
Multitarget-Multisensor Data Association Using the
Tree-Reweighted Max-Product Algorithm

Lei Chen†, Martin J. Wainwright‡, Mujdat Cetin†, Alan S. Willsky†

†Laboratory for Information and Decision Systems, EECS, MIT, Cambridge, MA
‡EECS, Univ. of California, Berkeley, CA

ABSTRACT

Data association is a fundamental problem in multitarget-multisensor tracking. It entails selecting the most
probable association between sensor measurements and target tracks from a very large set of possibilities. With
N sensors and n targets in the detection range of each sensor, even with perfect detection there are (n!)N different
configurations which renders infeasible a solution by direct computation even in modestly-sized applications. We
describe an iterative method for solving the optimal data association problem in a distributed fashion; the work
exploits the framework of graphical models, which are a powerful tool for encoding the statistical dependencies
of a set of random variables and are widely used in many applications (e.g., computer vision, error-correcting
codes). Our basic idea is to treat the measurement assignment for each sensor as a random variable, which is in
turn represented as a node in an underlying graph. Neighboring nodes are coupled by the targets visible to both
sensors. Thus we transform the data association problem to that of computing the maximum a posteriori (MAP)
configuration in a graphical model to which efficient techniques (e.g., the max-product/min-sum algorithm) can
be applied. We use a tree-reweighted version of the usual max-product algorithm that either outputs the MAP
data association, or acknowledges failure. For acyclic graphs, this message-passing algorithm can solve the data
association problem directly and recursively with complexity O

(
(n!)2N

)
. On graphs with cycles, the algorithm

may require more iterations to converge, and need not output an unambiguous assignment. However, for the
data association problems considered here, the coupling matrices involved in computations are inherently of low
rank, and experiments show that the algorithm converges very fast and finds the MAP configurations in this
case.

Keywords: data association, max-product/min-sum algorithm, multitarget-multisensor tracking, Markov ran-
dom fields, graphical models

1. INTRODUCTION

Data association, with the goal of partitioning observations to match up with a particular origin, is a fundamental
problem of multiple target tracking.1, 2 The specifics of the data association problem vary according to the
different tracking approaches and the different modalities of the sensors being used. However, the common
aspect of the problem is to identify a pair of points, one from each of two random point sets, that share the same
origin.3 The points in the first set X provide the prior knowledge about the distribution of target states that we
are interested in, and are usually obtained from the prediction step of the tracking algorithm. Thus X is called
the prediction set. The second set Z is the measurement set and consists of noisy measurements of the target
states produced by the sensors. The correspondence between points in X and points in Z is unknown and needs
to be resolved. The central task of data association is to figure out the correct mapping relationship based on
the observation Z = Z, subject to the constraints that each z ∈ Z is assigned to at most one x ∈ X, and each x
gets no more than one z. Fig. 1(a) shows a trivial example with one sensor and two measurements for the three
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Figure 1. An example of multitarget-multisensor data association. Dashed circles represent the sensor detection range.
Gray � are targets with mean positions x1, x2 and x3. × and ∗ are measurements generated by sensors s1 and s2

respectively. (a) Data association scenario with only sensor s1. If we use the Euclidean distance between the measurements
and target positions as the association criterion, z11 should go to target 1 and z12 should go to target 2. (b) Data association
scenario with two sensors of overlapping spatial coverage. The proximity of z11 and z21 suggests the possibility that they
came from the same target, which is most likely to be x2.

targets in the range. The three targets have mean positions at x1, x2 and x3 respectively. Assuming there are no
false alarms, then there are 6 possible association configurations. For simplicity if we use the Euclidean distance
as the association criterion in this example, it is easy to see measurement z11 should be associated with target 1
and measurement z12 with target 2. However, when the target density as well as measurement density increases,
the number of possible associations increases combinatorially with the number of targets and an answer to the
data association problem is not obvious. The problem becomes even more complicated when the surveillance
systems utilize multiple sensors to provide overlapping coverage on the targets. In such a case, the association in
different sensors are coupled, and the locally optimal assignment in general is not globally optimal. Back to the
example in Fig. 1, if we have a second sensor which can only detect target 2 and target 3, as shown in Fig. 1(b),
we might consider flipping our earlier assignment based on Fig. 1(a), so that target 2 is associated with a pair of
consistent measurements from sensor s1 and sensor s2. This suggests that we should take the association for the
other sensors into consideration when multiple sensors are used. However, the number of different association
configurations increases exponentially with the number of sensors in use. Even in the case of perfect detection
(without false alarms and missed detections), with N sensors and n targets in the range of each sensor, there
are (n!)N different configurations, which renders infeasible a solution by direct computation even in modestly-
sized applications. For example, for N = 7 and n = 5, there are more than 300 trillion possible configurations.
To solve a problem with such complexity, the traditional centralized data association approach imposes a very
heavy burden on the central node, in terms of both computation and communication. This difficulty motivates
the distributed data association approach that performs the task at the sensor level and makes use of the
computational resources of all sensors in parallel. Compared with the centralized approach, distributed data
association has the advantage of reduced data-bus loading, reduced computational loading at a single processor
and high survivability.4 These benefits have drawn much interest to research on the architecture of distributed
tracking systems using sensor networks. Yet the development of practical distributed data association algorithms
is still a topic with numerous open research issues.

In this paper, we describe an iterative method for solving the optimal data association in a distributed fashion;
the work makes use of the framework of graphical models. Our basic idea is to treat the measurement assignment
for each sensor as a random variable, which is in turn represented as a node in an underlying graph. Then we
exploit the problem structure and transform the data association problem to that of computing the maximum a
posteriori (MAP) configuration in a graphical model, to which efficient techniques (e.g., the max-product/min-
sum algorithm) can be applied. We use a variant of the usual max-product algorithm, know as the tree-reweighted
max-product algorithm,5 that is guaranteed to either find the MAP configuration, or to acknowledge failure. For
acyclic graphs, this message-passing algorithm can solve the data association problem directly and recursively
with complexity of O

(
(n!)2N

)
. On graphs with cycles, which we are more likely to encounter, the algorithm

may require more iterations to converge and need not output an unambiguous assignment. However, for the



data association problems, the coupling matrices involved in the computations are inherently of low rank, and
experiments show that the algorithm converges very fast and finds the MAP configuration in this case.

This paper is organized in the following way. Section 2 reviews the previous approaches for data association
and introduces graphical models, as well as the tree-reweighted max-product algorithm. Section 3 contains the
mathematical formulation of the data association problem in our framework, and the transformation of this
problem to an inference problem on graphical models. Experimental results are presented in Section 4. Finally,
we conclude this paper and propose some future research directions in Section 5.

2. BACKGROUND

2.1. Previous Research in Data Association

The problem of centralized data association has been extensively investigated in the past three decades. An early
approach, popular primarily due to its simplicity, was that of joint probabilistic data association (JPDA).1 JPDA
incorporates all observations within a gated region about the predicted target state into the update of that target’s
state. The contribution of each observation is determined by a probability-based weight. A given observation can
also be used to update multiple targets’ states. In essence, JPDA averages over the data association hypotheses
that have roughly comparable likelihoods and thus suffers from degradation in performance in a dense target
environment. The multiple hypothesis tracking (MHT) algorithm6 is the most successful approach to date.
MHT enumerates all possible association hypotheses to form an association hypothesis tree and evaluates the
probability of each hypothesis to pick out the most probable one. At each time frame the hypothesis tree is
expanded with new report data. The most noticeable advantage is that deferred decisions are possible with
this approach. When several ambiguous hypotheses arise, MHT allows a firm decision to be delayed until
later data are received to aid the evaluation. However, in the MHT algorithm the number of branches of
the hypothesis tree explodes exponentially. An intricate procedure to prune unlikely hypotheses and to combine
similar hypotheses has to be developed. Even with these techniques, the computation is still formidable in a dense
target environment. Another approach is to treat the data association problem as a multi-dimensional assignment
problem and use linear programming (LP) techniques to solve it.7–9 However, for the assignment problem
with more than two dimensions, the problem is NP-complete. Thus for non-trivial problems it is impractical to
pursue the optimal solution. Most algorithms with multi-dimensional assignment formulation harness Lagrangian
relaxation to reduce the complexity and achieve suboptimal solutions with acceptable accuracy.

JPDA and MHT also have distributed versions,10, 11 which share the same drawbacks of their centralized versions.
A discussion of distributed fusion architectures and algorithms can be found in Ref. 12, which also introduces
an approach based on information graphs and underlines the challenges associated with the arrival of redundant
information in such graphs through multiple paths. This redundant information flow on loopy graphs have
served as a motivation for our work in the development of distributed data association algorithms. Our approach
involves exploiting the structure that may exist in the overlaps between sensor detection ranges. A convenient
way in which to encode this structure is using graphical models, to which we now turn.

2.2. Graphical Models

Graphical models13 provide a powerful framework for representing the structure of statistical dependencies in a
collection of random variables. Accordingly, they are used in many applications, including computer vision,14

speech recognition,15 and error-correcting codes.16 While there are various formalisms for graphical models,
the work in this paper involves Markov random fields, which are based on undirected graphs.

Let G = (V,E) be an undirected graph, where V is a set of nodes or vertices, and E is a set of edges. A clique
of the graph is a fully connected subset of the vertex set. Associated with each node s ∈ V is a random variable
qs that takes values in the discrete set Q : = {0, 1, . . . ,m − 1}, so that the full vector q : = {qs | s ∈ V } takes
value in the Cartesian product space QN . For any subset S ⊂ V , we define qS : = {qs | s ∈ S}. Let D be
a vertex cutset in the graph, so that removing it separates the graph into at least two pieces A and B. We
say that q is Markov with respect to the graph if qA and qB are conditionally independent given qD. In this
case, the Hammersley-Clifford theorem17 guarantees that the distribution p(q) can be factorized as the product



p(q) ∝
∏

C∈C ψC(qC), where each function ψC depends only on the subvector qC of random variables in the
clique C and C is the set of all cliques of G.

Now suppose that we receive a vector of noisy observations y = {ys | s ∈ V }, where y is related to q by the
conditional distribution p(y |q) =

∏
s∈V ψs(qs,ys). Applying Bayes’ theorem, we obtain

p(q|y) ∝
∏
s∈V

ψs(qs,ys)
∏
C∈C

ψC(qC).

This conditional density is central to various estimation problems. Of central interest in this paper is the problem
of finding the MAP configuration, defined by q̂MAP = arg maxq∈QN p(q | y).

Any Markov random field can be converted, via the introduction of auxiliary variables, to an equivalent model
based on a graph with only pairwise cliques. In this case, the factorization of p(q | y) takes the simpler form

p(q|y) =
1
κ

∏
s∈V

ψs(qs,ys)
∏

(s,t)∈E

ψst(qs,qt), (1)

where κ denotes a normalization constant.∗ We will frequently omit explicit reference to y, since it is a fixed
(known) quantity. When the graph is cycle-free (i.e., a tree), then the max-product or min-sum algorithm, a
non-serial generalization of the Viterbi algorithm, can be applied to efficiently compute the MAP estimate.

One interpretation18 of the max-product algorithm is as computing the so-called max-marginals Ps(qs) =
κ max{q′|q′

s=qs} p(q′) at each node. If, for each node, the max-marginal Ps over q′
s ∈ Q is attained at a

unique value, then it can be seen that the MAP configuration {q̂s | s ∈ V } is unique, with elements given by
q̂s = arg maxq′

s∈Q Ps(q′
s). The max-product algorithm computes the max-marginals efficiently by a parallel set

of message-passing operations. At each iteration n = 0, 1, 2, . . ., every node t ∈ V passes a message, denoted by
Mn

ts(qs), to each of its neighbors s ∈ N (t). Observe that each message passed to node s is a function of qs. The
messages are then updated according to the recursion

Mn+1
ts (qs) = κ max

q′
t

{
ψst(qs,q′

t)ψt(q′
t)

∏
u∈N (t)/s

Mn
ut(q

′
t)

}
, (2)

where N (t) is the set of neighbors of node t in the graph G. For any tree-structured graph, the message update
equation (2) converges to a unique fixed point M∗ = {M∗

st} after a finite number of iterations. The converged
values of the messages M∗ define the max-marginal at node s via

Ps(qs) = κψs(qs)
∏

u∈N (s)

M∗
us(qs).

For tree-structured problems, the max-product algorithms produces exact solutions with complexity O(m2N), in
which m is the number of states per node. Notice that the message-passing update (2) is inherently a distributed
algorithm and can be realized on physically distributed processors in parallel. The max-product algorithm is also
applied frequently to graphs with cycles, as an approximate method. In the presence of cycles, the algorithm
may not converge, and need not compute the MAP solution; however, see Ref. 18 for analysis of the quality of
the approximate MAP solutions.

2.3. The Tree-Reweighted Max-Product Algorithm

In this section, we describe a modified version of the max-product algorithm that is guaranteed to give the correct
answer, or to acknowledge failure. One way to describe this tree-reweighted max-product (TRMP) algorithm5 is
as a sequence of updates on trees of the graph, using the ordinary max-product algorithm as a subroutine. The
basic idea is to represent the original problem on the graph with cycles as a convex combination of tree-structured
problems. It can be shown5 that whenever the tree problems all share an optimal configuration in common, this

∗We use this notation throughout the paper, where the value of κ may change from line to line.



configuration must be the MAP configuration for the original problem. Based on this idea, the goal of the TRMP
algorithm is to find a convex combination of tree-structured problems that share a common optimum.

Let �µ = {µ(T )} be a probability distribution over a set of spanning trees {T i | i = 1, . . . , L} of the graph. For
each edge (s, t) ∈ E, let µst = Pr�µ[(s, t) ∈ T ] be the probability that edge (s, t) appears in a tree T chosen
randomly under �µ. We require a choice of �µ such that µst > 0 for all edges of the graph. With this notation,
the updates take the following form:

1. For each spanning tree T i, i = 1, . . . , L, specify a set ψi = {ψi
s, ψ

i
st} of compatibility functions for the tree

via:
ψi

s = ψs ∀s ∈ V, ψi
st =

[
ψst

] 1
µst ∀(s, t) ∈ E(T i).

2. For each tree T i, i = 1, . . . , L, run the max-product algorithm until convergence to obtain a set of tree
max-marginals {P i

s | s ∈ V } and messages {M i
st | (s, t) ∈ E(T i)}.

3. Check if all trees agree on the assignments produced by the max-product algorithm. If yes, output the
assignment and stop. If not, update the compatibility functions by

ψnew
s = exp

[ ∑
i

µ(T i) log P i
s

]
∀s ∈ V, ψnew

st = exp
[∑

T i

µ(T i) log
ψi

st

M i
stM

i
ts

]
,

and return to step (1) with ψ ≡ ψnew.

It can be shown that this algorithm always has a fixed point for positive compatibilities. The algorithm either
outputs the correct MAP assignment, or it returns a set of pseudo-max-marginals for the graph that do not
uniquely specify any configuration. More details on TRMP and its link to a tree-based linear programming
relaxation can be found in Ref. 5.

3. PROBLEM STATEMENT AND SOLUTION

In this section we first outline the problem setup in our framework and our approach for solving the problem.
Then we give a detailed explanation on how to construct graphical models for data association problems in
Subsection 3.2. The general case with false alarms and missed detections is covered in Subsection 3.3. We
conclude this section with a discussion on the complexity of our algorithm.

3.1. Outline of Problem Setup and Solution

We consider a planar region where N homogeneous sensors {s1, s2, . . . , sN} are deployed to monitor the surveil-
lance area. Each sensor has limited detection range and can only generate measurements for the targets falling
into its range. In this paper we assume the measurements are 2-D Cartesian coordinates of targets’ positions,
however the ideas of our algorithm can be applied to other measurement models as well. In the surveillance
area, there is a set of randomly distributed targets which are independent of each other, and the exact positions
of these targets are unknown. It is clear that some targets will be observed by two or more sensors due to
the overlapping coverage. Since the tracks have been established during most of the tracking process except
for the first few frames of track initiation stage, it is reasonable to assume we already know which sensor is
maintaining which targets’ tracks, and thus assume that the coverage configuration of the targets relative to
the sensors is known. Fig. 2 shows an example of such a configuration. We use Xi = {xij | j = 1, 2, . . . , ni}
to denote the set of ni targets located in the range of sensor i. Each sensor i gives out a list of measurements
Zi = {zij | j = 1, 2, . . . , mi} for the targets in Xi. The number of elements mi in Zi is not necessarily equal to ni,
due to possible false alarms and missed detections. The union of all the Zi’s composes the whole measurement
set Z. Our task is to figure out the most probable way to assign each measurement in Zi to at most one of
the targets in Xi and guarantee each target xij gets no more than one measurement in Zi. To satisfy this
mutually exclusive assignment constraint, we fix the order of the targets in Xi and permute the measurements
in Zi to enumerate all the possible association configurations for each sensor i. Let Qi be the ensemble of
all such association configurations; qi be the discrete random variable taking values in Qi; and qij be the jth
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Figure 2. A coverage configuration of multitarget-multisensor data association. There are seven sensors (s4 is the inner
sensor unlabeled) with detection ranges shown as dashed circles. Targets are shown as � and �. Each of the gray �
targets falls into the range of exactly one sensor. Black � targets are shared by 2 sensors and the two black � targets
are shared by 3 sensors. We assume this sensor-target coverage configuration is known.

element of the permutation. Let qi be a realization of qi; it represents the association configuration in which
we assign the measurement qij to target xij for j = 1, 2, . . . , nj . Let q be the vector formed by all qi; then q
serves as the association operator: each state of q represents a valid association combination in all the sensors.
Mathematically, the data association problem is to get the MAP estimate of q based on the observation Z = Z:

q̂MAP = arg max
q∈QN

p(q | Z = Z).

Now it is clear that the TRMP algorithm can be applied to this problem if we can construct the underlying graph
describing the structure of the joint distribution p(q) and the pairwise compatibility functions. To construct the
graph, we build one node for each association variable qi. If sensors i and j share some targets in their coverage,
it turns out qi and qj are dependent and should be connected by an edge. Otherwise, if there are no targets
shared by sensors i and j, qi and qj are conditionally independent given the association at a set of sensors
that separate them (Markov property), as it will be explained in Section 3.2. In this way, we can convert the
coverage configuration to an undirected graph. We will show how to define compatibility functions for the graph
based on the likelihoods of the measurements Z in each association configuration and the prior distribution of
the association variable q. With this setup, we can then apply the TRMP algorithm to the associated MAP
estimation problem.

3.2. Graphical Models for Data Association
In this section, we explain in detail how we construct the graph and the compatibility functions. To simplify
our discussion and notation, we assume throughout this subsection that there are no false alarms and no missed
detections. Without false alarms and missed detections, the measurements generated and the targets covered
by each sensor should be in one-to-one correspondence, hence ni = mi for all i. The association variable qi for
each sensor i has ni! different states. Each of these states can be acquired by a particular permutation of the
elements in Zi on Xi. In the following, we first work on the scenario where no targets are shared by more than
2 sensors, in which case we can get pairwise compatibility functions easily. In Subsection 3.2.2 we discuss how
to deal with the case where some targets are shared by more than 2 sensors. We end this section with a short
summary for our modeling approach in Subsection 3.2.3.

3.2.1. No targets shared by more than two sensors

In this section we assume a target can be seen by at most two sensors. We use Xj
i to denote the set of targets

shared by sensor i and sensor j and use X0
i to denote the set of targets that can only be seen by sensor i, i.e.,

Xj
i = Xi ∩ Xj , ∀i, j ∈ {1, 2, . . . , N} and i �= j,



X0
i = Xi

∖
N⋃

j=1
j �=i

Xj
i ,

Note that Xj
i = Xi

j . For each target xij ∈ Xi lying in the range of sensor i, we have a random variable xij

for its true position. All the xij form the prediction set X. We assume each xij is independent and Gaussian
distributed with mean xij and covariance matrix Σij . The parameters xij and Σij are known from the prediction
step. Without loss of generality, we assume that the target positions all have the same covariance matix (i.e.,
Σij = Σ for all (i, j)), then xij ∼ N (xij ,Σ). Note that we use the same notation xij for targets and their
mean positions. From now on we do not discriminate between the concept of a target and its mean position.
For any zij in Zi that actually comes from some target xik in Xi, zij is generated by the measurement model
zij = xik + vij , in which we assume all vij are independent identically distributed Gaussian noise with zero
mean and covariance matrix Λij , and all vij are independent of xij . Again, we assume Λij = Λ for all i, j. Thus
the likelihood that the observation zij = zij comes from target xik is

p(zij = zij | zij is associated with xik) = N (zij ;xik,Σ + Λ). (3)

Please note that any target in the set Xj
i produces two measurements, zik and zjl, one at each of sensor i and

sensor j. In this case, these two measurements are dependent, and the joint likelihood for these two measurements
given the target’s predicted mean position x0 should be

p(zik, zjl | zik, zjl associated with x0) = N
([

zik

zjl

]
;
[
x0

x0

]
,

[
Σ + Λ Σ

Σ Σ + Λ

])
. (4)

Recall each realization of the random permutation qi is the list of measurements in Zi in a certain order. Let Z0
i

denote the set of measurements assigned to targets in X0
i , i.e., Z0

i = {qij | any j such that 1 ≤ j ≤ mi and xij ∈
X0

i }. Let Zj
i denote the set of measurements assigned to targets in Xj

i , Zj
i = {qik | any k such that 1 ≤ k ≤

mi and xik ∈ Xj
i }. Note that Z0

i and Zj
i are random sets. They have different elements for different realizations

of qi, and Zj
i �= Zi

j . With the values of each qi uniformly distributed a priori (i.e., before we observe Zi), the
MAP estimate is the same as the maximum likelihood estimate arg maxq p(Z | q = q). Note that when q is fixed

p(Z | q = q) = p(Z1, Z2, . . . , ZN | q1, q2, . . . , qN )

=
N∏

i=1

p(Z0
i | qi)

N∏
i=1,
j>i

p(Zj
i , Zi

j | qi, qj) (5)

=
N∏

i=1


 ∏

k s.t.
zik∈Z0

i

p(zik | qi)


 N∏

i=1,
j>i


 ∏

k,l s.t.

zik∈Z
j
i

, zjl∈Zi
j

p(zik, zjl | qi, qj)


 ,

and each p(zik | qi), p(zik, zjl | qi, qj) can be evaluated based on (3) and (4) respectively. Equation (5) also
specifies the structure of the graphical models for the data association problem. We build one node for each
qi to represent the association in sensor i, and the state space of the node qi is all the permutations of the
measurements in Zi on the targets in Xi. Two nodes are connected if the two corresponding sensors can observe
a common target. In this way an undirected graph is constructed. Comparing (5) with (1), the node compatibility
functions are defined based on the likelihoods of the measurements assigned to the targets only visible to this
sensor; compatibility functions on the edges are defined based on the likelihoods of the measurements assigned
to the targets visible to both sensors, i.e.,

ψi(qi) = p(Z0
i | qi), ψij(qi, qj) = p(Zj

i , Zi
j | qi, qj).

Then we can use the TRMP algorithm to infer the most probable state of each association variable qi.



3.2.2. Some targets covered by more than two sensors

The modeling approach described in Section 3.2.1 no longer applies if there is any target shared by more than two
sensors. We illustrate the problem by a simple example in Fig. 3(a), in which two targets xc1 and xc2 are shared
by all the three sensors. (However, the approach established in this section can handle the more complicated
scenarios as well.) The previous modeling approach gives the model shown in Fig. 3(b), where the three nodes
form a clique. In a certain association configuration q1, q2 and q3, we have

p(Z1, Z2, Z3 | q1, q2, q3) = p(Z0
1 | q1)p(Z0

2 | q2)p(Z0
3 | q3)p(ZC

1 , ZC
2 , ZC

3 | q1, q2, q3)

in which ZC
i is the set of measurements assigned to targets xc1 and xc2 by the sensor i. The measurements

assigned to xci
from each of the sensors are dependent, with the joint distribution:

z1ci

z2ci

z3ci


 ∼ N





xci

xci

xci


 ,


Σ + Λ Σ Σ

Σ Σ + Λ Σ
Σ Σ Σ + Λ





 . (6)

Then we cannot factorize p(ZC
1 , ZC

2 , ZC
3 | q1, q2, q3) in terms of compatibility functions associated with only pairs

of sensors. Instead, the probability density function (6) must contain a compatibility function for the whole
clique. Unfortunately, the message passing implementation for the standard max-product algorithm requires
pairwise compatibility functions, as in (1). Although there are extensions of the max-product algorithm that
operate directly over higher-order cliques,18 it is more convenient here to develop a description in terms of
pairwise compatibilities. The basic idea is to introduce auxiliary random variables to describe the higher order
interactions. Notice that

p(ZC
1 , ZC

2 , ZC
3 | q1, q2, q3) =

∏
j=1,2

p(z1cj
, z2cj

, z3cj
| q1, q2, q3)

=
∏

j=1,2

p(q1cj
, q2cj

, q3cj
). (7)

in which qicj
is the measurement assigned to target xcj

by sensor i in the association qi. If we define an association
variable qci

by the relationship qci
= (q1ci

,q2ci
,q3ci

), i.e., each sample of qci
is a tuple of three measurements,

which are the same as those measurements assigned to target xci
from Z1, Z2 and Z3 in a particular combination

of configurations q1, q2 and q3, then equation (7) suggests a way to factorize the clique compatibility functions.
We can introduce two special nodes for qc1 and qc2 and make the two factors in equation (7) the compatibility
functions of these two nodes respectively. Then we connect qci

with all qj corresponding to the sensors that
share target xci

, as shown in Fig. 3(c). Notice that for any specific combination q1, q2 and q3, qci
is determined.

This means any certain state of qci
is only consistent with some particular state combinations of q1, q2 and q3.

For example, if qci
is on state qci

with a measurement zjk from sensor j, then qj cannot be on any states such
that zjk is assigned to any target other than xci

. Such an interaction should be reflected by the compatibility
function on the edge between qci

and qj . So with the model in Fig. 3(c), the node compatibility functions are
defined as

ψi(qi) = p(Z0
i | q1), ψci

(qci
) = p(Zci

| qci
),

and the edge compatibilities are 0-1 matrices such that

ψjci
(qj , qci

) =

{
1 if qjci

∈ qci

0 otherwise.

3.2.3. Modeling Approach Summary

In summary, we construct the graphical model for multitarget-multisensor data association as follows. We first
build one node for each sensor to represent the association configurations of this sensor. Two nodes are connected
by an edge if they share any target, and no third sensor covers this target. If there is any target shared by more
than 2 sensors, then we build one node for each such target and connect it with all the nodes that represent the
sensors which cover that particular target. As an example, Fig. 4 shows the graphical model for the scenario in
Fig. 2. Although the graph contains cycles, the TRMP algorithm can be applied, and under certain conditions
will yield the exact MAP estimate.
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method in Section 3.2.1. We cannot factorize the clique compatibility functions to pairwise compatibility functions. (c)
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Figure 4. The graphical model for the example shown in Fig. 2. Circle nodes correspond to the sensors as labeled, square
nodes are for the two � targets observed by more than 2 sensors.

3.3. False Alarms and Missed Detections

In this subsection we describe how to extend our approach to deal with false alarms and missed detections.
The approach given here applies more generally; however, for the sake of notational simplicity, we limit the
development here to the case where each target is observed by no more than two sensors. We assume that all
targets are equally likely to be detected by the sensor covering them and the detection rate is PD. Let the
random variables di and fi be the number of detected targets and false alarms for sensor i respectively. It is
obvious that 0 ≤ di ≤ ni, 0 ≤ fi ≤ mi and fi + di = mi. We assume the probability mass function P (fi) of fi is
known. For any zij ∈ Zi that comes from some target xik ∈ Xi, zij is generated by the measurement model in
Equation (3). Otherwise, if zij is a false alarm, then we assume that it is generated by a uniform distribution
over the detection range of sensor i, i.e., p(zij = zij | zij is a false alarm) = U(1/A), where A is the area of
the detection range of sensor i. In this case, we permute the measurements in Zi on targets in Xi as follows.
For each possible value of fi = fi, take fi measurements from Zi as false alarms, and permute the remaining
measurements on targets in Xi. The targets which get no measurement assigned are missed in this particular
association configuration. Different association configurations may result in different numbers of false alarms and
missed detections. Let us assume all configurations with same number of false alarms (and thus same number
of missed detections) are equally likely a priori and let dqi

and fqi
be the number of detected targets and false

alarms in a certain association configuration qi. Then the prior distribution of qi = qi should be proportional to



P (fqi
)P dqi

D (1 − PD)ni−dqi , and the posterior distribution of an association configuration q should be

p(q = q | Z) = κ p(Z1, Z2, . . . , ZN | q1, q2, . . . , qN ) p(q)

= κ

N∏
i=1

p(Z0
i | qi)p(ZF

i | qi)P (fqi
)P dqi

D (1 − PD)(ni−dqi
)

N∏
i=1,
j>i

p(Zj
i , Zi

j | qi, qj), (8)

where ZF
i is the set of measurements treated as false alarms in association configuration qi. Therefore, with false

alarms and missed detections, the same modeling technique still applies, but the node compatibility functions
should be updated with a prior term generated by false alarms and missed detections.

3.4. Algorithmic Complexity

We discuss the algorithmic complexity for the perfect detection case (no false alarms or missed detection).
Assuming there are n targets in the range of each sensor, the node for each sensor will have n! possible states. If
a target is observed by k > 2 sensors, then the node for this target will have nk states. If the graph is a tree with
N nodes, the TRMP algorithm is the same as the max-product algorithm and has complexity O

(
(n!)2N

)
. On

a graph with cycles, the complexity of the TRMP algorithm is O
(
(n!)2N

)
per iteration. Unlike the tree case,

the algorithm is not finitely convergent, and there are currently no upper bounds on the number of iterations
required. However, for the data association problem, the compatibility matrices are inherently of low rank
because they are generated by permutation and have some special structure. For example, for two sensors that
share a single target in the coverage, the coupling matrix on the associated edge is n! by n!; however, it can be
shown that the rank of this matrix is only n, which limits the strength of the coupling. Based on experimental
trials, the TRMP algorithm converges quickly when the compatibility matrices are of low rank.

4. EXPERIMENTAL RESULTS

We have tested the algorithm on simulated data. We use 25 sensors whose locations form a 5 by 5 grid on the 2-D
plane. Each sensor’s detection range overlaps with the range of its eight neighboring sensors. All sensors have the
same detection range with radius r = 5. We assume the predicted target position has covariance matrix Σ = σ2I
and the measurement noise has covariance matrix Λ = λ2I. All sensors have roughly the same number of targets
covered. We generate the predicted target positions and measurements as follows. In the range of each sensor, we
randomly choose n points as the predicted mean positions of the targets. For each point, we generate a Gaussian
random vector with the point as the mean and covariance matrix Σ, and use the vector generated as the true
target position. Then for each sensor that can cover the target’s mean position, we generate the measurement by
a Gaussian random vector around the true target position with noise of zero mean and covariance Λ. We have
conducted experiments with various levels of target density, measurement noise, and prediction error covariance
in order to test the performance of our algorithm. Fig. 5 shows the results for the perfect detection case. Every
data point is the average result of 50 trials. The results show that the measurement association error rate
increases as the target density increases and the measurement noise increases. Increasing prediction error will
also increase the association error in the high target density case but not for low target density. This is due to
the fact that when the target density is low, most of the targets will be covered by 2 or more sensors. Even with
large uncertainty on the position of the target, we can still recover the association for the target by combining
its observations from several sensors. This result also exemplifies the importance of using multiple sensors to
provide overlapping coverage. For the experiments with false alarms and missed detections, we fix the detection
rate PD = 0.8, and we constrain the number of false alarms generated by each sensor to be no more than one by
assuming P (fi) is a Bernoulli distribution with parameter p = 0.15. Fig. 6 shows the results with 50 trials. The
curves have the same tendency as the perfect detection case, but the association error rate is noticeably higher.
The TRMP algorithm converges quickly with around 10 iterations to the unique solution in all the experiments
we have run.



0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
σ2 / r2 = 0.2

λ2 / r2

m
ea

su
re

m
en

t a
ss

oc
ia

tio
n 

er
ro

r 
ra

te
T / S = 2
T / S = 3
T / S = 4
T / S = 5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
λ2 / r2 = 0.1

σ2 / r2 

m
ea

su
re

m
en

t a
ss

oc
ia

tio
n 

er
ro

r 
ra

te

T / S = 2
T / S = 3
T / S = 4
T / S = 5

(a) (b)

Figure 5. Measurement association error rate in the case of perfect detections. (a) Association error rate vs. the relative
observation noise variance. The prediction variance is fixed at σ2 = 5. (b) Association error rate vs. the relative prediction
variance. The measurement variance is fixed at λ2 = 2.5. In both plots, each of the four curves corresponds to a different
average number of targets per sensor (T / S).

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
σ2 / r2 = 0.2

λ2 / r2

m
ea

su
re

m
en

t a
ss

oc
ia

tio
n 

er
ro

r 
ra

te

T / S = 2
T / S = 3
T / S = 4
T / S = 5

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
λ2 / r2 = 0.1

σ2 / r2 

m
ea

su
re

m
en

t a
ss

oc
ia

tio
n 

er
ro

r 
ra

te

T / S = 2
T / S = 3
T / S = 4
T / S = 5

(a) (b)

Figure 6. Measurement association error rate in the presence of missed detections and false alarms. PD = 0.8, P (fi) ∼
Bernoulli(0.15). (a) Association error rate vs. the relative observation noise variance. The prediction variance is fixed
at σ2 = 5. (b) Association error rate vs. the relative prediction variance. The measurement variance is fixed at λ2 = 2.5.

5. CONCLUSION

Multitarget-multisensor data association is a challenging problem, especially when the density of targets and
sensors is high. The complexity of the problem grows exponentially in both the number of local targets and the
number of sensors. In this paper, we proposed a distributed algorithm to obtain the globally optimal solution
(in the MAP sense) for the data association problem. The work adopts the framework of graphical models and
provides a perspective different from the traditional approaches. Our algorithm is distributed, in that it involves
only passing messages from nodes adjacent in the network structure. With a complexity per iteration that grows
linearly in the number of sensors, our techniques scale well in application to large sensor networks. An important
direction for future research is extending the work described here to the dynamic setting. One challenge in a
dynamic setting is that of incorporating deferred decisions into the framework of our algorithm. The research on



obtaining the m-best configurations in a graphical model19 could be a viable solution. Finally, there are many
environments in which globally optimal solutions are not possible (e.g., due to communication constraints), or
an approximate solution is acceptable. It would also be interesting to develop efficient approaches for obtaining
suboptimal solutions with specified performance guarantees for such cases.
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