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Feature-Enhanced Synthetic Aperture Radar Image
Formation Based on Nonquadratic Regularization
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Abstract—We develop a method for the formation of spot-
light-mode synthetic aperture radar (SAR) images with enhanced
features. The approach is based on a regularized reconstruction
of the scattering field which combines a tomographic model of
the SAR observation process with prior information regarding
the nature of the features of interest. Compared to conventional
SAR techniques, the method we propose produces images with
increased resolution, reduced sidelobes, reduced speckle and
easier-to-segment regions. Our technique effectively deals with
the complex-valued, random-phase nature of the underlying SAR
reflectivities. Efficient and robust numerical solution is achieved
through extensions of half-quadratic regularization methods to the
complex-valued SAR problem. We demonstrate the performance
of the method on synthetic and real SAR scenes.

Index Terms—Computed imaging, half-quadratic regular-
ization, image reconstruction, inverse problems, nonquadratic
optimization, regularization, synthetic aperture radar.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a microwave sensor
which is capable of producing high-resolution images of

the earth’s surface. A SAR system sends electromagnetic pulses
from a radar mounted on an airborne or spaceborne platform to
a particular area of interest on the ground and records the return
signals. In order to achieve high cross-range resolution, SAR
collects data from multiple observation points, and focuses the
received information coherently to obtain a high-resolution de-
scription of the scene. The all-weather nature, high resolution,
and large area coverage rates of the SAR phenomenology have
led to its increased use in surveillance, as well as growing in-
terest in automated processing techniques, wherein features ex-
tracted from the formed imagery are used for automatic target
detection and recognition.

There are two distinct modes in which a SAR imaging system
can operate: stripmap-mode SAR, and spotlight-mode SAR. In
stripmap-modeSAR,theantennaremainsfixedwithrespecttothe
radar platform so that the antenna beam sweeps out a strip on the
ground. In spotlight-mode, the antenna is steered to continuously
illuminate a single spot of terrain. We focus on spotlight-mode
SAR in this paper. The conventional technique for the formation
of spotlight-modeSARimagery is thepolar formatalgorithm[1],
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[2]. This approach while straightforward, has certain shortcom-
ings. First, the resolution of the formed images is limited by the
SAR system bandwidth. This complicates point scatterer local-
ization for automated recognition tasks. In addition, the images
suffer from speckle and sidelobe artifacts. These artifacts com-
plicate region segmentation for shape-based recognition.

Regularization methods have been used in real-valued image
restoration [3], [4], as well as image reconstruction problems
such as medical tomography [5], [6] to obtain improved image
estimates in the face of data degradation. The simplest and
most common approach is to use quadratic functions of the
unknown quantities, which leads to Tikhonov regularization
[7], [8]. These methods lead to computationally straightforward
optimization problems, but they suppress useful features in
the resulting imagery, such as edges. Recently, considerable
effort has been spent in designing alternative, nonquadratic
constraints which preserve such features. Methods based on
these nonquadratic constraints have been successfully used in
edge-preserving regularization in image restoration [4] and
computer assisted tomography [5], [6]. Unlike these standard
image processing problems, SAR involvescomplex-valued
reflectivities. The complex nature of SAR captures both ampli-
tude scaling and phase shifting of the transmitted waveform by
the underlying scatterers. For most SAR scenes, the phase of the
reflectivity at a certain location can be modeled to be random,
and uncorrelated with the phase at other locations [9]. This
complex-valued nature of SAR scenes makes extension and
application of real-valued regularization methods challenging.

To address these challenges, we develop a new technique
for SAR image formation based on a regularized image recon-
struction framework. Our method uses an explicit tomographic
model relating the SAR observations to the complex-valued un-
known scene. This model facilitates the incorporation of infor-
mation about properties of the particular SAR sensor and mea-
surement parameters into the processing. In addition, prior in-
formation regarding the underlying scene or features of interest
are captured through a set of nonquadratic constraints on the
complex field values. The resulting optimization problems can
be costly, and so we present an efficient iterative method for
solving such problems by extending half-quadratic optimiza-
tion techniques [10], [11]. Our method provides an extension
of real-valued feature-preserving image reconstruction methods
[4], [5] to the SAR imaging problem. The outcomes of this ap-
proach are increased resolvability of point-scatterers, enhance-
ment of object shapes, reduced sidelobes and reduced speckle.
The method is also robust to limited quality or quantity of data.

In Section II, we briefly discuss conventional, as well as re-
cently proposed relevant SAR image reconstruction methods.

1057–7149/01$10.00 © 2001 IEEE
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Fig. 1. Graphical representation of the observed Fourier transform samples of
the reflectivity in SAR where
 and
 denote the spatial frequency in thex
(range) andy (cross-range) directions, respectively, and�� denotes the extent
of observation angles.

Section III contains necessary mathematical preliminaries, in-
cluding the model of the SAR observation process used in this
paper. In Section IV, we present our approach to SAR image re-
construction. Section V contains experimental results, and Sec-
tion VI concludes the paper.

II. PREVIOUS WORK

The standard spotlight-mode SAR image formation algo-
rithm, used in essentially all systems today, is the polar format
algorithm [1], [2]. This algorithm is based on the fact that spot-
light-mode SAR observations (after demodulation) are samples
of the Fourier transform of the unknown field on a polar grid
in the spatial frequency domain, as shown in Fig. 1 [1], [12].
In the polar format algorithm, the data are first interpolated
to a Cartesian grid, and then an inverse two-dimensional
(2-D) fast Fourier transform (FFT) is employed for image
formation. Before FFT processing, the data can be windowed to
reduce sidelobe levels. Another image reconstruction method,
suggested by the tomographic formulation of SAR [13], is the
filtered backprojection (FBP) algorithm [13]–[15]. Both the
polar format and the FBP algorithms are based on the inverse
operator for the case when perfect data are available throughout
the spatial frequency domain. These methods have no explicit
mechanism to counter any imperfection in the data. Although
there are algorithmic differences between the two methods, the
reconstructions they produce are very similar. We will call these
methods theconventionalmethods for SAR image formation.

In conventional methods, image resolution is limited by the
system bandwidth. Since peaks in the spectrum of the observed
signal correspond to strong point scatterers in the scene, one
idea to overcome this limit is to use modern 2-D spectral esti-
mation methods [16] rather than a Fourier transform for forming
the SAR image [17]–[20] (assuming that polar to rectangular re-
sampling has already been done). In addition to resolution im-
provement, other motivations suggested for the application of
these methods are to remove sidelobe artifacts, and to reduce
speckle [17]. When applied to SAR imaging, spectral estima-
tion-based methods are quite successful in preserving gain on
ideal point scatterers, however most spectral estimation-based
methods reduce gain on nonpointlike scatterers such as trees,
and they fail to improve the quality of images containing objects

with distributed features. A comprehensive comparison of var-
ious spectral estimation methods in SAR can be found in [17].
These methods provide no explicit means to accentuate one type
of feature over another.

Another way of increasing the resolution beyond the Fourier
limit is to perform data extrapolation in the frequency domain
by estimating samples outside the annular data region through
the use of linear prediction filters [21]–[23]. There has also
been some recent limited attempt to compare the performance
of spectral estimation-based methods with data extrapola-
tion-based methods. For example in [24], it has been reported
that spectral estimation-based techniques have a degraded per-
formance with real world targets (unlike with point targets), and
may cause some loss of information about the target, whereas
data extrapolation techniques offer increased resolution and
better overall performance in these cases. On the other hand,
according to [25], data extrapolation-based methods do not
yield particularly good results, since they introduce significant
amounts of noise.

Finally, there also exists some limited previous work taking
an estimation-theoretic approach to the problem. These methods
are closest in spirit to our method. In [26], a regularized in-
version method has been proposed for stripmap-mode SAR,
which involves deconvolution of the projections of the field by
Tikhonov-type regularization, followed by backprojection. In
[27], an estimation-theoretic -norm-based approach has been
proposed for imaging closely-spaced multiple moving scatterers
over a given spatial region. Finally, a class of approaches for
SAR imaging based on entropy methods has been developed
[28]–[32]. These methods appear to offer good noise suppres-
sion properties, however the experimental results in published
work are too limited to show other possible advantages over
conventional methods. Rather than realistic SAR scenes, most
results involve simple examples, such as two isolated point scat-
terers [28], a synthetic scene with reflectivity in the target
region and zero in the background (hence, not random phase)
[30], [31], and a small scene consisting of straight lines and
isolated point scatterers [32]. The method in [30], [31] also re-
quires post-processing (median filtering) to reduce some of the
artifacts. The recent entropy-based work in [32] considers the
problem of imaging extended (distributed) targets, however the
method uses smoothness constraints which are built on the real
and imaginary components of the field, rather than on the mag-
nitudes directly, unlike our approach.

III. SPOTLIGHT-MODE SAR OBSERVATION MODEL

The ground-plane geometry for spotlight-mode SAR is
shown in Fig. 2. Data are collected by a radar traversing a
flight path and pointing at a fixed ground patch. At points
corresponding to equal angular increments, high-bandwidth
pulses are transmitted and returns from the ground patch of
radius are then received and processed to form an image of
the complex reflectivity field . The most commonly
used pulses are linear FM chirp signals

otherwise
(1)
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Fig. 2. Basic ground-plane geometry for spotlight-mode SAR data collection.

where is the carrier frequency and is the chirp rate. Sup-
pose the radar transmits the real part of such a signal at the in-
stant when the angle between theaxis and the axis is , and
the distance between the airplane and the center of the patch is

. The return signal from the scene is mixed (multiplied) with
a reference chirp signal and low-pass filtered. Assuming that

, so that curvature of the wavefront is negligible [13],
and neglecting a quadratic phase term, the signal demodulated
in this way is given by [1]

(2)

Here, serves as the radial
spatial frequency1 , and is the speed of light. Note that
is a finite slice at angle from the 2-D Fourier transform of the
field .

In practice, the observations at theth observation angle are
samples of the continuous received signal at sam-
pling times . Let be the vector of these observed samples,

be a discretized approximation to the observation kernel in
(2), and be a vector of the unknown sampled reflectivity image.
Then, overall, we can write

...
...

(3)

1Note
(t) is limited to a finite spatial frequency interval, because the obser-
vation durationt is limited, and the chirp rate� is finite (equivalentlys(t) is
narrow-band). Also
(t) is offset from the origin of the spatial frequency plane
due to! .

where is the total number of angular observation points. The
data in are the sampled phase histories, and are confined to an
annular region in the spatial frequency plane as shown in Fig. 1.

By use of the projection-slice theorem [14], the observed
signal can also be identified as a band-pass filtered Fourier
transform of the projections of the field [13]

(4)

where is the projection at angleof . Based on (2)
and (4), we can also obtain a discrete data relationship between
the field and band-pass filtered projections. In particular, we
can obtain samples of the band-pass projectional information
by an inverse discrete Fourier transform (IDFT) of the sampled
data , , at each observation angle. By stacking
the results from all observation angles, we obtain

(5)

where is a matrix whose blocks perform a DFT at each ob-
servation angle, and represents a complex-valued
discrete “SAR projection operator.” The dataobtained in this
way are the range profiles.

In the presence of noise, our model of the SAR range profile
observations becomes

(6)

where accounts for additive measurement noise. This is the
relationship we will use in our method. A similar observation
relationship could also be written in terms of the phase histo-
ries and the matrix , however we will use (6) in our scheme,
since the sparser nature ofoffers computational advantages.
Note that, since this system model relates reflectivities to mea-
surements directly, we will not require polar to rectangular re-
sampling.
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IV. PROPOSEDMETHOD

We formulate the SAR image reconstruction problem as the
following optimization problem

(7)

where we choose to be an objective function of the fol-
lowing form:

(8)

where denotes the -norm, is a discrete approximation
to the 2-D derivative operator (gradient), denotes the vector
of magnitudes of the complex-valued vector, and , are
scalar parameters. The formulation of (7), (8) starts from the
observed range profiles and is not simply a post-processing of a
formed image.

The first term in the objective function (8) is a data fidelity
term, which incorporates the tomographic SAR observation
model (6), and thus information about the observation ge-
ometry. The second and third terms in (8) incorporate prior
information regarding both the behavior of the field, and the
nature of the features of interest in the resulting reconstruc-
tions2 . These terms are aimed at enhancing point-based and
region-based features respectively. The relative magnitudes of
the parameters and determine the relative emphasis on
these two types of features.

This reconstruction problem can also be obtained through
Bayesian means. If we assume that the observation noise in (6)
is independent identically distributed complex Gaussian noise
(the most commonly used statistical model for radar measure-
ment noise [28], [33]), and the prior probability density function
for the field is given by

(9)

with a constant, then the corresponding maximum a posteriori
estimate of is the solution of (7), (8). We again see that the
second and third terms in (8) pertain to the inclusion of prior
information. In Sections IV-A and IV-B, we will discuss in more
detail the reasoning behind our particular choices for these prior
information terms.

A. Enhancement of Point-based Features by

Many object recognition methods rely on locations of domi-
nant point scatterers extracted from SAR images [34], [35] and
one of our objectives is to produce images in which such fea-
tures are enhanced. In applications such as nuclear magnetic
resonance (NMR) spectroscopy [36] and astronomical imaging
[37], similar objectives have previously been achieved by using
maximum entropy methods. These approaches provide recon-
structions with good energy concentration (i.e., most elements
are small and a few are very large). It has been shown that sim-
ilar behavior can be obtained using minimum-norm recon-
struction [38]. In spectral analysis,-norm constraints, where

, have been shown to result in higher resolution spectral

2In general, the values ofk used for the norms in the two prior information
terms do not have to be identical. Here we use the same norm for both terms for
the sake of notational simplicity.

estimates compared to the-norm case (which is proportional
to the periodogram) [39]. Based on these observations, we use a
prior term of the form with . This function imposes
an energy-type constraint on the solution, and aims to suppress
artifacts and increase the resolvability of scatterers. Note that a
smaller value of implies less penalty on large pixel values as
compared to a larger. This favors a field with a smaller number
of dominant scatterers, and results in better preservation of the
scatterer magnitudes.

From a statistical point of view, the use of a single prior term
based on , would be equivalent to a prior model onwhich
assumes independent identically distributed pixels with a cir-
cular3 generalized Gaussian density [40]. Two particular cases
of the density would be, leading to a Gaussian prior, and

leading to a Laplacian prior for each complex-valued
pixel.

B. Enhancement of Region-Based Features by

SAR recognition algorithms also use region-based shape fea-
tures [41], [42]. As an example, shapes of the object, shadow,
and background regions are used for target classification. With
conventional SAR images, segmentation of such regions is par-
ticularly difficult due to speckle. We are thus interested in re-
ducing variability in homogeneous regions, while preserving
discontinuities at region boundaries. Such behavior has been ob-
tained in real-valued image restoration and reconstruction prob-
lems by using constraints of the form with [4],
[40]. However, straightforward application of such a term to the
complex-valued SAR case is problematic, since it would im-
pose smoothness separately on the real and imaginary parts of
the complex field . The correlation in a homogeneous region of

in SAR is due to the similarity of backscatter power, which is
better represented in the magnitude ofthan its real and imagi-
nary parts. As a result, for region-based SAR imaging, we pro-
pose using the prior term . The resulting optimization
problem is made much more difficult by the substitution of the
term for , since is a nonlinear function of the real
and imaginary parts of. Efficient and robust solution of (7)
thus becomes a major challenge. In Section IV-C, we overcome
this limitation by providing an efficient algorithm. Note that the
advantage of region-based feature enhancement during image
reconstruction rather than by post-processing a conventionally
formed image is that the former is more effective in suppressing
potential artifacts resulting from limitations (e.g., partial aper-
ture) or imperfections in the data.

C. Solution of the Optimization Problem

In order to avoid problems due to nondifferentiability of the
-norm around the origin when , we will use the fol-

lowing smooth approximation to the-norm in (8) [4]

(10)

where
small constant;

3Hence, phase is assumed to be uniformly distributed.
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length of the complex vector;
th element of .

For numerical purposes, we thus will use the following slightly
modified cost function

(11)

Note that as . The minimization of
or does not yield a closed-form solution forin general,
so numerical optimization techniques must be used.

Standard numerical optimization techniques like Newton’s
method or quasi-Newton methods with a conventional Hessian
update scheme, such as DFP or BFGS [43] have been shown
to perform poorly in optimization problems involving non-
quadratic constraints, which are special cases of (11) [44], and
we have observed this behavior as well. This precludes the use
of such standard methods here. The additional presence of a
constraint on the magnitude ofin our case makes the problem
even more difficult. To overcome these obstacles, we develop
a quasi-Newton method with a new Hessian update scheme,
by extending ideas from half-quadratic regularization [10] to
account for the complex-valued nature of the SAR problem
and the associated prior information terms. This new Hessian
approximation and update strategy is matched to the structure
of the SAR problem in (11). The resulting new optimization
algorithm is a nontrivial extension of existing numerical
schemes, and provides an efficient, robust solution.

In order to develop our scheme, we use a structure which ef-
fectively deals with both the complex-valued nature ofand
the nonlinearity associated with . We first take the gradient of
(11) with respect to the real and imaginary parts of. This yields
a gradient vector of length . We then put this vector into a
compact form, by defining a complex-valued gradient vector of
length , whose real and imaginary components contain the
derivatives with respect to the real and imaginary parts ofre-
spectively. This compact gradient can be placed in the following
useful form following substantial manipulation

(12)

where

diag

diag

diag (13)

where denotes the phase of the complex number,
denotes the Hermitian of a matrix, and diagis a diagonal

matrix whose th diagonal element is given by the expression
inside the brackets.

Examining the gradient expression (12), the term re-
sembles a “coefficient” matrix multiplying. As a result, we
use as an approximation to the Hessian. Note that this Hes-
sian approximation depends onitself. We use this approximate
Hessian in the following quasi-Newton iteration:

(14)

where is the step size. After substituting (12) into (14) and
rearranging, we obtain our iterative algorithm

(15)

We run the iteration (15) until ,
where is a small constant.

Equation (15) defines the iterate implicitly as the
solution of a linear set of equations. The coefficient matrix

of this set is sparse, Hermitian and positive semi-defi-
nite, and hence these equations may themselves be efficiently
solved using iterative approaches. To date, we have used
the conjugate gradient (CG) algorithm for this solution, and
terminated it when the -norm of the relative residual becomes
smaller than a threshold [45].

D. Auxiliary Processes

The structure of the above algorithm provides some insight
into the expected feature-preserving behavior of the approach.
For the sake of simplicity, let us assume that . Then, the
solution of (15) is also the minimizer of the following quadratic
function with respect to

(16)

In this quadratic problem, ( ) act as spatially
varying weighting matrices. The diagonal elements of these ma-
trices correspond to auxiliary processes in the context of half-
quadratic regularization. First consider the role of . At
a location where there is an edge in the field, will
be large, hence the corresponding element of will be
small, essentially suppressing the derivative penalty at that lo-
cation through (16), and preventing smoothing across the edge.
Similarly, elements of provide weights which suppress
energy constraints at locations where there is an object. Overall,
the auxiliary processes associated withand can be viewed
as foreground/background and edge maps respectively, and may
be useful for interpretation of the formed image. Our algorithm
generates these processes during the iteration process without
any additional cost.

V. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our method on syn-
thetic and real SAR scenes. We will show examples for both
point-based feature enhancement and region-based feature
enhancement, and compare these results to conventional
reconstructions.
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Fig. 3. Mesh plots of synthetic point scatterer reconstructions. (a) Truth. (b) Conventional method. (c) Proposed method withk = 0:8, � = 1, � = 0. (d)
Proposed method withk = 0:1 � = 1, � = 0.

A. Algorithm Initialization and Parameter Selection

For all the examples, we initialize our algorithm with the
conventional polar format reconstruction. Although the itera-
tive scheme in (15) allows a variable step size, we use a fixed
step size of in our examples. In our experience, the al-
gorithm has always converged with this choice, hence varying
(reducing) the step size has not been necessary. We set the ap-
proximation parameter in (10) to be , which is small
enough not to affect the behavior of the solution. For the termi-
nation conditions of (15), we use and a CG tolerance
of . We choose the feature accentuation parame-
ters and in (11) based on subjective qualitative assess-
ment of the formed imagery, coupled with our imaging goals,
as described below. Our experience on a large database of SAR
images composed of similar scenes is that one set of parame-
ters chosen on a single image can be used for the entire data set.
In all the examples, we show the magnitude (in decibels) of the
reconstructed complex-valued field. We increase the sparsity of

by neglecting elements in whose magnitudes are
smaller than 1% of the largest element.

B. Synthetic Scene Reconstructions

First, we demonstrate the superresolution capability of
our method on a simple synthetic scene composed of eight
single-pixel scatterers with unit reflectivity magnitude and
random phase. The three-dimensional (3-D) mesh plot of the
magnitude of this pixel scene is shown in Fig. 3(a).
We simulate SAR returns from this ideal scene such that the
bandwidth of the data supports a resolution cell of pixels.
The conventional SAR reconstruction in Fig. 3(b) cannot
resolve four of the scatterers falling into one resolution cell, and
suffers from sidelobes. In this example, we want to accentuate
points, hence we set in (11). Fig. 3(c) and (d) show
the results of our method with two different choices ofin
(11). In these reconstructions, all the scatterers are resolved,
background is suppressed, and peak reflectivity magnitudes are
preserved [0.9552 in (c) and 0.9947 in (d)].

C. ADTS Data Reconstructions

We now show results on data from the MIT Lincoln Labora-
tory Advanced Detection Technology Sensor (ADTS) data set
[46], [47]. Since the ADTS data set provides formed imagery
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Fig. 4. Enhancement of point-based features. Resolution: top: 0.3 m, middle:
0.6 m, bottom: 1.2 m. (a) Conventional method. (b) Proposed method withk =

1, � = 0, and top:� = 14, middle:� = 7, bottom:� = 10. (c) Proposed
method withk < 1 and� = 0, with top:� = 14,k = 0:8, middle:� = 7,
k = 0:8, bottom:� = 10, k = 0:95.

only, we generate synthetic radar returns by computing Fourier
transform samples on a polar grid and then using the resulting
range profiles as the input to our reconstruction algorithm.

First, we show point-based feature enhancement results. In
this example, all of the reconstructed images consist of
complex-valued pixels. Since we want to accentuate point fea-
tures, we set in (11). The top row in Fig. 4 contains
0.3 m resolution reconstructions of a scene containing an M48
tank. Our reconstructions appear to produce images with accen-
tuated dominant peaks. Next, we reduce the bandwidth of the
data equally in range and cross-range, and attempt to generate
superresolution reconstructions. The middle and bottom rows
in Fig. 4 contain reconstructions where resolution has been re-
duced to 0.6 m and 1.2 m, respectively. Although precise super-
resolution arguments are not as easy for this complicated real
SAR scene as for the synthetic scene of Fig. 3, the peaks still ap-
pear to be better localized by our approach. Note that a particular
parameter choice in our method [such as that associated with the
image in the bottom row of Fig. 4(b)] produces reconstructions
which are visually very similar to the imagery obtained by the
spectral estimation-based superresolution method of [19]. For
a quantitative analysis of the improvements in scattering center
locating accuracy provided by our technique, please see [48].

Now, we demonstrate formation of images with enhanced re-
gion-based features. Since we want to accentuate homogeneous
regions, we set in (11). Usually, we do not set ,
since we have observed that its presence helps in preserving the
shadow regions. The images of this example consist of
complex-valued pixels. The top row in Fig. 5 contains ADTS
images of an M48 tank reconstructed by using the conventional

method and by our proposed scheme for different choices of.
By choosing , our algorithm can produce reconstructions
analogous to standard Tikhonov regularization, which we show
for comparison. When , our method produces images
where background fluctuations are suppressed, in contrast to the
conventional image. Furthermore, this is achieved without com-
promising the sharp boundaries, unlike Tikhonov-type recon-
structions. Similar observations apply to the reconstructions of
a natural scene consisting of trees, two corner reflectors, fields
and a road, shown in the bottom row of Fig. 5. Our method
forms images in which the tree shapes and shadows are very
distinguishable, and the background is quite smooth, whereas
the conventional SAR image suffers from considerable amount
of speckle.

D. URISD Reconstructions

Our final examples are from the XPATCH-generated Univer-
sity Research Initiative Synthetic Dataset (URISD) [49]. The
URISD provides phase histories and range profiles, which we
directly use as the input to our algorithm. Fig. 6 contains the
CAD model of a fire truck used for data generation, and the
corresponding reconstructed images. The conventional image in
Fig. 6(b) suffers from large sidelobes. Sidelobes are convention-
ally suppressed by windowing the data prior to image forma-
tion, however this reduces the effective resolution in the formed
image. Our reconstruction with a point-based prior is shown in
Fig. 6(c), and achieves sidelobe suppression as well as increased
resolvability of point scatterers. Our method with a region-based
prior, on the other hand, produces an image with an enhanced
object shape, as shown in Fig. 6(d).

VI. CONCLUSIONS

We have developed a method for complex-valued SAR
image reconstruction which enhances features in the image.
This is achieved by incorporating prior information about the
behavior of the field and the features of interest into image
formation through the minimization of an objective function.
The resulting optimization problem is challenging, due to both
the random-phase nature of the reflectivities, and the presence
of nonquadratic functions of the field, which are needed for
effective, robust feature enhancement. To address these issues,
we have developed a new quasi-Newton method, built upon a
half-quadratic-type regularization approach, which provides an
efficient numerical solution to the optimization problem. This
method is matched to the complex-valued nature of the SAR
problem. Experimental results demonstrate the effectiveness of
the proposed approach in forming SAR images with enhanced
features and suppressed artifacts. Our method is generalizable
to SAR scenarios requiring a more general observation model
than that considered in this paper, and also to imaging problems
other than SAR involving complex-valued quantities.

In this paper, we have concentrated on two types of features,
and one family of functions ( -norms) for the prior informa-
tion terms. However, our framework and iterative algorithm re-
main valid for a wider range of potentially useful choices. This
freedom could be exploited by letting a recognition system drive
image formation by choosing the type of prior information terms



630 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 4, APRIL 2001

Fig. 5. Enhancement of region-based features. (a) Conventional method. (b) Tikhonov-type reconstruction (i.e.,k = 2) with � = 4, � = 22. (c) Proposed
method withk = 1, and top:� = 5,� = 9, bottom:� = 4,� = 5. (d) Proposed method withk = 0:7, and top:� = 4, � = 6, bottom:� = 4,� = 4.

Fig. 6. Results with the URISD. (a) CAD model of the fire truck. (b) Conventional reconstruction. (c) Enhancement of point-based features withk = 0:8,
� = 22, � = 0. (d) Enhancement of region-based features withk = 0:8, � = 5, � = 9.

to be used based on training data, such that recognition perfor-
mance is optimized. Quantitative assessment of the impact of
our approach on automatic recognition performance is a subject
of our current research.
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