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Abstract— Associating sensor measurements with target tracks data association algorithm in the target—-dense and clutter
is a fundamental and challenging problem in multi-target track-  dense environment [4]. A practical MHT algorithm employs
ing. The problem is even more challenging in the context of sensor the so—calledV—scan technique [5], which enumerates every
networks, since association is coupled across the network, yet . - ' .
centralized data processing is in general infeasible due to power pQSSIble association for the mea§urements In .the temporal
and bandwidth limitations. Hence efficient, distributed solutions Window from¢ = ktot = k+N to build a hypothesis tree, and
are needed. We propose techniques based on graphical modelsddetermines the most likely associationtat & by evaluating
to efficiently solve such data association problems in sensorthe measurement likelihood of each hypothesis branch. Even
networks. Our approach takes advantage of the sparsity inhenat with a single sensor, the problem is challenging due to the
in the problem structure resulting from the fact that each target . :
can be observed by only a small number of sensors and makese)(polnemIal growth of the number of hypotheses. !n SN-based
use of efficient message—passing algorithms for graphical modelstracking, each target may be observed by multiple sensors,
to infer the maximum a posteriori association configuration. We which couples the association decisions across the network
illustrate our approach for several typical scenarios in multi-  hence makes the problem even more challenging. With a cen-
target tracking. Our approach scales well with the number of tralized MHT approach, the zero—scan (using measurements a
sensor nodes in the network, and it is well-suited for distributed T
implementation. Distributed inference is realized by a message— t =k only) datf"‘ association in aM_sensor_ n_etwork has the
passing algorithm which requires iterative, parallel exchange of Same complexity as af/—scan data association at one node.
information among neighboring nodes on the graph. So as to If each sensor has possible association configurations, there
address trade—offs between inference performance and commu could be as many as" configurations, which would make the

nication costs, we also propose a communication-sensitive form ,.plem intractable for largd/ even in the zero—scan case.
of message—passing that is capable of achieving near—optimal

performance using far less communication. We demonstrate the Considering multiple scahs Of_ da_ta increases the c.:ompIeXIt
effectiveness of our approach with experiments on simulated dat  €ven further. An alternative distributed MHT algorithm has
been proposed in [6], which focuses on identifying redundan
information in the fusion process, but this is not a triviask
in a large network with many loops. As a result, progress in
Recent years have witnessed the emergence of a ne@T with SN requires the development of efficient, distribait
approach to sensing applications, involving the deploytmedata association algorithms.
of a large number of small, myopic and relatively inexpeesiv In this paper, we propose a new approach to solving the data
sensors. Suchd hocsensor networks (SN) have the potentigissociation problem in SN, using the frameworkgodiphical
to provide enhanced spatio—temporal sensing coverageyis wenodels[7]. A typical scenario we are considering is shown
that are either prohibitively expensive or even impossibla Fig. 1, where a large number of sensors are deployed to
using more conventional approaches to sensing [1]. Howevsurveil a vast area. Each sensor has a limited detectiorerang
realizing the potential of these large and distributedgenst- and its surveillance region partially overlaps with thode o
works requires the development of techniquesdistributed its neighbors. The sensors are synchronized and each sensor
inference using sensing and wireless communication nodesceives noise—corrupted measurements (e.g., beariag) fr
with constrained capacities for both computation and cortargets in its coverage area simultaneously at each scawn. On
munication. This paper is devoted to developing distridutecontribution of this paper is that we propose a graphical
techniques for a particular inference problem in SN, nametyodel-based data association approach to solve the above
the data associatiorproblem. Our primary motivation comesproblem efficiently and in a distributed fashion. The efiiig
from problems that arise in multi-target tracking (MTT) kit of our approach is mainly due to the observation that althoug
SN. the overall problem involves a large number of sensors and
In the MTT context, data association is a fundamenttdrgets, each target is only observable by a small number of
problem and it involves finding the correct correspondensensors at a time, thus the association at two distant sensor
between measurements and target tracks [2]. The multige conditionally independent of each other. Such a sparse
hypothesis tracking (MHT) approach [3] is the most sucedssftructure inherent in the problem can be exploited by gighhi

I. INTRODUCTION



Section V. We summarize our work and discuss directions for
future research in Section VI.

Il. BACKGROUND ON GRAPHICAL MODELS AND
MESSAGE-PASSING ALGORITHMS

A graphical model consists of a collection of random
variablesx := {x,} that are associated with the nodes of
a graphGg = (V,E), whereV is the set of nodes, and
E is the set of edges. The conditional dependency among
the random variables is represented by the graph structure.
Here we consider undirected graphical models with discrete
variables. Whernx is Markov with respect to the graph, the
distributionp(x) can be factorized as the product of functions
Fig. 1. A snapshot of a typical data association scenarioNn2% sensors defined on the C|IgU§S OT the gr{_;\ph [91- If the_ random Va”_ﬂble
(circle nodes) and the bearing-only measurements (line segjrame shown. have at most pairwise interactions, which is the case in our
Each cluster of samples represents the prior position liiton of one target. work, then the factorization gf(x) takes the form

p(X) =K H ”(/Js(Xs) H wst(xmxt)a (1)

seV (s,t)EE

models, which are well-suited to represent the structure of
statistical dependencies of a collection of random vaeigbl Wherex is a normalization constantis(x;) is thenode com-
With a carefully designed modeling approach to transforpgatibility functionthat depends only on the individual variable
the data association problem into the framework of graphicss, and ¥s:(xs,x;) is the edge compatibility functiorthat
models, we obtain an inference problem that can be solv@@pends only on the variables andx; joined by edges, ¢).
efficiently by the max—product algorithm [8]. Furthermoreln many applications, the random vecteris not observed;
the resulting algorithm can be implemented in a distributediven instead are independent noisy observatipns {y; |
fashion througtparallel message—passinghere each sensors € V'} based on whichx needs to be inferred. The effect
performs some local processing of the measured data #Hdncluding these measurements — i.e., the transformation
communicates with its neighbors. Such iterative exchan§@m the prior distributiorp(x) to the conditional distribution
of information leads to a distributed solution of the data(x |y) — is simply to modify the factors in (1). As a result,
association problem. we suppress explicit mention of measurements in this sgctio
Another contribution of this paper is that we propose $ince the problems involving eithgr(x | y) or p(x) are of
communication—sensitive version of the message—passing@entical structure and complexity. o
gorithm, which can achieve near—optimal solution usingimuc Of interest in this paper is the problem of finding the
less communication (thus power) than standard messad@@ximuma posteriori(MAP) configuration
passing. In the standard algorithm, the nodes continue-tran o
o . . . X = arg max p(x). 2
mitting messages until the overall algorithm convergescivh xexN
may consume a large amount of communication and POWEL . ax—
This is not ideal for SN applications because the cOmMURe i a1gorithm on Markov chains to arbitrary tree—stured
cation and power resource for each sensor is usually_hm_lta phs, can be used to solve this problem efficiently. A
and should be sparingly used. In contrast, the communi®atioy;syihyted implementation of the algorithm entails amate

sensitive message—passing algorithm provides the seadesn tive procedure callegarallel message—passingvhere each
with the authority to decide whether or not messages Shm’r’tlligration involves each nodepassing a message to each of its
be sent at each iteration, based on statistical rules cela ighborss € A/(¢) simultaneously and in parallel, as shown
to the information content of messages. We show that 0MrFig. 2. The message in theth iteration, which we denote
new algorithm can provide considerable savings in commHy M (), is a function of the possible states € X,. In the

nication without much sacrifice in overall decision—-makin ax—product algorithm, the messages are updated according
performance. Furthermore, this approach provides insigl% the recursion '
t

into performance—communication trade—offs, as well as in

product algorithm [8], a generalization of the

information flow dynamics inside SN. ME (x,) = Fu‘maX{wst(Xs X))ty (x) H Mktl(xg)}
The remainder of this paper is organized as follows. Sec- x; wENTD\s
tion Il introduces the essential background on graphicail-mo 3)

els and message—passing algorithms. We propose our gaaphidere N (¢)\s is the set of neighbors of noddn the graphg
model-based data association approach in Section Ill. Tévecluding nodes. For any tree—structured graph, the message
communication—sensitive message—passing algorithmds pupdate equation (3) converges to a unique fixed pbiit=
posed in Section IV. Experimental results are presented {id/;} after a finite number of iterations. The converged values



the set of all valid association configurations 9f where

an association configuration is valid if and only if in such a
configuration the measurements)h and the targets covered
by s; are in a one—to—one correspondéendéote that if each
sensors; knows which subset of targets it can observe, then the
sample space of variable; can be obtained by enumerating
the mapping between the measurements reported agd the
targets covered by;. Otherwise, when such a sensor—target
coverage relation is ambiguous, we need special considerat
to obtain the sample space of the association variableghwhi
will be described in Section IlI-A.2. The maximum likelihdo
(ML) data associatiork = {x;} satisfies

u € N(t)\s

Fig. 2. Parallel message passing for graphical models. Onlgages relevant
to the computation of the message from nede nodes are shown.

of the messagedI* can be used to compute the so—called x=arg max p(Y|xi,Xs,...,Xu), 5)
max—marginalP;(x,) = xp(x’) at each node
where) = UM, ), is the set of all measurements in the net-
P(zs) =k max 1hy(xs) H M (xs). (4) work. However, due to the overlapping coverage, measuremen
xles =} uEN (s) noise, and the uncertainty of the target locations, theaand
variables{x;} are correlated, and evaluating the measurement
likelihood for every possible value of is generally infeasible
For tree—structured problems, the max—product algorithfr(r’lr a large-scale SN. . .
produces exact solutions with complexi€)(n2d), wheren Our_ approach to aftack this _problem IS to construct a
is the number of states per node, ads the number of graphical model such that eao:n_ |s_repres_ented by a graph
nodes on the longest path in the graph. The same algorith € _and the ‘measurement l'kel.'hOOd in Eq. (5) .takes a
also applied frequently to graphs with cycles, althoughhiat t actonzeq form on .the mogiel as in .Eq. (1). As.,sumln'g that
case it serves as an approximate method. A modified vers%?]Ch valid association configuration is equally likely, firgd
of the max—product algorithm, tree—reweighted max—prod e ML estimates in Eq. (5) is equivalent to finding the
AP estimates ofx, hence the problem can be solved by

(TRMP), is proposed in [10]. The TRMP algorithm output i :
the correct MAP assignment even on loopy graphs under mHEF m_ax_—produc_t algquthm. If each sensor ha$)035|b!e
association configurations, thus eaghhasn states, then with

conditions. More details on TRMP can be found in [10]. ; : .
M variables to be estimated, the complexity of our approach
I1l. GRAPHICAL MODEL—BASED DATA ASSOCIATION is roughly O(n2M), which is much less than the centralized

For simplicity, we first discuss how to use measurements WThf'icgl?rg%thél ';?]V(\j'ef\; ecrt,oill_gf tmz rrilgss O:;;Z?}ﬂi‘;t&%oa
the current scan only to solve the data association probl ph zIng u !

in SN, which corresponds to settiny — 0 in the N— unction in Eq. (5) to the pairwise compatibility functiofr

scan technique. Incorporating multi-scan data to solve t ¥ above problem. We present our approach to constructing

association at the current scan will be discussed in Setition such graphlcal mode_ls for the data assoqlatlon problemein th
B following two scenarios. For each scenario, we work on a toy

example to illustrate our modeling approach and descrilwe ho

A. Zero—Scan Data Association to relate Eq. (5) to Eq. _(1) in each case.

We consider a scenario whefd sensors are deployed toW 13( Ci:so?c?r:;at(la;}tle?r%?n:rige?r:eS:c:rtheévr\:ggprwlfnz?a/sav:hﬁgh

surveil a 2-D planar field. We assume sensor calibration a g . pietely org o .
rgets it can obser¢eln such a case, the subregion in which

localization has been accomplished (for example, using teaéch target is located is known. A piece of such a completel
techniques proposed in [11]) such that each sensor knows it 9 AP pletely

own location in a global coordinate. Each sensor has a mnitgrganlzed SN is shown in Fig. 3(a), where targéts Ty,

and well-defined detection region. Due to the overlappin ng T3 rzrse eli:r:ic\)/vgln tl?\ t?]?s Egﬁ‘egté? g;eailijzb;g%ggiaﬁé the
sensor coverage, the whole surveillance area is divided i "3, €SP Y. P yorg '

disjoint subregiongry. s, . ..}, each of which is covered by ameasurement likelihood in Eg. (5) can be factorized into two

distinct subset of sensors. The sensors generate noispdear 1wit possible false alarms and missed detections, the realuresaents

range, or 2-D position measurements for the targets praserdnd the real targets are not in one-to—one correspondenvesvdr, missed
their own surveillance region by a given measurement modngtections and false alarms can be handled and incorporatedur frame-
work, as described in [12], by introducing virtual measuretseand virtual

Let); be th_e _Set of measuremems generated by sensbhe targets. Thus, for the sake of simplicity, we ignore them ia tbllowing
data association problem is to assign measuremer3$ o discussion.
. . . . 2 H H “ H "o
the targets present in the surveillance region of sessgiven In this paper, the meaning of “organized” is not the same as in ne
dicti b d prior inf fi t t . work self-organization literature, where “organized” meaach node in
some prediction—based prior information on target lOCEIO e network has established connection with its neighbotk tes received

Let x; be the association variable fef that takes values in information about their status.

The MAP configuratiork is given byx; = arg maxy, Ps(Xs).
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Fig. 3. (a) A piece of a completely organized SN. Two sensorth wi
their surveillance region and non—parametric represemsitof three target (a) (b)
distributions are shown. (b) The graphical model for the adenin (a).

Fig. 4. (&) A piece of a partially organized SN. Two sensorghwi
their surveillance region and non—parametric represemstdf two target
distributions are shown. (b) The graphical model for the adenin (a).

parts. The first part consists of the product of the likelifi®o

of the measurements assigned to targets covered by a single
sensor. The second part consists of the product of the-likeli . . : .
hoods of measurements assigned to targets covered by imult] piece of a partially orgamzed. SN, where. tar‘g“gis possibly
sensors. Hence a graphical model for data association in' itherry orry, and targetly is possibly in either; or rs.

organized SN contains a node representing the associatli?)ns‘UCh cases, which subset of targets is observed by each

variable x; for each sensor. The nodes that correspond $gnsor remains to be estimated. The association problesn thu

sensors observing common targets are connected, as shg\(l)vnSIStS of both the task of associating targets to sulmegas

in Fig. 3(b). The node compatibility function is defined as thWen as the task of associating measurements to targete. Not

measurement likelihood for those measurements assignec} L .

the targets covered by only the corresponding sensor. Tqe e ssomgnon, a new set of cpnstralnts that each target dgn on
compatibility function is defined as the joint measureme ¢ assigned to one subregion must also be enforced.
likelihood for the measurements assigned to the targets in/Ve propose a region—based modeling approach to transform
the corresponding shared subregion. The following examgidch a partially organized scenario into the framework of
illustrates how to model the scenario shown in Fig. 3(a). 9raphical models. To this end, we defirgon the Cartesian
product of the measurement st and the set of possible

ht%t in addition to the one—to—one constraints on measureme

E;?anc))lgell izosrrfg\?vrms?r?n;goBiggwgulgngé 3:(a{) the gr}ajph'target—subre_:gion pai_rs covered by _sensgr_Let x; be a
andYs — {ys1, yso}, then the node states and cé/rlrgsypl;njin random variable defined for subregion taking values on
compi;\tibilitjlfu:zti;)ns are 9he power set of the set consisting of all the targets that are
possibly present in region;. Note that when two subregion
states ofx; for nodes; states ofx, for nodes, r; and r;, compete for the same target, the valuesxgf
Y11 Y12 Vs, Y21 Y22 PYs, and x, should be mutually exclusive regarding the target.
T T | pyi; 1) T, T3 || plya;T3) A region-based model contains a node for each sensor, for
T, T | plyiz;Th) T3 Ty || p(y21;73) each subregion, and for each target, as shown in Fig. 4(b).
and the edge compatibility function is defined as The association variables’s andx;’s are represented by the
corresponding sensor nodes and subregion nodes, reghgctiv
Vs, - p(y12,y21312)  p(Y12,Y22; T3) Each sensor node has its compatibility function defined as
" P11, Y215 T2) - p(yrn, yaz; T2) s, = 1, and each subregion node has the compatibility
such thatp(Y | x1,%2) = U, ths, Vs, syr 1-64, p(I | X1,%2) function defined according to the incidence probability for
is factorized as in Eq. (1). the potential targets in the subregion. The target nodes are

auxiliary nodes for introducing into the model the measure-

When a target is covered by three or even more sensarsnt likelihood under various association configuratiarie
a target node can be introduced into the graph to avoid theates of a target node enumerate the Cartesian product of
high—order interactions and keep the compatibility fumasi the set of possible subregions the target may be in and the
pairwise, thus yielding a sensor—target hybrid modeling apet of possible measurements it can be associated with. The
proach. For details please refer to [12]. measurement likelihood associated with the target defimes t

2) Partially Organized Sensor Networkdn Section Ill- compatibility function of each target node. The nodes in the
A.1, we have assumed that we perfectly know which subregigraph are connected in an intuitive way. A subregion node is
each target is located in. However, in practice that infaioma connected with every sensor node that covers the subregion,
may contain uncertainties, for example, when the targetasd each target is connected with each subregion it could
moving across a sensor’'s detection boundary, or when thiter. The consistency between the nodes needs to be ensured
predicted target location has very large uncertainty. lohsuby the edge compatibility functions. In the special case of
a partially organized network, several subregions might becomplete organization, this modeling approach reducekeo t
postulated to have a particular target located within tbein models described in Section 11l-A.1 (after appropriate exod
boundaries with certain non—zero probabilities. Fig. 4ta@ws aggregation). The following example shows how to construct



a graphical model for the scenario shown in Fig. 4(a).

Example 2For the scenario shown in Fig. 4(a), the graphical
model is shown in Fig. 4(b). Suppo3& = {y11,y12} and
Vo = {y21,y22}, the states and compatibility functions |of
nodess;, ro and7T; are defined as

states ofx; for nodes; states ofk, for noder;
Y11 Y12 s, Targets Pry
T1 — T T2 — T2 1 {Tl} p(Tl — 7"2)
T1 — T2 T2 — T2 1 {TQ} p(TQ — 7"2)
T —ry Ti — 1 1 {T, Tz} || p(T1, T2 — r2) i ) -
Ty — 1y T) — 79 1 0 1 Fig. 5. A graphical model forN—scan (V = 1) association.
meas. region U7,
Y11 1 p(y11;T1,71)
Y12 r1 p(y12;T1, 1) its hypothesis tree as obtained by an MHT algorithm, and the

nodeTy: | yi1,y21 T2 Y11, Y21; 11,72

p( ) measurement likelihood evaluated on each branch is used as
Y11, Y22 T2 p(y117y22,T1, 2)
( )
)

the target node compatibility function. A model féf—scan
data association withV = 1 is shown in Fig. 5. After the max—
product algorithm is applied on such a graphical model, the

MAP estlmates{x , X O) ...75(5\2)} indicate the association

Y12, Y21 T2 yi2,y21; 11,72
Y12, Y22 T2 p(y127y22,T1,r2

and the edge compatibility functiong,,,, and ¢,,r, are

defined as
decisions at the current scan= 0.

01 0 O 0 01 1 11
” 00 10 e 1 1.0 0 00 IV. COMMUNICATION—SENSITIVE MESSAGE-PASSING
01000 P00 111 Although the message-passing algorithm we have intro-

0010 110000 duced is inherently distributed and hence appealing fosaen
Other node and edge compatibility functions can be defindetwork applications, it may still require a large amount of

| x

in a similar way. It can be verified thap() ) communication and pose a significant challenge to the sgnsor
equals to the product of the node and edge compatrbilitW' particular the parallel-message passing operationineju
functions defined above, and thus satisfies Eq. (1). The aach graph node to send a message to each of its neighbors
zero columns of),, ., indicate thafl} has to be i+, (so that at every iteration, which corresponds to a certain amount of
it can be detected by;) sinces; generates two observations communication in the sensor network and results in a certain
and we assume no missed detections or false alarms [ex@fiount of power consumption. It is critical to reduce the
In such a scenario, the simple fact that a sensor does s¥@ount of communication that the message—passing algorith
something or see nothing can provide valuable informatiof¢quires to make it broadly applicable for SN. However, it is

to substantially reduce the target uncertainty. not straight—forward how one should develop a mechanism to
— achieve such communication savings without severe adverse
B. N-Scan Data Association effects on the inference quality.

In some cases, the ambiguity of data association may noWe propose an adaptive approach that, while reducing the
be easily resolved by using the data in the current scamount of communication, doemt lead to serious degrada-
only, and future scans might provide useful informatiorr (fation in performance. In this approach, after a new message is
example, when two target tracks are crossing each otheeat fitrmed at a node, the node has the authority to make a decision
current scan). This requires associating the measureroént@bout whether it needs to transmit this message or not. A
the current scan by considering the measurements from thessage will be sent only when it contains “significant” new
current scan as well as several future scans. Our graphiicdbrmation compared to the message sent by the same node on
model-based data association approach can be extendethéossame edge in the previous iteration; otherwise the messa
such anN-scan data association scenario. We discuss sueil not be sent. If the message in the current iteration is
an extension only on the region—based modeling approachnas sent, the destination node uses the corresponding geessa
it applies more generally. from the previous iteration instead. Such a communication—

To take advantage of the reports in the nékiscans, our sensitive message—passing (CSMSG) algorithm requirds eac
model contains a copy of the sensor nodes and subregion nagede ¢+ to compute d(Mf, MF~1) according to a certain
for each of theN + 1 scans in the temporal window, wrth thedistance measuré(-,-) at each iteratiork, and to compare
nodes affiliated with association varlabl{as(t)} and {x; (Y, it with a message toleranee If d(Mf, MF™') < ¢, message
t € {0,1,..., N}, respectively. However, the model malntaith’g will not be sent, and node will use M*~! that it
only one copy of the target nodes for each target across alleady received in the previous iteration to do its own lloca
scans. Each target node is connected with a subregion iwamnputation. We use the Kullback-Leibler (KL) divergence
certain scan if the target might enter the subregion in thats [13] to measure the distance between the information conten
The states of each target node correspond to the branchesfotwo messages. The KL divergence is widely used to



measure the similarity of two probability distributions time 016, : :
information theory literature. In the context of this papiéer T+ SNpartall organized, zero-scan

SN partially organized, one-scan

iS dEfiHEd as [ | = 4=« SN completely organized, zero-scan

d(Mp, METY =3 M (x )1ogM (6)
tso ts - ts\“*s Mtksil(xs) .

With CSMSG, a trade-off arises between the performance
the algorithm can achieve and the amount of communication I
it requires. By using a proper message tolerancee can A .t
tune the algorithm to achieve a suboptimal solution acogrdi et il
to the budget for the communication cost. With smalier oo ‘ ‘ ‘
the algorithm obtains a more accurate approximation to the o * TagetUncerainy o
value computed by standard message-passing, at the expense
of more messages exceeding the message tolerance and b@ing. Data association results in a 25-sensor network.|de of target

transmitted. Yet even with very smallsuch that the loss of uncertainty is defined as the standard deviation of the tqmger distribution
’ rmalized by the radius of the sensor coverage region. Aasmt error is

A S . n
pgrformance is trivial, the Commumc_auon saving Compareﬁfined as the percentage of incorrectly associated measueme
with the standard message-passing might be still signifitan

Section V, we show the tremendous communication saving of

CSMSG compared with standard message-passing. Note th=* Target Uncertainty 0.3 Target Uncertainty 0.35
CSMSG can be used both in the zero—scan and\thecan ’ '
settings.

The overhead of implementing CSMSG instead of stan:
dard message-passing is insignificant considering thenpakte
savings in communication. In CSMSG, every sensor node
requires some additional memory for storing messages fror
the previous iteration, so that it can compare the new ani
old messages that it generated, and use the old messages that
it received when necessary. In addition, we also require a (a) (b)
mechanism for |ett|ng the sensor know when a new mess%a 7. (@A sna_ps_hot of a target—dense scenario in a fowwesenetwork.

. . N-scan association error rate.
has not been sent, so that it knows it should use the $
message instead. One possibility is to pass one extra bit of
information on every link in each iteration to indicate ifeth

nodes have new information or not. Alternatively, we could

synchronize the communication and design the protocol ificreases with the target uncertainty level. This reflebts t
a way such that the sensor will use the old message afféf€asing necessity of future da_ta reports as t_he askptiat
some latency period, whether the new message was not d¥@Plem becomes more challenging. Overall, this experimen

Association Error
A Y

035 : : 035

Association Error
Association Error

zn
ES

or simply lost on the way. demqnstrates the applicability_of our efficient data assan
algorithm on a reasonably—sized problem, where the three
V. EXPERIMENTAL RESULTS scenarios we consider in Fig. 6 exhibit intuitive behavior.
A. Data Association for MTT To highlight the benefits of using multi-scan data, we

To test our graphical model-based data association &@bso present the performance df—scan association in an
proach, we simulate tracking 20 targets with a 25-sensbustrative target—-dense scenario. Fig. 7(a) shows a$eusor
network as shown in Fig 1. Each sensor measures the bearietyvork with three targets intentionally placed in the nhédd
of the targets corrupted by independent Gaussian noise wattea such that all the targets are covered by all four sensors
zero mean and° standard deviation. The detection rate ofhis is a contentious scenario by design, and it is difficult
each sensor is set to 0.8 and we assume no false alartosmake correct association decisions based on the bearing
The average surveillance area of each sensor normalizednbyasurements in one scan only. However, the targets move
the area of the overall network surveillance field is set o random directions at random speed, and data from future
0.08. Fig. 6 shows the average association error rate of &hns can help to resolve part of the association ambiguity.
Monte-Carlo runs at various levels of prior target locatioRig. 7(b) shows the average association error rate of 50 d4ont
uncertainty (normalized by sensor surveillance rangejetba Carlo runs, withN = 0,1, and2 respectively, where one—
on the results of the max—product algorithm. The resulsgan association has much lower error rate than the zem-sca
show that the smallest association error rate is achievedais expected. Two-scan association has even lower error rate
the complete—organization scenario, because the subrégio than one—scan, although the improvement is not that dramati
each target is known. In a partially organized network, thes most of the resolvable ambiguity has been solved by one—
benefit of using one—scan versus zero—scan data associasiten data association.



_ CSMSG 08— w2
Alg. TRMP | max—prod. —01 — 5
Error || 25.84% | 25.89% | 27.88% | 28.95% ol | " :
Comm. || 1029.3 | 55.25 1041 | 8.79 . £
TABLE | osf 10° 5

COMPARISON OFTRMP, MAX -PRODUCT, AND CSMSG

05 3 Message Tolerance

Association Error

04r

B. Communication—Sensitive Message—Passing °° ”
The performance—communication trade-off is investigated ’ o i

by applying the CSMSG algorithm on data association in the - 02

same SN as shown in Fig 1, but this time 33 targets are present.  “% ¢ & w0 = "oz s T

Amount of Communication

For brevity, we present CSMSG results only on zero—scan
data association in the complete—organization scendriole® Fig. 8.  Performance—communication trade-off of CSMSG. Eachr drar
experiments can be conducted f¥r-scan data association orshows two times of std. deviation.
for partially organized networks. Table | compares the qerf
mance achieved and the amount of communication needed by
TRMP, the max—product, and CSMSG algorithms. The amouitg previous estimate is inaccurate or the incoming infdioma
of communication is evaluated as the average number isfimportant to its neighbors.
messages sent by each sensor node. The error rate gengrated b
the TRMP algorithm is optimal in the MAP sense. The results VI. CONCLUSION
show that the CSMSG algorithm with reasonable messagdn this paper, we introduced technigues using the framework
thresholds has only slightly higher error rates than TRM& awf graphical models to solve data association problemagris
the max—product algorithm. However, the communicatiort cas distributed sensing scenarios. We proposed severairelift
associated with the CSMSG algorithm is significantly lessith approaches to modeling, in which nodes in the underlying
the other two algorithms. Therefore, when communication ggaphical model were associated with different quant{sesh
costly, CSMSG is a preferable algorithm in that it can aohie\as sensors, subregions, and targets) in the sensor network.
a near—optimal performance with far less communicatioth(wiThe proposed graphical model-based approach well captures
the appropriate choice of tolerance parameter). The tofide-the sparse structure inherent in the SN, and scales well with
curves for CSMSG at various message tolerances are shahe number of sensors in the network, thereby rendering
in Fig. 8, where we observe an interesting threshold aroungtimal data association feasible in applications inuayi
e = 1.7. With smaller message tolerances than this thresholdrge—scale SN. We also proposed a communication—sensitiv
CSMSG can achieve a similar error rate to max—product bwessage—passing algorithm, and found that it is capable of
using much less communication. However, when the mesehieving near—optimal performance with substantial regi
sage tolerance exceeds this threshold, the error rateaese in communication. This is very attractive when communimati
sharply as some messages that are crucial to obtain a eeliagdd power are limited resources for sensors. Moreover, we
estimation are ignored. The existence of such a threshdidind that applying CSMSG on the distributed data assaciati
also suggests that the message tolerance correspondihg f@rdblem yielded insights into the dynamics of the message—
might be an ideal parameter when we want to pursue thassing during information fusion. Experimental resulisexl
best performance-communication cost ratio. However, hmw én simulated data show the effectiveness of our approach.
identify this message tolerance in advance remains an opeThere are number of research directions that remain to
guestion. be explored. First, a model thinning or hypothesis pruning
The information flow dynamics in the network is revealetechnique to reduce the model size is of interest¥orscan
by displaying the message transmission in each iteration agfsociation in large—scale networks. We are currentlyoeijy
CSMSG, as shown in Fig. 9. In the first iteration, every nodecomplexity reduction method by introducing hypothesia-sa
sends messages to its neighbors. As the iteration goes ing into our graphical model-based approach. Second, the
fewer and fewer nodes need to transmit messages. Finghaphical model structure where message—passing algrith
only one node sends a message in the last iteration. Thie applied is not the same as the communication—layer-struc
observation suggests that some sensors can be shut offreatlire of SN. Consequently, a protocol to implement message—
for saving power, for example, the five nodes at the upppassing in real SN architectures is an interesting topiduor
left corner. There are also other nodes which can be shut tifer research. Third, it is of interest to provide more tletioal
temporarily but need to start communication again later. Fanalysis of the CSMSG algorithm, on which some preliminary
example, the node,» stops sending messages after the seconark already exists [14]. An interesting open problem is how
iteration, but as new information keeps coming in, it ressimeo identify in advance the performance—communicationerad
sending messages in iteration five, probably because it firaf§ (i.e., the message tolerance). In addition, the CSMSG
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Fig. 9. Information flow dynamics revealed by CSMSG 0.1). An arrow
indicates a message being sent.
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