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Abstract— Associating sensor measurements with target tracks
is a fundamental and challenging problem in multi–target track-
ing. The problem is even more challenging in the context of sensor
networks, since association is coupled across the network, yet
centralized data processing is in general infeasible due to power
and bandwidth limitations. Hence efficient, distributed solutions
are needed. We propose techniques based on graphical models
to efficiently solve such data association problems in sensor
networks. Our approach takes advantage of the sparsity inherent
in the problem structure resulting from the fact that each target
can be observed by only a small number of sensors and makes
use of efficient message–passing algorithms for graphical models
to infer the maximum a posteriori association configuration. We
illustrate our approach for several typical scenarios in multi–
target tracking. Our approach scales well with the number of
sensor nodes in the network, and it is well–suited for distributed
implementation. Distributed inference is realized by a message–
passing algorithm which requires iterative, parallel exchange of
information among neighboring nodes on the graph. So as to
address trade–offs between inference performance and commu-
nication costs, we also propose a communication–sensitive form
of message–passing that is capable of achieving near–optimal
performance using far less communication. We demonstrate the
effectiveness of our approach with experiments on simulated data.

I. I NTRODUCTION

Recent years have witnessed the emergence of a new
approach to sensing applications, involving the deployment
of a large number of small, myopic and relatively inexpensive
sensors. Suchad hocsensor networks (SN) have the potential
to provide enhanced spatio–temporal sensing coverage in ways
that are either prohibitively expensive or even impossible
using more conventional approaches to sensing [1]. However,
realizing the potential of these large and distributed sensor net-
works requires the development of techniques fordistributed
inferenceusing sensing and wireless communication nodes
with constrained capacities for both computation and com-
munication. This paper is devoted to developing distributed
techniques for a particular inference problem in SN, namely
the data associationproblem. Our primary motivation comes
from problems that arise in multi–target tracking (MTT) with
SN.

In the MTT context, data association is a fundamental
problem and it involves finding the correct correspondence
between measurements and target tracks [2]. The multiple
hypothesis tracking (MHT) approach [3] is the most successful

data association algorithm in the target–dense and clutter–
dense environment [4]. A practical MHT algorithm employs
the so–calledN–scan technique [5], which enumerates every
possible association for the measurements in the temporal
window fromt = k to t = k+N to build a hypothesis tree, and
determines the most likely association att = k by evaluating
the measurement likelihood of each hypothesis branch. Even
with a single sensor, the problem is challenging due to the
exponential growth of the number of hypotheses. In SN–based
tracking, each target may be observed by multiple sensors,
which couples the association decisions across the network,
hence makes the problem even more challenging. With a cen-
tralized MHT approach, the zero–scan (using measurements at
t = k only) data association in anM–sensor network has the
same complexity as anM–scan data association at one node.
If each sensor hasn possible association configurations, there
could be as many asnM configurations, which would make the
problem intractable for largeM even in the zero–scan case.
Considering multiple scans of data increases the complexity
even further. An alternative distributed MHT algorithm has
been proposed in [6], which focuses on identifying redundant
information in the fusion process, but this is not a trivial task
in a large network with many loops. As a result, progress in
MTT with SN requires the development of efficient, distributed
data association algorithms.

In this paper, we propose a new approach to solving the data
association problem in SN, using the framework ofgraphical
models[7]. A typical scenario we are considering is shown
in Fig. 1, where a large number of sensors are deployed to
surveil a vast area. Each sensor has a limited detection range
and its surveillance region partially overlaps with those of
its neighbors. The sensors are synchronized and each sensor
receives noise–corrupted measurements (e.g., bearing) from
targets in its coverage area simultaneously at each scan. One
contribution of this paper is that we propose a graphical
model–based data association approach to solve the above
problem efficiently and in a distributed fashion. The efficiency
of our approach is mainly due to the observation that although
the overall problem involves a large number of sensors and
targets, each target is only observable by a small number of
sensors at a time, thus the association at two distant sensors
is conditionally independent of each other. Such a sparse
structure inherent in the problem can be exploited by graphical



Fig. 1. A snapshot of a typical data association scenario in SN. 25 sensors
(circle nodes) and the bearing-only measurements (line segments) are shown.
Each cluster of samples represents the prior position distribution of one target.

models, which are well–suited to represent the structure of
statistical dependencies of a collection of random variables.
With a carefully designed modeling approach to transform
the data association problem into the framework of graphical
models, we obtain an inference problem that can be solved
efficiently by the max–product algorithm [8]. Furthermore,
the resulting algorithm can be implemented in a distributed
fashion throughparallel message–passing, where each sensor
performs some local processing of the measured data and
communicates with its neighbors. Such iterative exchange
of information leads to a distributed solution of the data
association problem.

Another contribution of this paper is that we propose a
communication–sensitive version of the message–passing al-
gorithm, which can achieve near–optimal solution using much
less communication (thus power) than standard message–
passing. In the standard algorithm, the nodes continue trans-
mitting messages until the overall algorithm converges, which
may consume a large amount of communication and power.
This is not ideal for SN applications because the communi-
cation and power resource for each sensor is usually limited
and should be sparingly used. In contrast, the communication–
sensitive message–passing algorithm provides the sensor nodes
with the authority to decide whether or not messages should
be sent at each iteration, based on statistical rules related
to the information content of messages. We show that our
new algorithm can provide considerable savings in commu-
nication without much sacrifice in overall decision–making
performance. Furthermore, this approach provides insights
into performance–communication trade–offs, as well as into
information flow dynamics inside SN.

The remainder of this paper is organized as follows. Sec-
tion II introduces the essential background on graphical mod-
els and message–passing algorithms. We propose our graphical
model–based data association approach in Section III. The
communication–sensitive message–passing algorithm is pro-
posed in Section IV. Experimental results are presented in

Section V. We summarize our work and discuss directions for
future research in Section VI.

II. BACKGROUND ON GRAPHICAL MODELS AND

MESSAGE–PASSING ALGORITHMS

A graphical model consists of a collection of random
variablesx : = {xs} that are associated with the nodes of
a graphG = (V,E), where V is the set of nodes, and
E is the set of edges. The conditional dependency among
the random variables is represented by the graph structure.
Here we consider undirected graphical models with discrete
variables. Whenx is Markov with respect to the graph, the
distributionp(x) can be factorized as the product of functions
defined on the cliques of the graph [9]. If the random variables
have at most pairwise interactions, which is the case in our
work, then the factorization ofp(x) takes the form

p(x) = κ
∏

s∈V

ψs(xs)
∏

(s,t)∈E

ψst(xs,xt), (1)

whereκ is a normalization constant,ψs(xs) is thenode com-
patibility functionthat depends only on the individual variable
xs, and ψst(xs,xt) is the edge compatibility functionthat
depends only on the variablesxs andxt joined by edge(s, t).
In many applications, the random vectorx is not observed;
given instead are independent noisy observationsy = {ys |
s ∈ V } based on whichx needs to be inferred. The effect
of including these measurements — i.e., the transformation
from the prior distributionp(x) to the conditional distribution
p(x | y) — is simply to modify the factors in (1). As a result,
we suppress explicit mention of measurements in this section,
since the problems involving eitherp(x | y) or p(x) are of
identical structure and complexity.

Of interest in this paper is the problem of finding the
maximuma posteriori (MAP) configuration

x̂ = arg max
x∈XN

p(x). (2)

The max–product algorithm [8], a generalization of the
Viterbi algorithm on Markov chains to arbitrary tree–structured
graphs, can be used to solve this problem efficiently. A
distributed implementation of the algorithm entails an itera-
tive procedure calledparallel message–passing, where each
iteration involves each nodet passing a message to each of its
neighborss ∈ N (t) simultaneously and in parallel, as shown
in Fig. 2. The message in thek-th iteration, which we denote
by Mk

ts(xs), is a function of the possible statesxs ∈ Xs. In the
max–product algorithm, the messages are updated according
to the recursion

Mk
ts(xs) = κ max

x
′

t

{

ψst(xs,x
′
t)ψt(x

′
t)

∏

u∈N (t)\s

Mk−1
ut (x′

t)

}

,

(3)
whereN (t)\s is the set of neighbors of nodet in the graphG
excluding nodes. For any tree–structured graph, the message
update equation (3) converges to a unique fixed pointM∗ =
{M∗

ts} after a finite number of iterations. The converged values



Mut

t s

u ∈ N(t)\s

ψt

ψts

Mts

Fig. 2. Parallel message passing for graphical models. Only messages relevant
to the computation of the message from nodet to nodes are shown.

of the messagesM∗ can be used to compute the so–called
max–marginalPs(xs) = κp(x′) at each node

P (xs) = κ max
{x|xs=xs}

ψs(xs)
∏

u∈N (s)

M∗
us(xs). (4)

The MAP configuration̂x is given byx̂s = arg maxxs
Ps(xs).

For tree–structured problems, the max–product algorithm
produces exact solutions with complexityO(n2d), wheren

is the number of states per node, andd is the number of
nodes on the longest path in the graph. The same algorithm is
also applied frequently to graphs with cycles, although in that
case it serves as an approximate method. A modified version
of the max–product algorithm, tree–reweighted max–product
(TRMP), is proposed in [10]. The TRMP algorithm outputs
the correct MAP assignment even on loopy graphs under mild
conditions. More details on TRMP can be found in [10].

III. G RAPHICAL MODEL–BASED DATA ASSOCIATION

For simplicity, we first discuss how to use measurements of
the current scan only to solve the data association problem
in SN, which corresponds to settingN = 0 in the N–
scan technique. Incorporating multi–scan data to solve the
association at the current scan will be discussed in SectionIII-
B.

A. Zero–Scan Data Association

We consider a scenario whereM sensors are deployed to
surveil a 2–D planar field. We assume sensor calibration and
localization has been accomplished (for example, using the
techniques proposed in [11]) such that each sensor knows its
own location in a global coordinate. Each sensor has a limited
and well–defined detection region. Due to the overlapping
sensor coverage, the whole surveillance area is divided into
disjoint subregions{r1, r2, . . .}, each of which is covered by a
distinct subset of sensors. The sensors generate noisy bearing,
range, or 2–D position measurements for the targets presentin
their own surveillance region by a given measurement model.
Let Yi be the set of measurements generated by sensorsi. The
data association problem is to assign measurements inYi to
the targets present in the surveillance region of sensorsi given
some prediction–based prior information on target locations.
Let xi be the association variable forsi that takes values in

the set of all valid association configurations ofsi, where
an association configuration is valid if and only if in such a
configuration the measurements inYi and the targets covered
by si are in a one–to–one correspondence1. Note that if each
sensorsi knows which subset of targets it can observe, then the
sample space of variablexi can be obtained by enumerating
the mapping between the measurements reported bysi and the
targets covered bysi. Otherwise, when such a sensor–target
coverage relation is ambiguous, we need special consideration
to obtain the sample space of the association variables, which
will be described in Section III-A.2. The maximum likelihood
(ML) data association̂x = {x̂i} satisfies

x̂ = arg max
x1,x2,...,xM

p(Y | x1,x2, . . . ,xM ), (5)

whereY =
⋃M

i=1 Yi is the set of all measurements in the net-
work. However, due to the overlapping coverage, measurement
noise, and the uncertainty of the target locations, the random
variables{xi} are correlated, and evaluating the measurement
likelihood for every possible value ofx is generally infeasible
for a large–scale SN.

Our approach to attack this problem is to construct a
graphical model such that eachxi is represented by a graph
node and the measurement likelihood in Eq. (5) takes a
factorized form on the model as in Eq. (1). Assuming that
each valid association configuration is equally likely, finding
the ML estimates in Eq. (5) is equivalent to finding the
MAP estimates ofx, hence the problem can be solved by
the max–product algorithm. If each sensor hasn possible
association configurations, thus eachxi hasn states, then with
M variables to be estimated, the complexity of our approach
is roughlyO(n2M), which is much less than the centralized
MHT approach. However, all of this relies on constructing a
graphical model and factorizing the measurement likelihood
function in Eq. (5) to the pairwise compatibility functionsfor
the above problem. We present our approach to constructing
such graphical models for the data association problem in the
following two scenarios. For each scenario, we work on a toy
example to illustrate our modeling approach and describe how
to relate Eq. (5) to Eq. (1) in each case.

1) Completely Organized Sensor Networks:We say a net-
work is completely organizedif each sensor knows which
targets it can observe2. In such a case, the subregion in which
each target is located is known. A piece of such a completely
organized SN is shown in Fig. 3(a), where targetsT1, T2,
and T3 are known to be present in the subregionsr1, r2,
andr3, respectively. In this completely organized scenario, the
measurement likelihood in Eq. (5) can be factorized into two

1With possible false alarms and missed detections, the real measurements
and the real targets are not in one–to–one correspondence. However, missed
detections and false alarms can be handled and incorporated into our frame-
work, as described in [12], by introducing virtual measurements and virtual
targets. Thus, for the sake of simplicity, we ignore them in the following
discussion.

2In this paper, the meaning of “organized” is not the same as in net-
work self–organization literature, where “organized” means each node in
the network has established connection with its neighbors and has received
information about their status.
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Fig. 3. (a) A piece of a completely organized SN. Two sensors with
their surveillance region and non–parametric representations of three target
distributions are shown. (b) The graphical model for the scenario in (a).

parts. The first part consists of the product of the likelihoods
of the measurements assigned to targets covered by a single
sensor. The second part consists of the product of the likeli-
hoods of measurements assigned to targets covered by multiple
sensors. Hence a graphical model for data association in an
organized SN contains a node representing the association
variable xi for each sensor. The nodes that correspond to
sensors observing common targets are connected, as shown
in Fig. 3(b). The node compatibility function is defined as the
measurement likelihood for those measurements assigned to
the targets covered by only the corresponding sensor. The edge
compatibility function is defined as the joint measurement
likelihood for the measurements assigned to the targets in
the corresponding shared subregion. The following example
illustrates how to model the scenario shown in Fig. 3(a).

Example 1 For the scenario shown in Fig. 3(a), the graph-
ical model is shown in Fig. 3(b). SupposeY1 = {y11, y12}
andY2 = {y21, y22}, then the node states and corresponding
compatibility functions are

states ofx1 for nodes1 states ofx2 for nodes2

y11 y12 ψs1
y21 y22 ψs2

T1 T2 p(y11;T1) T2 T3 p(y22;T3)
T2 T1 p(y12;T1) T3 T2 p(y21;T3)

and the edge compatibility function is defined as

ψs1s2
:

[

p(y12, y21;T2) p(y12, y22;T2)
p(y11, y21;T2) p(y11, y22;T2)

]

such thatp(Y | x1,x2) = ψs1
ψs2

ψs1s2
, i.e., p(Y | x1,x2)

is factorized as in Eq. (1).

When a target is covered by three or even more sensors,
a target node can be introduced into the graph to avoid the
high–order interactions and keep the compatibility functions
pairwise, thus yielding a sensor–target hybrid modeling ap-
proach. For details please refer to [12].

2) Partially Organized Sensor Networks:In Section III-
A.1, we have assumed that we perfectly know which subregion
each target is located in. However, in practice that information
may contain uncertainties, for example, when the target is
moving across a sensor’s detection boundary, or when the
predicted target location has very large uncertainty. In such
a partially organizednetwork, several subregions might be
postulated to have a particular target located within theirown
boundaries with certain non–zero probabilities. Fig. 4(a)shows
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Fig. 4. (a) A piece of a partially organized SN. Two sensors with
their surveillance region and non–parametric representations of two target
distributions are shown. (b) The graphical model for the scenario in (a).

a piece of a partially organized SN, where targetT1 is possibly
in eitherr1 or r2, and targetT2 is possibly in eitherr2 or r3.
In such cases, which subset of targets is observed by each
sensor remains to be estimated. The association problem thus
consists of both the task of associating targets to subregions, as
well as the task of associating measurements to targets. Note
that in addition to the one–to–one constraints on measurement
association, a new set of constraints that each target can only
be assigned to one subregion must also be enforced.

We propose a region–based modeling approach to transform
such a partially organized scenario into the framework of
graphical models. To this end, we definexi on the Cartesian
product of the measurement setYi and the set of possible
target–subregion pairs covered by sensorsi. Let x̃j be a
random variable defined for subregionrj taking values on
the power set of the set consisting of all the targets that are
possibly present in regionrj . Note that when two subregion
rj and rk compete for the same target, the values ofx̃j

and x̃k should be mutually exclusive regarding the target.
A region–based model contains a node for each sensor, for
each subregion, and for each target, as shown in Fig. 4(b).
The association variablesxi’s andx̃j ’s are represented by the
corresponding sensor nodes and subregion nodes, respectively.
Each sensor node has its compatibility function defined as
ψsi

= 1, and each subregion node has the compatibility
function defined according to the incidence probability for
the potential targets in the subregion. The target nodes are
auxiliary nodes for introducing into the model the measure-
ment likelihood under various association configurations.The
states of a target node enumerate the Cartesian product of
the set of possible subregions the target may be in and the
set of possible measurements it can be associated with. The
measurement likelihood associated with the target defines the
compatibility function of each target node. The nodes in the
graph are connected in an intuitive way. A subregion node is
connected with every sensor node that covers the subregion,
and each target is connected with each subregion it could
enter. The consistency between the nodes needs to be ensured
by the edge compatibility functions. In the special case of
complete organization, this modeling approach reduces to the
models described in Section III-A.1 (after appropriate node
aggregation). The following example shows how to construct



a graphical model for the scenario shown in Fig. 4(a).

Example 2For the scenario shown in Fig. 4(a), the graphical
model is shown in Fig. 4(b). SupposeY1 = {y11, y12} and
Y2 = {y21, y22}, the states and compatibility functions of
nodess1, r2 andT1 are defined as

states ofx1 for nodes1 states of̃x2 for noder2

y11 y12 ψs1
Targets ψr2

T1 → r1 T2 → r2 1 {T1} p(T1 → r2)
T1 → r2 T2 → r2 1 {T2} p(T2 → r2)
T2 → r2 T1 → r1 1 {T1, T2} p(T1, T2 → r2)
T2 → r2 T1 → r2 1 ∅ 1

meas. region ψT1

y11 r1 p(y11; T1, r1)
y12 r1 p(y12; T1, r1)

nodeT1: y11, y21 r2 p(y11, y21; T1, r2)
y11, y22 r2 p(y11, y22; T1, r2)
y12, y21 r2 p(y12, y21; T1, r2)
y12, y22 r2 p(y12, y22; T1, r2)

and the edge compatibility functionsψs1r2
and ψr2T1

are
defined as

ψs1r2
=









0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0









ψr2T1
=









0 0 1 1 1 1
1 1 0 0 0 0
0 0 1 1 1 1
1 1 0 0 0 0









Other node and edge compatibility functions can be defined
in a similar way. It can be verified thatp(Y | x, x̃)
equals to the product of the node and edge compatibility
functions defined above, and thus satisfies Eq. (1). The all–
zero columns ofψs1r2

indicate thatT2 has to be inr2 (so that
it can be detected bys1) sinces1 generates two observations
and we assume no missed detections or false alarms exist.
In such a scenario, the simple fact that a sensor does see
something or see nothing can provide valuable information
to substantially reduce the target uncertainty.

B. N–Scan Data Association

In some cases, the ambiguity of data association may not
be easily resolved by using the data in the current scan
only, and future scans might provide useful information (for
example, when two target tracks are crossing each other at the
current scan). This requires associating the measurementsof
the current scan by considering the measurements from the
current scan as well as several future scans. Our graphical
model–based data association approach can be extended to
such anN–scan data association scenario. We discuss such
an extension only on the region–based modeling approach as
it applies more generally.

To take advantage of the reports in the nextN scans, our
model contains a copy of the sensor nodes and subregion nodes
for each of theN + 1 scans in the temporal window, with the
nodes affiliated with association variables{x(t)

i } and {x̃
(t)
j },

t ∈ {0, 1, . . . , N}, respectively. However, the model maintains
only one copy of the target nodes for each target across all
scans. Each target node is connected with a subregion in a
certain scan if the target might enter the subregion in that scan.
The states of each target node correspond to the branches of

t = 0 t = 1

Fig. 5. A graphical model forN–scan (N = 1) association.

its hypothesis tree as obtained by an MHT algorithm, and the
measurement likelihood evaluated on each branch is used as
the target node compatibility function. A model forN–scan
data association withN = 1 is shown in Fig. 5. After the max–
product algorithm is applied on such a graphical model, the
MAP estimates{x̂(0)

1 , x̂
(0)
2 , . . . , x̂

(0)
M } indicate the association

decisions at the current scant = 0.

IV. COMMUNICATION –SENSITIVE MESSAGE–PASSING

Although the message-passing algorithm we have intro-
duced is inherently distributed and hence appealing for sensor
network applications, it may still require a large amount of
communication and pose a significant challenge to the sensors.
In particular the parallel–message passing operation requires
each graph node to send a message to each of its neighbors
at every iteration, which corresponds to a certain amount of
communication in the sensor network and results in a certain
amount of power consumption. It is critical to reduce the
amount of communication that the message–passing algorithm
requires to make it broadly applicable for SN. However, it is
not straight–forward how one should develop a mechanism to
achieve such communication savings without severe adverse
effects on the inference quality.

We propose an adaptive approach that, while reducing the
amount of communication, doesnot lead to serious degrada-
tion in performance. In this approach, after a new message is
formed at a node, the node has the authority to make a decision
about whether it needs to transmit this message or not. A
message will be sent only when it contains “significant” new
information compared to the message sent by the same node on
the same edge in the previous iteration; otherwise the message
will not be sent. If the message in the current iteration is
not sent, the destination node uses the corresponding message
from the previous iteration instead. Such a communication–
sensitive message–passing (CSMSG) algorithm requires each
node t to computed(Mk

ts,M
k−1
ts ) according to a certain

distance measured(·, ·) at each iterationk, and to compare
it with a message toleranceε. If d(Mk

ts,M
k−1
ts ) < ε, message

Mk
ts will not be sent, and nodes will use Mk−1

ts that it
already received in the previous iteration to do its own local
computation. We use the Kullback-Leibler (KL) divergence
[13] to measure the distance between the information content
of two messages. The KL divergence is widely used to



measure the similarity of two probability distributions inthe
information theory literature. In the context of this paper, it
is defined as

d(Mk
ts,M

k−1
ts ) =

∑

xs

Mk
ts(xs) log

Mk
ts(xs)

Mk−1
ts (xs)

. (6)

With CSMSG, a trade-off arises between the performance
the algorithm can achieve and the amount of communication
it requires. By using a proper message toleranceε, we can
tune the algorithm to achieve a suboptimal solution according
to the budget for the communication cost. With smallerε,
the algorithm obtains a more accurate approximation to the
value computed by standard message-passing, at the expense
of more messages exceeding the message tolerance and being
transmitted. Yet even with very smallε such that the loss of
performance is trivial, the communication saving compared
with the standard message-passing might be still significant. In
Section V, we show the tremendous communication saving of
CSMSG compared with standard message-passing. Note that
CSMSG can be used both in the zero–scan and theN–scan
settings.

The overhead of implementing CSMSG instead of stan-
dard message-passing is insignificant considering the potential
savings in communication. In CSMSG, every sensor node
requires some additional memory for storing messages from
the previous iteration, so that it can compare the new and
old messages that it generated, and use the old messages that
it received when necessary. In addition, we also require a
mechanism for letting the sensor know when a new message
has not been sent, so that it knows it should use the old
message instead. One possibility is to pass one extra bit of
information on every link in each iteration to indicate if the
nodes have new information or not. Alternatively, we could
synchronize the communication and design the protocol in
a way such that the sensor will use the old message after
some latency period, whether the new message was not sent
or simply lost on the way.

V. EXPERIMENTAL RESULTS

A. Data Association for MTT

To test our graphical model–based data association ap-
proach, we simulate tracking 20 targets with a 25–sensor
network as shown in Fig 1. Each sensor measures the bearing
of the targets corrupted by independent Gaussian noise with
zero mean and5◦ standard deviation. The detection rate of
each sensor is set to 0.8 and we assume no false alarms.
The average surveillance area of each sensor normalized by
the area of the overall network surveillance field is set to
0.08. Fig. 6 shows the average association error rate of 50
Monte-Carlo runs at various levels of prior target location
uncertainty (normalized by sensor surveillance range), based
on the results of the max–product algorithm. The results
show that the smallest association error rate is achieved in
the complete–organization scenario, because the subregion for
each target is known. In a partially organized network, the
benefit of using one–scan versus zero–scan data association

0.15 0.2 0.25 0.3 0.35
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Target Uncertainty

A
ss

oc
ia

tio
n 

E
rr

or

SN partially organized, zero−scan

SN partially organized, one−scan

SN completely organized, zero−scan

Fig. 6. Data association results in a 25–sensor network. Thelevel of target
uncertainty is defined as the standard deviation of the target prior distribution
normalized by the radius of the sensor coverage region. Association error is
defined as the percentage of incorrectly associated measurements.

0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N

A
ss

oc
ia

tio
n 

E
rr

or

Target Uncertainty 0.3

0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N

A
ss

oc
ia

tio
n 

E
rr

or

Target Uncertainty 0.35

(a) (b)

Fig. 7. (a) A snapshot of a target–dense scenario in a four-sensor network.
(b) N–scan association error rate.

increases with the target uncertainty level. This reflects the
increasing necessity of future data reports as the association
problem becomes more challenging. Overall, this experiment
demonstrates the applicability of our efficient data association
algorithm on a reasonably–sized problem, where the three
scenarios we consider in Fig. 6 exhibit intuitive behavior.

To highlight the benefits of using multi–scan data, we
also present the performance ofN–scan association in an
illustrative target–dense scenario. Fig. 7(a) shows a four-sensor
network with three targets intentionally placed in the middle
area such that all the targets are covered by all four sensors.
This is a contentious scenario by design, and it is difficult
to make correct association decisions based on the bearing
measurements in one scan only. However, the targets move
in random directions at random speed, and data from future
scans can help to resolve part of the association ambiguity.
Fig. 7(b) shows the average association error rate of 50 Monte–
Carlo runs, withN = 0, 1, and2 respectively, where one–
scan association has much lower error rate than the zero–scan
as expected. Two-scan association has even lower error rate
than one–scan, although the improvement is not that dramatic
as most of the resolvable ambiguity has been solved by one–
scan data association.



CSMSGAlg. TRMP max–prod.
ε = 0.1 ε = 1

Error 25.84% 25.89% 27.88% 28.95%
Comm. 1029.3 55.25 10.41 8.79

TABLE I

COMPARISON OFTRMP, MAX -PRODUCT, AND CSMSG

B. Communication–Sensitive Message–Passing

The performance–communication trade-off is investigated
by applying the CSMSG algorithm on data association in the
same SN as shown in Fig 1, but this time 33 targets are present.
For brevity, we present CSMSG results only on zero–scan
data association in the complete–organization scenario. Similar
experiments can be conducted forN–scan data association or
for partially organized networks. Table I compares the perfor-
mance achieved and the amount of communication needed by
TRMP, the max–product, and CSMSG algorithms. The amount
of communication is evaluated as the average number of
messages sent by each sensor node. The error rate generated by
the TRMP algorithm is optimal in the MAP sense. The results
show that the CSMSG algorithm with reasonable message
thresholds has only slightly higher error rates than TRMP and
the max–product algorithm. However, the communication cost
associated with the CSMSG algorithm is significantly less than
the other two algorithms. Therefore, when communication is
costly, CSMSG is a preferable algorithm in that it can achieve
a near–optimal performance with far less communication (with
the appropriate choice of tolerance parameter). The trade-off
curves for CSMSG at various message tolerances are shown
in Fig. 8, where we observe an interesting threshold around
ε = 1.7. With smaller message tolerances than this threshold,
CSMSG can achieve a similar error rate to max–product but
using much less communication. However, when the mes-
sage tolerance exceeds this threshold, the error rate increases
sharply as some messages that are crucial to obtain a reliable
estimation are ignored. The existence of such a threshold
also suggests that the message tolerance corresponding to it
might be an ideal parameter when we want to pursue the
best performance-communication cost ratio. However, how to
identify this message tolerance in advance remains an open
question.

The information flow dynamics in the network is revealed
by displaying the message transmission in each iteration of
CSMSG, as shown in Fig. 9. In the first iteration, every node
sends messages to its neighbors. As the iteration goes on,
fewer and fewer nodes need to transmit messages. Finally
only one node sends a message in the last iteration. This
observation suggests that some sensors can be shut off earlier
for saving power, for example, the five nodes at the upper
left corner. There are also other nodes which can be shut off
temporarily but need to start communication again later. For
example, the nodes12 stops sending messages after the second
iteration, but as new information keeps coming in, it resumes
sending messages in iteration five, probably because it finds
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Fig. 8. Performance–communication trade-off of CSMSG. Each error bar
shows two times of std. deviation.

its previous estimate is inaccurate or the incoming information
is important to its neighbors.

VI. CONCLUSION

In this paper, we introduced techniques using the framework
of graphical models to solve data association problems arising
in distributed sensing scenarios. We proposed several different
approaches to modeling, in which nodes in the underlying
graphical model were associated with different quantities(such
as sensors, subregions, and targets) in the sensor network.
The proposed graphical model–based approach well captures
the sparse structure inherent in the SN, and scales well with
the number of sensors in the network, thereby rendering
optimal data association feasible in applications involving
large–scale SN. We also proposed a communication–sensitive
message–passing algorithm, and found that it is capable of
achieving near–optimal performance with substantial savings
in communication. This is very attractive when communication
and power are limited resources for sensors. Moreover, we
found that applying CSMSG on the distributed data association
problem yielded insights into the dynamics of the message–
passing during information fusion. Experimental results based
on simulated data show the effectiveness of our approach.

There are number of research directions that remain to
be explored. First, a model thinning or hypothesis pruning
technique to reduce the model size is of interest forN–scan
association in large–scale networks. We are currently exploring
a complexity reduction method by introducing hypothesis sam-
pling into our graphical model-based approach. Second, the
graphical model structure where message–passing algorithms
are applied is not the same as the communication–layer struc-
ture of SN. Consequently, a protocol to implement message–
passing in real SN architectures is an interesting topic forfur-
ther research. Third, it is of interest to provide more theoretical
analysis of the CSMSG algorithm, on which some preliminary
work already exists [14]. An interesting open problem is how
to identify in advance the performance–communication trade–
off (i.e., the message tolerance). In addition, the CSMSG
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Fig. 9. Information flow dynamics revealed by CSMSG (ε = 0.1). An arrow
indicates a message being sent.

algorithm is only a simple way to address the communication
challenge for SN applications; more advanced algorithms for
doing distributed inference under communication constraints
will be of interest.
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