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Abstract – We propose a new approach for multi-sensor
multi-target tracking by constructing statistical models
on graphs with continuous-valued nodes for target states
and discrete-valued nodes for data association hypotheses.
These graphical representations lead to message-passing
algorithms for the fusion of data across time, sensor, and
target that are radically different than algorithms such as
those found in state-of-the-art multiple hypothesis track-
ing (MHT) algorithms. Important differences include: (a)
our message-passing algorithms explicitly compute different
probabilities and estimates than MHT algorithms; (b) our
algorithms propagate information from future data about
past hypotheses via messages backward in time (rather than
doing this via extending track hypothesis trees forward in
time); and (c) the combinatorial complexity of the problem
is manifested in a different way, one in which particle-like,
approximated, messages are propagated forward and back-
ward in time (rather than hypotheses being enumerated and
truncated over time). A side benefit of this structure is that
it automatically provides smoothed target trajectories using
future data. A major advantage is the potential for low-
order polynomial (and linear in some cases) dependency on
the length of the tracking intervalN , in contrast with the ex-
ponential complexity inN for so-calledN -scan algorithms.
We provide experimental results that support this potential.
As a result, we can afford to use longer tracking intervals,
allowing us to incorporate out-of-sequence data seamlessly
and to conduct track-stitching when future data provide ev-
idence that disambiguates tracks well into the past.

Keywords: Multi-target tracking, graphical models, mes-
sage passing, data association, smoothing, multi-hypothesis
tracking.

1 Introduction
Multi-target tracking (MTT) using data from multiple sen-
sors is a very important, well-studied, and challenging prob-
lem that has a variety of applications, ranging from mili-
tary target tracking to civilian surveillance. While a variety
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of important practical considerations add to this challenge,
even if we limit attention to the most basic problem of main-
taining track on a fixed set of targets using data from multi-
ple sensors, we are met by a fundamental problem, namely
the exponential explosion (over time) of potential associa-
tions of measurements from each sensor at each time with
each target.

Practical solutions to this NP-complete problem of data
association and target tracking consequently require some
type of approximation. One of the most widely used ap-
proaches to such problems is commonly known as mul-
tiple hypothesis tracking (MHT) [1]. While tremendous
advances have been made in organizing the computations
and data structures associated with MHT, allowing it to
be applied to practical applications of considerable size,
the fundamental structure of MHT has several implications,
some of which are well-known while others are perhaps not.
Roughly speaking, MHT keeps track of sequences of data
association hypotheses over time. In principle, to main-
tain consistency across targets we need to form consistent
global hypotheses that preclude assigning the same mea-
surement to two different tracks. While ingenious methods
have been developed to deal with this global consistency
constraint without explicit construction of global hypothe-
ses, the fact remains that exponential growth in complex-
ity is not eliminated. In particular, the extension of a track
hypothesis over time requires the growing of a hypothesis
tree, which is extended at each point in time as new mea-
surements are received and incorporated. This combinato-
rial explosion requires approximation. While the number of
variants for such approximations are numerous, they all gen-
erally involve two components, namely limiting the depth of
the hypothesis tree - i.e., how far back into the past we keep
track of possible assignments - and a method for collapsing
hypotheses that differ only in assignments at the back end
of that tree. A basic method for limiting tree depth is the
so-calledN -scan approximation. One widely used method
for collapsing such hypothesis trees is simply to choose the
branch extending from timet − N to time t with highest
likelihood or probability. This corresponds to pruning the
hypothesis tree by keeping only a single root at timet−N .

There are a number of issues associated with existing
MHT algorithms. First, although theN -scan approximation



controls the explosion of hypotheses by limiting the depth
of hypothesis trees, the complexity within the tracking win-
dow is still exponential inN . This puts a severe limit on
how large one can chooseN . An additional issue is the ap-
parent logical inconsistency between the association and lo-
cation estimation operations: while future data are used for
computing probabilities for various hypotheses, these future
data are not used for estimating (i.e. smoothing) the target
states at this earlier time.

In this paper, we take a fundamentally different approach
to solve the multi-sensor multi-target tracking and data as-
sociation problem by exploiting the use ofgraphical mod-
els andefficient message passing algorithms. This frame-
work offers the potential for approximations quite different
than, but just as good as those in state-of-the-art MHT al-
gorithms, but with drastically reduced complexity. One sig-
nificant aspect of using graphical model representations as a
starting point is that they lead directly to so-called message-
passing algorithms to compute various probabilities, like-
lihoods, and estimates associated with variables at nodes in
the graph. A second aspect is that there are different ways in
which to construct graphical models for the same problem,
each of which exposes different aspects of the overall proba-
bilistic structure, making particular computations more nat-
ural in one representation than in another and also leading
to very different ways in which to introduce approximations
to control complexity. The graphical representation we in-
troduce here leads to algorithms that do not enumerate track
hypotheses as in MHT but rather directly compute proba-
bilities of individual data associations at each point in time
as well as both causally filtered and smoothed estimates of
track states at each point in time. Thus, in contrast to MHT
approaches, the one presented here naturally computes dif-
ferent quantities that are not easy to extract from MHT rep-
resentations. Of course the flip side is that the computations
explicitly exposed in MHT - e.g., track hypotheses over time
- are not explicitly formed in our approach.

While this new perspective in modeling is interesting,
simply by changing the way we model the problem will not
change the complexity of solving it. As we know, the exact
solution to MTT is exponential in the duration of the track-
ing window. So is the case for exact MTT using graphical
models. Thus, to make target tracking over time tractable,
it is necessary to use some approximation, however in the
message-passing framework used here, we are interested in
approximatingmessages. We develop our own methods us-
ing automatic, statistically principled approaches involving
message approximation through multiresolution clustering,
gating in message construction, and anN -scan approxima-
tion. In our examples we demonstrate that in some scenarios
excellent performance can be obtained with complexitythat
grows almost linearly with the length of the tracking inter-
val. As a result, we can consider far greater tracking inter-
vals than methods that have to deal with exponential com-
plexity. This not only allows for incorporation of data that

Figure 1: The first of the two graphical models we use for
MTT. This graph collapses all targets and all sensors at a
single point of time into one target node and one data asso-
ciation node, respectively.

Figure 2: The second of the two graphical models we use for
MTT. This graph distributes the global assignment variable
at each point of time into individual data association nodes
for each sensor.

arrive quite late but also allows greatly enhanced possibili-
ties for track-stitching. We demonstrate all of these aspects
in our experiments.

2 Graphical Models for Tracking
2.1 Graphical Model Structure
A graphical model is simply a Markov random field de-
fined on a graph in which nodes index variables defining
our problem and an edge between nodes captures statistical
relationships among the variables at the nodes connected by
that edge. A set of nodes forms a clique if there are edges
between all pairs of these nodes. If the joint distribution
of all variables factors as a product of potential functions
on cliques, then the variables are said to be Markov on the
graph. We use the two graphical model structures in Fig-
ures 1 and 2. Each circle in these graphs represents the kine-
matic states of all targets at one time point, whereas each
square connected to a circle represents the data associations
at that particular time. The model in Figure 1 lumps all as-
sociations from all sensors at a single point in time together,
whereas the model in Figure 2 uses one association node per
sensor at each individual point in time. We note that circles
represent continuous random variables, whereas squares de-
note discrete ones. Edges between successive points in time
capture the statistical structure of the Markovian target dy-
namics. It is important to emphasize that these models cap-
ture the same type of statistical structure as that used in other
tracking algorithms (e.g., an MHT algorithm), but they sug-
gest very different algorithms based on message passing.

Although the static data association problem at a single
point in time is already a challenging problem, it is not



the focus of this paper. Rather, the focus here is in find-
ing an efficient way to do tracking over a period of time.
For more elaborate work on using graphical models to solve
large static data association problems, see our previous work
in [2].

In our first model (Figure 1), at each time point, all targets
are lumped together to form one global target node and all
sensors are lumped together to form one global assignment
node. Here, every assignment node takes on discrete values,
each of which represents a possible global data association
assignment for all sensors at that time point. Each target
node is the collection of kinematic states of allM targets
at that time point:xt = [xT

t,1, x
T
t,2, ..., x

T
t,M ]T , wherext,i is

the kinematic state of targeti at timet.
If there areM targets andK sensors, then the complex-

ity to enumerate global data associations at a single point
of time is (M !)K . To reduce that complexity, we pro-
pose the second model (Figure 2), in which the global as-
signment variable at each point in time is distributed, re-
ducing the complexity of data association at each point of
time to K(M !). Each assignment node now corresponds
to a sensor, and the value of such an assignment node in-
dicates the data association between observations generated
by that sensor and the targets it observes. From a statistical
viewpoint, the second model asserts that the assignment of
measurements at each sensor is conditionally independent
of those at the other sensors, given the target states, a rea-
sonable assumption in practice. For the sake of notational
simplicity, we derive most of our formulae using the first
model. In various parts of our discussion, we mention how
the expressions would change for the second model. In the
experiments, we use the second model, due to its reduced
memory requirements.

Now let us introduce the form of the probability density
associated with our graphical model. For a time period from
t = t0 to t = T , let x denote the kinematic states of all tar-
gets at all time points,y denote the collection of all obser-
vations from all sensors at all time points, anda denote all
data association assignments for all observations at all time
points. Then the joint probability density for the whole time
window is given by:

p(x, y, a) =
T∏

t=t0

p(yt|at, xt)
T∏

t=t0

p(at)p(xt0)
T−1∏
t=t0

p(xt+1|xt)

wherext, yt, andat are hidden target kinematic states, ob-
servations, and assignment variables at timet. The dynamic
model and the observation model that make this equality
possible will be described in subsequent subsections.

2.2 Data Association (Assignment) Nodes
For theith observation (i = 1, . . . , Ot,k), of sensork at

time t, let us define the assignment variable as:

at,k(i) =
{

0 if observationi is assigned as a false alarm
m if observationi is assigned to targetm

By stacking all assignment variablesat,k for all sensorsk =
(1, ...,K), we obtain the global assignment variableat at
time t.

We define the potential function for an assignment node
in such a way that it takes into account the effects of false
alarms and missed detections. Suppose that out of theOt,k

observations made by sensork at timet, OFA
t,k are assigned

as false alarms, andODT
t,k are assigned to targets for a partic-

ular assignment. Assuming for simplicity that allM targets
are in the observation range of each sensor, the node poten-
tial ψa(at) = p(at) for assignment nodeat is given by:

ψa(at) =
K∏

k=1

P
ODT

t,k

D (1−PD)M−ODT
t,k P

OF A
t,k

FA (1−PFA)Ot,k−OF A
t,k

(1)
wherePD is the probability of detection, andPFA is the
probability of false alarm. If we used the graphical model
in Figure 2, the potential function for the assignment node
of thekth sensor at timet would simply consist of thekth
factor in (1).

2.3 Target Dynamic Subgraphs
We represent target dynamics using linear models:xt =

Axt−1 + ut−1, whereA is the transition matrix;ut−1 is a
stationary zero-mean white Gaussian noise process; andxt

is the kinematic state vector at timet, in which the kinematic
statesxt,m (m = 1, ..., M ) of all M targets are stacked. The
potential function for the target nodes captures only target
initial conditions and is given by:

ψx(xt) =
{

p(xt0) = N (xt0 ;µt0 ,Σt0) if t = t0
1 if t > t0

(2)

whereµt0 andΣt0 are the parameters of the prior distribu-
tion for each target at the start of the time interval of interest.

The potential function for the edges connecting the target
nodes is given by:

ψt,t+1(xt, xt+1) = p(xt+1|xt) (3)

2.4 Edges Joining Associations and Targets
We use the observation likelihoods as edge potentials, and

a linear Gaussian model for the sensor measurements. Let
yt,k(i) denote theith observation from sensork at time
t. Unless this observation is assigned to a false alarm,
its value depends on the kinematic state of targetat,k(i):
yt,k(i) = Ct,kxt,at,k(i) + vt,k, whereCt,k is the observa-
tion matrix, andvt,k is a stationary, zero-mean, white Gaus-
sian noise process. By stacking all the observationsyt,k(i)
(i = 1, . . . , Ot,k) produced by sensork at time t, we ob-
tain the observation vectoryt,k for thekth sensor. Then by
stacking the observationsyt,k from all sensors at timet, we
obtain the overall observation vectoryt at timet. Based on
this observation model, we define the potential function for



the edges connecting assignment nodes and target nodes as:

ψa,x(at, xt) = p(yt|at, xt) =
K∏

k=1

p(yt,k|at,k, xt) (4)

If we used the graphical model in Figure 2, the potential
function between thekth association node and the target
node at timet would simply be thekth factor in (4).

3 Approximate, Efficient Algorithm
for Multi-Target Tracking

In this section we describe the message-passing computa-
tions required for inference in our graphical model. We use
belief propagation (BP) to estimate the posterior probability
distribution of target kinematic statesx, as well as associ-
ationsa, given observationsy. BP message passing equa-
tions in principle provide exact computation of posterior
marginals on tree-structured graphs. However exact com-
putation of the messages in practice necessitates some spe-
cial structure. Two such special cases that have been widely
exploited are the cases of graphs involving only discrete or
only Gaussian random variables and messages. The graph-
ical models we have constructed in Section 2 result in dis-
crete and Gaussian-mixture messages. Hence, although not
as simple as the two cases mentioned, our models exhibit
some special structure as well. Exploiting this structure, in
Section 3.1 we discuss performing exact belief propagation
for multi-target tracking.

Part of the novelty of our approach is the structure of
our message-passing implementation. Among other things,
this accomplishes two things. The first is that it exploits
the Markov structure of our graphs to pass messages back-
ward in time in order not only to smooth target state esti-
mates using future data (which may be of interest in itself
for some applications) but also to use these smoothed esti-
mates in the process of updating and resolving data asso-
ciation hypotheses at previous points in time (bringing the
“data to the hypothesis” rather than the “hypothesis to the
data” as in hypothesis-tree-based approaches such as MHT).
The second consequence of this implementation is that it fo-
cuses the challenge of dealing with exponential complexity
in a different manner than in MHT. In particular, this chal-
lenge manifests itself in terms of managing the complexity
of messagespassed from node to node, rather than manag-
ing temporally-growing association hypothesis sequences.
Roughly speaking, in our algorithm, each mode of the Gaus-
sian mixture messages acts like aparticle1 to be transmitted
among the nodes. Running exact BP on our graphs leads to
exponentially growing number of particles in BP messages,
hence exponentially growing computational complexity in
time. In Sections 3.2 through 3.4 we describe three methods

1For the sake of clarity, we should point out that the meaning of the
term ”particle” here is different from its standard usage in the context of
particle filtering [3].

to manage and reduce that complexity via various approx-
imations. The first two of these are fairly standard in con-
cept although different in detail because of the nature of our
implementation. The third method for controlling complex-
ity, described in Section 3.4, has no counterpart in standard
MHT algorithms and is a key benefit of our formalism, as it
corresponds to approximating messages to meet a specified
fidelity criterion.

3.1 BP on the Tracking Graph
We can identify three types of messages in the graphical

models in Figures 1-2: from a continuous target node to
another continuous target node, from a discrete assignment
node to a continuous target node, and from a continuous
target node to a discrete assignment node.

Messages from a discrete assignment node to a continu-
ous target node can be computed as follows:

Ma→x(xt) = κ
∑
at

ψa(at)ψa,x(at, xt) (5)

Given the definitions in (1) and (4), this message is basically
a sum of Gaussian distributions.

We compute the forward messagesMt→t+1(xt+1) sent
from a continuous target node at timet to the next target
node at timet + 1 as follows:

κ

∫
ψt,t+1(xt, xt+1)ψx(xt)Mt−1→t(xt)Mat→xt(xt)dxt.

(6)
With both Mt−1→t(xt) and Mat→xt(xt) being Gaussian
mixtures,Mt→t+1(xt+1) is also a Gaussian mixture. Note
that this message computation involves multiplication and
integration of Gaussian mixtures, for which we derive and
use expressions based on the development in [4, 5]. Note
that, for backward messages, the equation is similar (with
minor changes of subscripts). If we used the distributed
model in Figure 2, then the only change would be that
Mat→xt(xt) would be replaced by a product of messages
from individual sensor nodes. As one can imagine, the num-
ber of modes in these target-to-target messages increases
multiplicatively from time to time, which necessitates the
kind of approximations we describe in subsequent subsec-
tions.

The messages from a continuous target node to a discrete
assignment nodeMx→a(at) are computed as follows:

κ

∫
ψa,x(at, xt)ψx(xt)Mt−1→t(xt)Mt+1→t(xt)dxt (7)

As the assignment variableat is a discrete variable, this
message is a finite-dimensional vector. Note that if we used
the model in Figure 2, this message would denote the mes-
sage to one particular sensor node. In that case, we would
have an additional factor in the integrand in (7) consisting
of the product of messages from the other sensor nodes to
the target node, and we would replaceψa,x(at, xt) with the
appropriate edge potential between the target node and that
particular sensor node.



3.2 Gating in Message Construction
Gating is a standard technique used in MHT as well as other
tracking algorithms to limit the number of data association
hypotheses being generated. In the context of our message
passing algorithm, gating is done in the computation of the
message in (6), and in particular in computing the product
of the messages in the integrand, i.e., when messages from
assignment nodes, orassignment messages, are multiplied
with messages from target nodes, ortarget messages. With-
out gating, every particle (i.e., a mode in the Gaussian mix-
ture) in the target message would be multiplied with every
particle in the assignment message. With gating, rather than
multiplying a particle in the target message with every sin-
gle particle from the assignment message, each particle in
the target message is only multiplied with the ones in the as-
signment message with data associations that are consistent
with its gating constraints. The gating regions can be deter-
mined by the means and the covariances in target messages,
because these messages can be interpreted as estimates of
target kinematic states.

3.3 N-Scan Approximation
The version ofN -scan used in our experiments involves
stopping sending messages back to points in time after they
exit theN -scan interval. The only issue, then is the last mes-
sages sent going forward from an exiting point in time. In
standardN -scan algorithms this might correspond to choos-
ing a single most likely data association hypothesis as this
point exits the window. In our algorithm, after receiving
the data at timet, messages are passed backward in the net-
work, until we computep(at−N ) for some fixedN . Now,
when sending messages from this assignment node back to
the target node using (5), rather than considering all possi-
ble associations, we set some thresholdβ, order the possible
associations based on their probabilities, and keep the min-
imum number of associations whose sum of probabilities
just exceedsβ. Note that the number of hypotheses kept is
determined by the algorithm in an adaptive manner. In this
way, we eliminate all the less likely associations whose sum
of probabilities is around1− β.

3.4 Message Approximation by Clustering
A critical component in managing complexity that is avail-
able to us thanks to our message-passing algorithm is the
approximation of messages prior to passing them to neigh-
boring nodes - i.e., approximating one Gaussian mixture dis-
tribution with another one with fewer modes. For this ap-
proximation, we use a clustering procedure that adaptively
reduces the number of particles to be used in each message
passing stage. We emphasize that this approximation is done
solely for the temporary purpose of transmitting a message,
and all of the possible data association hypotheses are still
preserved in the assignment nodes in our graph.

We use a multiresolution clustering approach based on
K-dimensional trees (KD-trees) [6]. A KD-tree is a space-

partitioning data structure used to organize a large set of data
points. In KD-trees data are stored in a multi-scale fashion,
which forms the basis of their use in a clustering algorithm.
We are interested in approximating an input Gaussian mix-
ture distribution, with another one with a smaller number of
modes by clustering together similar modes. Given a Gaus-
sian mixture, we construct a KD-tree, in which the root node
corresponds to the input Gaussian mixture, and each leaf
node corresponds to a single mode in the Gaussian mixture.
For the sake of brevity, we do not describe our procedure
for constructing the tree. We represent each node by a K-
dimensional data vector consisting of the elements of the
mean vector together with the elements of the covariance
matrix of the corresponding Gaussian.

Given the constructed tree, we calculate and store three
statistics for each node: a weight, mean vector, and covari-
ance matrix. With these statistics, each node can be viewed
as a Gaussian approximation of its children. Given the con-
structed KD-tree with computed statistics, we then use it for
clustering. We take a walk down the KD-tree starting from
the root node. At each node, we calculate the symmetrized
Kullback-Leibler (KL) divergence between the two chil-
dren, and we stop at that node if the KL-divergence between
its children is smaller than a threshold specified by the user.
We keep all the nodes at which this procedure has stopped,
and use that as the approximate representation of the in-
put mixture. This effectively makes a multi-resolution cut
through the tree, in which the number of nodes kept is the
number of modes (particles) in the approximate represen-
tation. We use this clustering procedure to limit the num-
ber of particles used in our messages. Since the number
of particles is what leads to exponential complexity of the
exact algorithm, clustering plays a key role in beating that
complexity. As will be demonstrated in our experiments,
this procedure helps us achieve almost linear complexity in
some scenarios.

4 Experimental Results

4.1 Setup
In our simulations, multiple targets move in a 2-D surveil-

lance area. The number of targets is knowna priori. The
movement of each target is modeled by a linear, time-
invariant state-space model, in which the kinematic state
vector for each target consists of 2-D position, velocity, and
acceleration. Target state dynamics involve some temporal
correlation in acceleration. The process noise mainly drives
the acceleration. We consider three types of sensors moni-
toring the surveillance area. Type I and Type II sensors are
bearing-only sensors located far away from the surveillance
region, providing one-dimensional measurements. Type I
sensor measures horizontal position and velocity, whereas
Type II does the same for the vertical dimension. Type III
sensor provides near-field measurements of 2D positions.
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Figure 3: Sample tracking results withN = 5. (a) Type
I, II, & III sensors, high SNR. (b) Type I & II sensors, low
SNR.

We include false alarms and missed detections, the proba-
bilities of which are set to be 0.05. Measurements are cor-
rupted by additive Gaussian noise. Initial kinematic states
are generated randomly, and subsequent states are generated
according to the dynamic model mentioned above.

4.2 Tracking Performance and Complexity
In Figure 3(a), we show a sample tracking result (we

useN=5 in N -scan, and a KL threshold of 0.1). This is
only one example out of the 100 runs we have generated.
In all of them, there are 5 targets, 3 sensors (one of each
type), duration is 50 time frames, and SNR is high. Black
curves indicate the true target trajectories, and markers of
each color show the estimated target position through the
mean of each particle. Uncertainty in these estimates is also
shown through one-standard-deviation ellipses, which are
too small to visually observe in this plot. Weights of the
particles are encoded through the density of the colors. We
observe that our approach produces very good tracking ac-
curacy in many runs of this scenario. Figure 3(b) presents
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Figure 4: Mean-squared tracking error as a function ofN
and the KL threshold in a low-SNR scenario with Type I &
II sensors.

a more challenging scenario: we use only Type I & II sen-
sors and we add measurement noise with a variance of 100,
hence this is a low-SNR scenario. In this case, we natu-
rally observe some degradation as compared to the result
in Figure 3(a), however we still achieve what appears to be
satisfactory tracking accuracy. Figure 4 shows the overall
mean-squared tracking error for this challenging scenario as
the length of theN -scan window, and the KL threshold are
varied. As expected, we achieve better performance asN
is increased, and the KL threshold is decreased. Of course,
this benefit should come with the price of more computa-
tions. Based on this observation, we next explore the com-
putational complexity as a function ofN . In Figure 5 we
show the relationship between running time andN , for a
five-target scenario involving all three type of sensors.2 We
conclude that by using adaptive KD-tree clustering as the
hypothesis reduction method, while maintaining acceptable
tracking accuracy, the message-passing algorithm achieves
almost linear complexity with respect to the duration of the
tracking window in this particular scenario.

4.3 Handling Delayed Information
We now present two examples demonstrating that our ap-

proach can incorporate delayed information in a seamless
fashion thanks to its ability to use long tracking windows
together with its forward-backward message passing struc-
ture.

In Figure 6, we compare our message-passing algorithm
with N = 15 andN = 3, in a scenario in which obser-
vations fromt = 8 to t = 15 arrive late att = 19. If
the tracking window is small (N = 3 as in (a)) then when
late data arrive, the tracker is not able to incorporate those
late data as the tracking window has already moved passed
the range with late data. As a result, the tracker confuses

2Similar results are obtained for the case of Type I & II sensors.
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Figure 5: Running time as a function ofN for a 5-target,
high-SNR scenario with all three types of sensors, aver-
aged over 100 runs. Error bars indicate the one-standard-
deviation region. To contrast the complexity of our approach
with that of a hypothetical MHT tracker, we also show an
exponential curve.

the two targets, and exhibits large estimation uncertainty
in the late data interval. If the tracking window is long
enough (N = 15 as in (b)), then to incorporate the late data
when they arrive, the tracker just needs to conduct a reg-
ular backward-forward message-passing within its tracking
window, resulting in much better tracking performance.

In Figure 7, we show an example of track-stitching, us-
ing our message-passingN -Scan algorithm withN = 30 .
In this scenario with 50 time frames, observations are miss-
ing for time points fromt = 5 to t = 25. When we use
a short tracking window ofN = 3, the tracker cannot as-
sociate the tracks before and after the missing data region,
resulting in the two ghost tracks in Figure 7(a). On the other
hand, when we use a longer tracking window withN = 30,
spanning across the period of missing data, then the tracker
can associate the tracks before and after missing data, and
”stitch” the tracks together as shown in Figure 7(b).

5 Discussion
We have presented a framework to solve the multi-target

tracking (MTT) problem based on graphical model repre-
sentations of the probabilistic structure of the MTT problem
and message passing algorithms arising from such represen-
tations. The graphical model structure and associated infer-
ence algorithms offer enormous flexibility to overcome sev-
eral limitations faced by existing MTT algorithms. In partic-
ular this formalism localizes the combinatorially explosive
nature of MTT problems in a very different place, namely
in the messagespassed in the algorithm, both forwardand
backward in time. This opens up the possibility of very dif-
ferent approximation algorithms based not on pruning or
eliminating data association hypotheses but rather on ap-
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Figure 6: Late data arrival example, with all three types of
sensors. Observations fromt = 8 to t = 15 arrive late at
t = 19. (a) N = 3, resulting in inaccurate and uncertain
tracking. (b)N = 15, recovering the target tracks for the
interval of late data arrival.

proximation of likelihood messages. We have seen through
experiments that our approach to adaptively managing these
approximations can lead to complexity that grows almost
only linearly with the length of the tracking time interval in
some scenerios, allowing much longer intervals to be con-
sidered. This facilitates one of several potential advantages
of our approach, namely the stitching of tracks over consid-
erable time intervals when only occasional target discrim-
inating information becomes available. Moreover, the na-
ture of our graphical models makes the incorporation of out-
of-sequence data seamless, requiring literally no changes
to algorithmic structure. In addition, this message-passing
structure automatically produces smoothed target estimates,
something that can be of considerable value in many appli-
cations other than real-time tracking.

This is only a first introduction of this framework and
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Figure 7: Track stitching example, using Type I & II sen-
sors. Observations are missing fromt = 5 to t = 25. (a)
N = 3, resulting in ghost tracks. (b)N = 30, achieving
track stitching.

considerably more testing and considerations of complex-
ities not included here must be undertaken. A more detailed
computational complexity analysis covering a wider range
of scenarios is already underway. Although we may not
get linear complexity in the tracking interval in more com-
plicated scenarios than the ones considered here, we still
expect to get a low-order polynomial complexity, beating
the exponential complexity of MHT-based trackers. In or-
der to focus on the key novelties of this new formalism, we
have stripped away some aspects that will need to be in-
cluded in the future. For example, we have assumed linear-
Gaussian target and measurement models (so that all of our
probabilistic quantities are Gaussian sums). As our method
intrinsically involves particle-like representations for mes-
sages, the incorporation of nonlinear dynamics and mea-
surements is readily accommodated. In addition, as men-
tioned previously, we focus here on what is known as the

track maintenance problem, and extensions to include track
initiation and termination need to be developed in the future.
We have presented one particular way to perform approxi-
mate inference in mixture models. Another approach to this
problem would be to use nonparametric belief propagation
(NBP) [7], which, in order to manage the size of messages
being passed on the graph, employs a sampling technique
to approximate them. When one uses a sampling-based ap-
proach for inference, managing the number of samples for
complexity control is an interesting issue. If this can be
done effectively, it would perform a similar function to our
clustering-based message approximation approach. In this
paper we have focused on the dynamic aspect of the track-
ing problem, and have assumed that the static data associ-
ation problem (i.e., computing the association probabilities
at each time instant) is tractable. An extension of the work
presented in this paper would be to combine our dynamic
tracking framework, with advanced (distributed) static data
association techniques. Developing these and the other ex-
tensions not mentioned here due to space limitations offer
considerable promise for new, high-performance MTT al-
gorithms with many attractive characteristics.
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