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Abstract — We propose a new approach for multi-sensasf important practical considerations add to this challenge,
multi-target tracking by constructing statistical modelgven if we limit attention to the most basic problem of main-
on graphs with continuous-valued nodes for target stat&sining track on a fixed set of targets using data from multi-
and discrete-valued nodes for data association hypothesple sensors, we are met by a fundamental problem, namely
These graphical representations lead to message-passihg exponential explosion (over time) of potential associa-
algorithms for the fusion of data across time, sensor, arithns of measurements from each sensor at each time with
target that are radically different than algorithms such agach target.

those found in state-of-the-art multiple hypothesis track- practical solutions to this NP-complete problem of data
ing (MHT) algorithms. Important differences include: (ahssociation and target tracking consequently require some
our message-passing algorithms explicitly compute differqhe of approximation. One of the most widely used ap-
probabilities and estimates than MHT algorithms; (b) OUproaches to such problems is commonly known as mul-
algorithms propagate information from future data aboql;me hypothesis tracking (MHT) [1]. While tremendous
past hypotheses via messages backward in time (rather thgyances have been made in organizing the computations
doing this via extending track hypothesis trees forward ifng data structures associated with MHT, allowing it to
time); and (c) the combinatorial complexity of the problerge applied to practical applications of considerable size,
Is mam_fested in a different way, one in which particle-likgnhe fundamental structure of MHT has several implications,
approximated, messages are propagated forward and bagime of which are well-known while others are perhaps not.
ward in time (rather than hypotheses being enumerated aﬂ%ughly speaking, MHT keeps track of sequences of data
truncated over time). A side benefit of this structure is thgksgciation hypotheses over time. In principle, to main-
it automatically provides smoothed target trajectories usingin consistency across targets we need to form consistent
future data. A major advantage is the potential for |0Wg|obal hypotheses that preclude assigning the same mea-
order polynomial (and linear in some cases) dependency &frement to two different tracks. While ingenious methods
the length of the tracking interva¥, in contrast with the ex- have been developed to deal with this global consistency
ponential complexity inV for so-calledV-scan algorithms. ¢onstraint without explicit construction of global hypothe-
We provide experimental results that support Fhis _potenti@es, the fact remains that exponential growth in complex-
As a result, we can afford to use longer tracking intervalsy is not eliminated. In particular, the extension of a track
allowing us to incorporate out-of-sequence data seamles pothesis over time requires the growing of a hypothesis
and to conduct track-stitching when future data provide €¥%ee, which is extended at each point in time as new mea-
idence that disambiguates tracks well into the past. surements are received and incorporated. This combinato-

Keywords: Multi-target tracking, graphical models, mes/!ial explosion requires approximation. While the number of

sage passing, data association, smoothing, multi-hypothe&gants for such approximations are numerous, they all gen-
tracking. erally involve two components, namely limiting the depth of

the hypothesis tree - i.e., how far back into the past we keep

1 Introduction track of possible a§S|gnmen_ts - and a method for collapsing

. ) ) ) hypotheses that differ only in assignments at the back end
Multi-target tracking (MTT) using data from multiple sen-f that tree. A basic method for limiting tree depth is the
sorsis a very important, well-studied, and challenging prog_cajledn-scan approximation. One widely used method

lem that has a variety of applications, ranging from miliggr collapsing such hypothesis trees is simply to choose the

tary target tracking to civilian surveillance. While a varietyyanch extending from time — N to time ¢ with highest
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controls the explosion of hypotheses by limiting the depth

of hypothesis trees, the complexity within the tracking win-

dow is still exponential inV. This puts a severe limit on

how large one can choogé. An additional issue is the ap-

parent logical inconsistency between the association and lo- -
cation estimation operations: while future data are used for

computing probabilities for various hypotheses, these future

data are not used for estimating (i.e. smoothing) the targ{/légure 1 The first of the two graphical models we use for
states at this earlier time. TT. This graph collapses all targets and all sensors at a

single point of time into one target node and one data asso-

In this paper, we take a fundamentally different approaghliion node respectively.

to solve the multi-sensor multi-target tracking and data as-

sociation problem by exploiting the use grfaphical mod-
els and efficient message passing algorithmighis frame-
work offers the potential for approximations quite different
than, but just as good as those in state-of-the-art MHT al-
N

gorithms, but with drastically reduced complexity. One sig-
nificant aspect of using graphical model representations as a

starting point is that they lead directly to so-called messaqgl-gure 2: The second of the two graphical models we use for

passing algonth.ms to compqte various prpbabllltles, IIk‘lz\/'lTT. This graph distributes the global assignment variable
lihoods, and estimates associated with variables at node%m

the graph. A second aspect is that there are different Way?ci?eeaz::hzzrq;g: time into individual data association nodes
which to construct graphical models for the same problem, '

each of which exposes different aspects of the overall proba-

bilistic structure, making particular computations more nagsrive quite late but also allows greatly enhanced possibili-
ural in one representation than in another and also leadiigs for track-stitching. We demonstrate all of these aspects
to very different ways in which to introduce approximation& our experiments.

to control complexity. The graphical representation we in-

troduce here leads to algorithms that do not enumerate tr@k Graphical Models for Tracking
hypotheses as in MHT but rather directly compute proba-

bilities of individual data associations at each point in tim&.1 ~ Graphical Model Structure

as well as both causally filtered and smoothed eStimatesﬁpbraphical model is simply a Markov random field de-
track states at each point in time. Thus, in contrast to MHed on a graph in which nodes index variables defining
approaches, the one presented here naturally computes glif problem and an edge between nodes captures statistical
ferent quantities that are not easy to extract from MHT regs|ationships among the variables at the nodes connected by
resentations. Of course the flip side is that the computatiopg; edge. A set of nodes forms a clique if there are edges
explicitly exposed in MHT - e.g., track hypotheses over timgetween all pairs of these nodes. If the joint distribution
- are not explicitly formed in our approach. of all variables factors as a product of potential functions
While this new perspective in modeling is interestinggn cliques, then the variables are said to be Markov on the
simply by changing the way we model the problem will nagraph. We use the two graphical model structures in Fig-
change the complexity of solving it. As we know, the exactres 1 and 2. Each circle in these graphs represents the kine-
solution to MTT is exponential in the duration of the trackmatic states of all targets at one time point, whereas each
ing window. So is the case for exact MTT using graphicalquare connected to a circle represents the data associations
models. Thus, to make target tracking over time tractabk, that particular time. The model in Figure 1 lumps all as-
it is necessary to use some approximation, however in theciations from all sensors at a single point in time together,
message-passing framework used here, we are interestedtiereas the model in Figure 2 uses one association node per
approximatingnessageswWe develop our own methods us-sensor at each individual point in time. We note that circles
ing automatic, statistically principled approaches involvingepresent continuous random variables, whereas squares de-
message approximation through multiresolution clusteringgte discrete ones. Edges between successive points in time
gating in message construction, andM¥irscan approxima- capture the statistical structure of the Markovian target dy-
tion. In our examples we demonstrate that in some scenarni@snics. It is important to emphasize that these models cap-
excellent performance can be obtained with complekigy ture the same type of statistical structure as that used in other
grows almost linearly with the length of the tracking intertracking algorithms (e.g., an MHT algorithm), but they sug-
val. As a result, we can consider far greater tracking integest very different algorithms based on message passing.
vals than methods that have to deal with exponential com-Although the static data association problem at a single
plexity. This not only allows for incorporation of data thapoint in time is already a challenging problem, it is not



the focus of this paper. Rather, the focus here is in fin8y stacking all assignment variables;, for all sensors: =

ing an efficient way to do tracking over a period of time(1, ..., K), we obtain the global assignment variableat

For more elaborate work on using graphical models to soltime ¢.

large static data association problems, see our previous workVe define the potential function for an assignment node

in [2]. in such a way that it takes into account the effects of false
In our first model (Figure 1), at each time point, all targetslarms and missed detections. Suppose that out aDthe

are lumped together to form one global target node and aliservations made by sengoat timet, Of,j‘ are assigned

sensors are lumped together to form one global assignmggfalse alarms, ard”] are assigned to targets for a partic-
node. Here, every assignment node takes on discrete valygss assignment. Assuming for simplicity that a#l targets
each of which represents a possible global data associati®a in the observation range of each sensor, the node poten-

assignment for all sensors at that time point. Each targgy Ya(a;) = p(a,) for assignment node, is given by:
node is the collection of kinematic states of adl targets

atthat time point; = [z{, 2], ..., x{ ,/]", wherez, ; is K pr br OFA .

the kinematic state of targétt timet. Yalay) = H Poe* (1_PD)M—O“C P (1—PFA)Ot~k—Ot,k
If there areM targets andx sensors, then the complex- k=1

ity to enumerate global data associations at a single point )

of time is (M!)K_ To reduce that complexity, we prc)_wherePD is the probability of detection, ané’r 4 is the

pose the second model (Figure 2), in which the global a_tgr_ot.)ability of false alarm. If we used the graphical model
signment variable at each point in time is distributed, ré Figure 2, the potential function for the assignment node

ducing the complexity of data association at each point 8f the kth sensor at time would simply consist of théth

time to K (M!). Each assignment node now correspond@ctor in (1).

to a sensor, and the value of such an assignment node in-

dicates the data association between observations generdtedl  Target Dynamic Subgraphs

by that sensor and the targets it observes. From a statisticalye represent target dynamics using linear models=
viewpoint, the second model asserts that the assignmentof, | 1 4, | whereA is the transition matrixy;_; is a
measurements at each sensor is conditionally independggtionary zero-mean white Gaussian noise processzand
of those at the other sensors, given the target states, a {§ghe kinematic state vector at timen which the kinematic
sonable assumption in practice. For the sake of notationg@éte%m (m = 1,..., M) of all M targets are stacked. The

simplicity, we derive most of our formulae using the firshotential function for the target nodes captures only target
model. In various parts of our discussion, we mention haitial conditions and is given by:

the expressions would change for the second model. In the
experiments, we use the second model, due to its reduced p(xs,) = N (21y; ey, Sty) I t = to
memory requirements. e \Tt) = { 1 if £ > tg ©
Now let us introduce the form of the probability density

associated with our graphical model. For a time period frowherey;, andX;, are the parameters of the prior distribu-
t =tgtot =T, letz denote the kinematic states of all tartion for each target at the start of the time interval of interest.
gets at all time pointsy denote the collection of all obser- The potential function for the edges connecting the target
vations from all sensors at all time points, andenote all nodes is given by:
data association assignments for all observations at all time
points. Then the joint probability density for the whole time i1 (@, xe1) = p(Tega|ze) 3
window is given by:

2.4 Edges Joining Associations and Targets

T T T-1
pla,y,a) = [[ p(wlas, ) ] pla)p(s,) [ p(zr41]2:)  We use the observation likelihoods as edge potentials, and
t=to t=to t=to a linear Gaussian model for the sensor measurements. Let

wherex,, y;, anda, are hidden target kinematic states, obyt’k(l) denote_ theith obs_ervguon frpm sensor at time
servations, and assignment variables at timehe dynamic t Unless this observanon_ IS as§|gned to a false alarm,
model and the observation model that make this equal”;s/ value depends on the kinematic state of targgi(i):

possible will be described in subsequent subsections. Yek() = Crpia, (i) + ek, WhereCyy is the observa-
tion matrix, andv, , is a stationary, zero-mean, white Gaus-

2.2 Data Association (Assignment) Nodes sian noise process. By stacking all the opservat@,q,ngi)
For theith observationi(= 1,...,0; ), of sensoik at ,EZ.:H}’ ‘ 'b’ Otﬁk)t.producted b3f' Siﬁszir?t timet, \_ﬁ? Obt;
timet, let us define the assignment variable as: ain the observation vectag ;. for tne kth sensor. 1hen by

stacking the observationg , from all sensors at timg we

) 0 if observationi is assigned as a false alar®@btain the overall observation vectgyrat timet. Based on
ay, (1) = m  if observationi is assigned to target this observation model, we define the potential function for



the edges connecting assignment nodes and target nodesoastanage and reduce that complexity via various approx-
imations. The first two of these are fairly standard in con-
i cept although different in detail because of the nature of our
Yaalae 2e) = plyelas, o) = H p(Yeklask, 1) (4) implementation. The third method for controlling complex-
k=1 ity, described in Section 3.4, has no counterpart in standard

If we used the graphical model in Figure 2, the potentiMHT algorithms and is.a ke_y benefit of our formalism, as'it.
function between théith association node and the targefOrreésponds to approximating messages to meet a specified
node at time: would simply be thekth factor in (4). fidelity criterion.

. ffici | ith 3.1 BP onthe Tracking Graph
3 ApprOX|mate, Efficient A gOI’It m We can identify three types of messages in the graphical

for Multi-Target Tracking models in Figures 1-2: from a continuous target node to

In this section we describe the message-passing compﬁt’&gther continuous target node, from a discrete assignment

tions required for inference in our graphical model. We u&?de to a continuous target node, and from a continuous

belief propagation (BP) to estimate the posterior probabili@r&et node tof a dlscrde_te assignment node. q .
distribution of target kinematic states as well as associ- essages from a discrete assignment node to a continu-

ationsa, given observationg. BP message passing equac-’us target node can be computed as follows:

tions in principle provide exact computation of posterior Mo_p(zy) = ,{Zwa(atww(at’xt) (5)
marginals on tree-structured graphs. However exact com- ’

p_utat|on of the messages in pracnce necessitates SOME #1Gan the definitions in (1) and (4), this message is basically
cial structure. Two such special cases that have been widgl

: : . i %'¥um of Gaussian distributions.
exploited are the cases of graphs involving only discrete Ohwe compute the forward messagkg_.; 1 (x:1+1) sent
—t4+1{Tt4

only Gaussian random variables and messages. The 93PS a continuous target node at timeo the next target
ical models we have constructed in Section 2 result in diﬁbde attime + 1 as follows:

crete and Gaussian-mixture messages. Hence, although not
as simple as the two cases mentioned, our models exhiRit| v, , | (z;, 214 1)00 (20) My_1 ¢ (20) My, g, (1) day.
some special structure as well. Exploiting this structure, in ©)

Section 3.1 we discuss performing exact belief propagati%)lth both M () and M (1) being Gaussian
t—1—t\Lt ar—xe \ Lt

for multi-target tracking. . . : s
Part of tr?e novelt gof our approach is the structure &f UreS:Mi—r41(2i11) IS also a Gaussian mixture. Note
our message- assiny im Ieme?w?ation Among other thin(Ehat this message computation involves multiplication and
. ge-p g1mp - AAmong ot .%égration of Gaussian mixtures, for which we derive and
this accomplishes two things. The first is that it explonaie expressions based on the development in [4, 5]. Note

the Mgrkpv st.ructure of our graphs to pass messages b%at, for backward messages, the equation is similar (with
ward in time in order not only to smooth target state estj-.

mates using future data (which may be of interest in itsalf o changes of subscripts). If we used the distributed

for some applications) but also to use these smoothed e pdel in Figure 2, then the only change would be that
o (z¢) would be replaced by a product of messages

mates in the process of updating and resolving data asis e . .
. i L S rom individual sensor nodes. As one can imagine, the num-
ciation hypotheses at previous points in time (bringing ttbe

“data to the hypothesis” rather than the “hypothesis to e pf_moq es i the;e target.—to-targgt messages Increases
I[tiplicatively from time to time, which necessitates the

data” as in hypothesis-tree-based approaches such as MHT). L >
L L .. kind of approximations we describe in subsequent subsec-
The second consequence of this implementation is that it {O-

cuses the challenge of dealing with exponential complexi
in a different manner than in MHT. In particular, this chal-
lenge manifests itself in terms of managing the complexi%/S
of messagepassed from node to node, rather than manag- - -
ing tempgraﬁly-growing association hypothesis sequencegsk.c / Yaua(at 20)Ye (@) Mio1—e(@e) Mia—i(ze)dee (7)
Roughly speaking, in our algorithm, each mode of the Gaugs the assignment variable, is a discrete variable, this
sian mixture messages acts likparticle' to be transmitted message is a finite-dimensional vector. Note that if we used
among the nodes. Running exact BP on our graphs lead${® model in Figure 2, this message would denote the mes-
exponentially growing number of particles in BP messagegage to one particular sensor node. In that case, we would
hence exponentially growing computational complexity iRave an additional factor in the integrand in (7) consisting
time. In Sections 3.2 thrOUgh 3.4 we describe three methQS*S{he product of messages from the other sensor nodes to

1For the sake of clarity, we should point out that the meaning of thttg]e target node, and we would repl ’g*w(at’ xt) with the

term “particle” here is different from its standard usage in the context gpp_ropriate edge potential between the target node and that
particle filtering [3]. particular sensor node.

at

YThe messages from a continuous target node to a discrete
signment nod#&/, ., (a;:) are computed as follows:




3.2 Gating in Message Construction partitioning data structure used to organize a large set of data

Gating is a standard technique used in MHT as well as otfRQiNtS. In KD-trees data are stored in a multi-scale fashion,
tracking algorithms to limit the number of data associatioffinich forms the basis of their use in a clustering algorithm.
hypotheses being generated. In the context of our messi{e@re interested in approximating an input Gaussian mix-
passing algorithm, gating is done in the computation of tfidre distribution, V_VIth another o_ne_wnh a smalle_r number of
message in (6), and in particular in computing the proddEElOdGS. by clustering together similar mode;. Given a Gaus-
of the messages in the integrand, i.e., when messages fiéfifl mixture, we construct a KD-tree, in which the root node
assignment nodes, assignment messagese multiplied corresponds to the |npu_t Gau53|an_m|xture, an(_JI each leaf
with messages from target nodestanget messagesVith- node corresponds to .a single mode in the_Gaussmn mixture.
out gating, every particle (i.e., a mode in the Gaussian mix?" the sake of brevity, we do not describe our procedure
ture) in the target message would be multiplied with evefg" constructing the tree. We represent each node by a K-
particle in the assignment message. With gating, rather tHiifensional data vector consisting of the elements of the
multiplying a particle in the target message with every sifif€an vector together W_|th the ele_ments of the covariance
gle particle from the assignment message, each particldTigtrix of the corresponding Gaussian.

the target message is only multiplied with the ones in the as-Given the constructed tree, we calculate and store three
signment message with data associations that are consisB#{Stics for each node: a weight, mean vector, and covari-
with its gating constraints. The gating regions can be det&0Ce matrix. With these statistics, each node can be viewed
mined by the means and the covariances in target messagé<£t Gaussian approximation of its gh|_|dren. Given the con-
because these messages can be interpreted as estimate$ugted KD-tree with computed statistics, we then use it for

target kinematic states. clustering. We take a walk down the KD-tree starting from
the root node. At each node, we calculate the symmetrized
3.3 N-Scan Approximation Kullback-Leibler (KL) divergence between the two chil-

The version of N-scan used in our experiments involvegren’_"’lnd we stop at that node if the KL-dive_r_gence between
stopping sending messages back to points in time after A children is smaller than at_hreshold specified by the user.
exit the N-scan interval. The only issue, then is the last me¥Ye keep all the nodes at which this procedure has ?toﬁp?d’
sages sent going forward from an exiting point in time. IANd USe that as the approximate representation of the in-

standardV-scan algorithms this might correspond to choo@Ut mi>r<]tulr]e. This.eﬁeﬁ.ti\r/]elﬁ makesb a mfulu-;esolkutlon cu;
ing a single most likely data association hypothesis as tﬁﬁgoug the tree, in w Ic t € number of nodes ept Is the
point exits the window. In our algorithm, after receivind'uMPer of modes (particles) in the approximate represen-
the data at time, messages are passed backward in the n tion. We use this clustering procedure to limit the num-
work, until we compute(a;_ ) for some fixedV. Now. ber of particles used in our messages. Since the number
when sending messages from this assignment node baCth articles.is what Iead; to exponential complexit)_/ of the
the target node using (5), rather than considering all posgr_actlalgorlthm, C,IIlIJSte”ng plays a ng role in beat'lng that
ble associations, we set some threstildrder the possible comp exity. As will be dem_onstrate in our experlme_nts_,
associations based on their probabilities, and keep the rfiS Procedure helps us achieve almost linear complexity in
imum number of associations whose sum of probabilitie? me scenarios.
just exceeds’. Note that the number of hypotheses kept is
determined by the algorithm in an adaptive manner. In thif Experimenta| Results
way, we eliminate all the less likely associations whose sum
of probabilities is around — .

4.1 Setup

3.4 Message Approximation by Clustering In our simulations, multiple targets move in a 2-D surveil-

A critical component in managing complexity that is availlance area. The number of targets is knaavpriori. The
able to us thanks to our message-passing algorithm is thevement of each target is modeled by a linear, time-
approximation of messages prior to passing them to neighvariant state-space model, in which the kinematic state
boring nodes - i.e., approximating one Gaussian mixture digector for each target consists of 2-D position, velocity, and
tribution with another one with fewer modes. For this amcceleration. Target state dynamics involve some temporal
proximation, we use a clustering procedure that adaptivedgrrelation in acceleration. The process noise mainly drives
reduces the number of particles to be used in each messdgeacceleration. We consider three types of sensors moni-
passing stage. We emphasize that this approximation is deokéng the surveillance area. Type | and Type |l sensors are
solely for the temporary purpose of transmitting a messadmaring-only sensors located far away from the surveillance
and all of the possible data association hypotheses are sétjion, providing one-dimensional measurements. Type |
preserved in the assignment nodes in our graph. sensor measures horizontal position and velocity, whereas
We use a multiresolution clustering approach based dype Il does the same for the vertical dimension. Type Il
K-dimensional trees (KD-trees) [6]. A KD-tree is a spacesensor provides near-field measurements of 2D positions.
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Figure 4: Mean-squared tracking error as a functiorvof
and the KL threshold in a low-SNR scenario with Type | &
Il sensors.

2501

200 a more challenging scenario: we use only Type | & Il sen-
sors and we add measurement noise with a variance of 100,
hence this is a low-SNR scenario. In this case, we natu-
rally observe some degradation as compared to the result
in Figure 3(a), however we still achieve what appears to be
satisfactory tracking accuracy. Figure 4 shows the overall
s — . - - - 3 mean-squared tracking error for this challenging scenario as
the length of thaV-scan window, and the KL threshold are
(b) varied. As expected, we achieve better performancg as
is increased, and the KL threshold is decreased. Of course,
. . ) this benefit should come with the price of more computa-
Figure 3: Sample tracking results witi = 5. (a) Type {jons. Based on this observation, we next explore the com-
I, 11, & Il sensors, high SNR. (b) Type | & Il sensors, low y,ational complexity as a function df. In Figure 5 we
SNR. show the relationship between running time a¥id for a
five-target scenario involving all three type of sensoWe

We include false alarms and missed detections, the pro§gnclude that by using adaptive KD-tree clustering as the
bilities of which are set to be 0.05. Measurements are c&pPothesis reduction method, while maintaining acceptable
rupted by additive Gaussian noise. Initial kinematic stat§@cking accuracy, the message-passing algorithm achieves
are generated randomly, and subsequent states are genefdfa@st linear complexity with respect to the duration of the
according to the dynamic model mentioned above. tracking window in this particular scenario.

4.3 Handling Delayed Information

We now present two examples demonstrating that our ap-
roach can incorporate delayed information in a seamless
hion thanks to its ability to use long tracking windows
zlsether with its forward-backward message passing struc-

e.

{n Figure 6, we compare our message-passing algorithm
ith N = 15 and N = 3, in a scenario in which obser-
Stions fromt = 8 to ¢ = 15 arrive late att = 19. If

150

100

50

4.2 Tracking Performance and Complexity

In Figure 3(a), we show a sample tracking result (w
use N=5 in N-scan, and a KL threshold of 0.1). This i
only one example out of the 100 runs we have generat?
In all of them, there are 5 targets, 3 sensors (one of e g
type), duration is 50 time frames, and SNR is high. Blac
curves indicate the true target trajectories, and markers
each color show the estimated target position through

mean of each particle. Uncertainty in these estimates is R tracking window is smallf = 3 as in (a)) then when

tshowrr; tkl}r?ug\jl? oq?—stznd?\/rd-i?]e;/;]?tloT f”'s\ﬁs’h:\/h'?}[h e data arrive, the tracker is not able to incorporate those
00 small fo visually observe S plot. "WeIghtS o te.e data as the tracking window has already moved passed

particles are encoded through the density of the colors. e range with late data. As a result, the tracker confuses
observe that our approach produces very good tracking ac- '

curacy in many runs of this scenario. Figure 3(b) presents2Similar results are obtained for the case of Type | & Il sensors.
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Figure 5: Running time as a function o&f for a 5-target, @)

high-SNR scenario with all three types of sensors, ave 05

aged over 100 runs. Error bars indicate the one-standat of Strtoftracks — = = — —
deviation region. To contrast the complexity of our approac sl ~J

with that of a hypothetical MHT tracker, we also show ar I Now with data -
exponential curve.
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the two targets, and exhibits large estimation uncertaint sl
in the late data interval. If the tracking window is long

enough (V = 15 as in (b)), then to incorporate the late date

when they arrive, the tracker just needs to conduct a re | JY

ular backward-forward message-passing within its trackin - "

window, resulting in much better tracking performance. -45 = = = = . )
In Figure 7, we show an example of track-stitching, us pesten

ing our message-passing-Scan algorithm withV = 30 . (b)

In this scenario with 50 time frames, observations are miss-
ing for time points fromt = 5 to ¢t = 25. When we use

a short tracking window ofV = 3, the tracker cannot as-
sociate the tracks before and after the missing data regi
resulting in the two ghost tracks in Figure 7(a). On the oth
hand, when we use a longer tracking window wih= 30, .
spanning across the period of missing data, then the trac@
can associate the tracks before and after missing data, and
"stitch” the tracks together as shown in Figure 7(b).

Figure 6: Late data arrival example, with all three types of
ggnsors. Observations froim= 8 to ¢ = 15 arrive late at
@r:, 19. (@) N = 3, resulting in inaccurate and uncertain
tracking. (b)N = 15, recovering the target tracks for the
?rval of late data arrival.

proximation of likelihood messages. We have seen through
. . experiments that our approach to adaptively managing these
5 Discussion approximations can lead to complexity that grows almost

We have presented a framework to solve the multi-targ@ly linearly with the length of the tracking time interval in
tracking (MTT) problem based on graphical model repré@me scenerios, allowing much longer intervals to be con-
sentations of the probabilistic structure of the MTT problefidered. This facilitates one of several potential advantages
and message passing algorithms arising from such represdffur approach, namely the stitching of tracks over consid-
tations. The graphical model structure and associated inféfable time intervals when only occasional target discrim-
ence algorithms offer enormous flexibility to overcome seinating information becomes available. Moreover, the na-
eral limitations faced by existing MTT algorithms. In particture of our graphical models makes the incorporation of out-
ular this formalism localizes the combinatorially explosivef-sequence data seamless, requiring literally no changes
nature of MTT problems in a very different place, namel{P algorithmic structure. In addition, this message-passing
in the messagepassed in the algorithm, both forwaatid ~Structure automatically produces smoothed target estimates,
backward in time. This opens up the possibility of very difSomething that can be of considerable value in many appli-
ferent approximation algorithms based not on pruning 6ations other than real-time tracking.
eliminating data association hypotheses but rather on apThis is only a first introduction of this framework and



track maintenance problem, and extensions to include track
initiation and termination need to be developed in the future.
We have presented one particular way to perform approxi-
mate inference in mixture models. Another approach to this
problem would be to use nonparametric belief propagation
(NBP) [7], which, in order to manage the size of messages
being passed on the graph, employs a sampling technique
to approximate them. When one uses a sampling-based ap-
proach for inference, managing the number of samples for
complexity control is an interesting issue. If this can be
done effectively, it would perform a similar function to our
clustering-based message approximation approach. In this
paper we have focused on the dynamic aspect of the track-

Y position

. . . L . .
-10 -8 -6 -4 -2 0 2

X positon ing problem, and have assumed that the static data associ-
(@) ation problem (i.e., computing the association probabilities
at each time instant) is tractable. An extension of the work
05 ‘ ‘ ‘ ‘ ‘ presented in this paper would be to combine our dynamic

tracking framework, with advanced (distributed) static data
association techniques. Developing these and the other ex-
tensions not mentioned here due to space limitations offer
considerable promise for new, high-performance MTT al-
gorithms with many attractive characteristics.

Startoftracks = = — — T

-1+ Missing data region —

Y position
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