2046794
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