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Abstract

We adapt and apply a recently-developed region-enhanced synthetic aperture radar (SAR) image

reconstruction technique to the problem of passive radar imaging. One goal in passive radar imaging

is to form images of aircraft using signals transmitted by commercial radio and television stations that

are reflected from the objects of interest. This involves reconstructing an image from sparse samples

of its Fourier transform. Due to the sparse nature of the aperture, a conventional image formation

approach based on direct Fourier transformation results in quite dramatic artifacts in the image, as

compared to the case of active SAR imaging. The region-enhanced image formation method we consider

is based on an explicit mathematical model of the observation process; hence, information about the

nature of the aperture is explicitly taken into account in image formation. Furthermore, this framework

allows the incorporation of prior information or constraints about the scene being imaged, which makes

it possible to compensate for the limitations of the sparse apertures involved in passive radar imaging.

As a result, conventional imaging artifacts, such as sidelobes, can be alleviated. Our experimental results

using data based on electromagnetic simulations demonstrate that this is a promising strategy for passive

radar imaging, exhibiting significant suppression of artifacts, preservation of imaged object features, and

robustness to measurement noise.
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I. Introduction

Traditional synthetic aperture radar (SAR) systems transmit waveforms and deduce

information about targets by measuring and analyzing the reflected signals.1 The active

nature of such radars can be problematic in military scenarios since the transmission re-

veals both the existence and the location of the transmitter. An alternative approach is to

exploit “illuminators of opportunity” such as commercial television and FM radio broad-

casts. Such passive approaches offer numerous advantages. The overall system cost may

be cheaper, since a transmitter is no longer needed. Commercial transmitters are typically

much higher in elevation than the prevailing terrain, yielding coverage of low altitude tar-

gets. Most importantly, such a system may remain covert, yielding increased survivability

and robustness against deliberate directional interference. Such passive multistatic radar

1Ground-based systems looking at airborne targets are generally referred to as inverse SAR (ISAR); for brevity

we just use the term SAR.
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systems, such as Lockheed Martin’s Silent Sentry, have been developed to detect and track

aircraft. If one could additionally form images from such data, that would be useful in

identifying the observed aircraft through image-based target recognition. This provides an

alternative to the radar cross section signature-based automatic target recognition (ATR)

method proposed in [1]. Imaging methods are of interest in their own right beyond the

ATR application, since a system may encounter targets that are not present in the ATR

system’s library; in such cases, it would be good to have an image to present to a human

analyst. Recently there has been some interest in image reconstruction from passive radar

data. In particular, [2] contains a study of the application of well-known deconvolution

techniques to passive radar data. The work in [3, 4] proposes the use of time-frequency

distributions for passive radar imaging. Finally, [5] contains a derivation of Cramér-Rao

bounds for target shape estimation in passive radar.

Television and FM radio broadcasts operate at wavelengths that are much larger than

those typically employed in active radar imaging systems. For instance, an X-band radar

might operate at 10 GHz, whereas a passive radar system operates in the VHF and UHF

bands (55-885 MHz). From an imaging viewpoint, lower frequencies result in reduced cross-

range resolution; hence, to achieve high-resolution images, the target needs to be tracked

for some length of time to obtain data over a wide range of angles. Another consequence is

that low-frequency images contain extended features, and are not well-modeled by a small

number of scattering centers. Furthermore, the signals involved in such broadcasts have

much lower bandwidth than the signals used in active radar systems. As a result, given one

transmitter-receiver pair, the achievable range resolution is very poor. Hence one needs

to make use of multiple transmitters for reasonable coverage in the spatial spectrum.

As a result of these constraints and requirements, forming images of aircraft using

passive radar systems involves reconstructing an image from sparse and irregular samples

of its Fourier transform [2,6]. The sampling pattern in a particular data collection scenario

depends on the locations of the transmitters and the receiver, as well as the flight path of

the object to be imaged; hence it is highly variable. Conventional Fourier transform-based

imaging essentially sets the unavailable (due to the sparse aperture) data samples to zeros.

This results in various artifacts in the formed image, the severity of which depends on the
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specifics of the data collection scenario.

Motivated by the limitations of direct Fourier transform-based imaging in the context of

passive radar, an alternative idea of using a deconvolution technique borrowed from radio

astronomy (namely the CLEAN algorithm [7, 8]) has been explored in [2]. However, the

results of the study in [2], summarized in Sec. IV-D, suggest that the CLEAN algorithm

does not outperform direct Fourier reconstruction for passive radar imaging, due to the

following reasons. The CLEAN algorithm, as well as other deconvolution algorithms based

on similar sparse image assumptions, work best on images that are well-modeled as a set

of distinct point scatterers. Hence, such algorithms are well-suited to high-frequency

imaging of man-made targets, as the current on the scatterer surface tends to collect at

particular points. When using low frequencies of interest in passive radar, the images

are more spatially distributed. In addition, the complex-valued, and potentially random-

phase [9] nature of radar imaging also presents a complication for CLEAN. The complex-

valued characteristics of both the underlying image and the observation model produce

constructive and destructive interference effects that conspire to obscure true peaks in the

underlying reflectance, causing them to be missed by the CLEAN algorithm, and more

damagingly create spurious apparent peaks which mislead the algorithm.

To address these challenges, we adapt and use a recently-developed, optimization-based

SAR imaging method [10]. This approach uses an explicit model of the particular data

collection scenario. This model-based aspect provides significant reduction in the types of

artifacts observed in conventional imaging. More importantly, the optimization framework

contains non-quadratic constraints for region-based feature enhancement, which in turn

results in accurate reconstruction of spatially-extended features. Finally, this approach

explicitly deals with the complex-valued and potentially random-phase nature of radar

signals. We present experimental results on data obtained through electromagnetic sim-

ulations via the Fast Illinois Solver Code (FISC), demonstrating the effectiveness of the

proposed approach for passive radar imaging.

The remainder of this paper is organized as follows. Section II contains a review of the

data collection process in passive radar, focusing on the resulting challenges for imaging.

In Section III, we present our approach to passive radar image reconstruction. Section IV
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contains experimental results based on simulated data. In Section V, we discuss some of

the limitations of the scope of the approach presented here, and suggest possible extensions

for further exploration. Finally, Section VI concludes the paper.

II. DATA COLLECTION IN PASSIVE RADAR

In a bistatic radar, the transmitter and receiver are at different locations. The angle

between the vector from the target to the transmitter and the vector from the target to the

receiver, corresponding to the incident and observed directions of the signal, is called the

bistatic angle β. For monostatic radar, the bistatic angle is 0◦. Figure 1(a) illustrates the

bistatic radar configuration. The complex-valued data collected at transmitting frequency

f is a sample of the Fourier transform of the target reflectivity, and is equivalent to a

monostatic measurement taken at the bisecting direction and at a frequency of f cos(β/2)

[11,12]. In a polar coordinate system, the bisecting direction gives the azimuthal coordinate

in Fourier space, and (4πf/c) cos(β/2) gives the radial coordinate, where c is the speed

of light. As the receiver rotates away from the transmitter, the bistatic angle β increases

and the equivalent frequency f cos(β/2) decreases. When β is 180◦, the measurement is a

sample located at the origin in Fourier space. Measurements collected from a receiver that

rotates 360◦ around the target lie on a circle in Fourier space, passing through the origin.

The diameter of the circle is 4πf/c. Different incident frequencies give data on circles in

Fourier space with different diameters, as shown in Figure 1(b). If the transmitter rotates

around the target, the circle in Fourier space also rotates by the same amount and we

get more circles of data in Fourier space. Figure 1(b) illustrates the type of Fourier space

coverage obtained through angular and frequency diversity in a bistatic radar.

Unlike the case in active radar systems where one uses high-bandwidth signals, in passive

radar based on radio and television signals, one is limited to much lower bandwidths. FM

radio has a usable bandwidth of around 45 kHz, and although analog TV technically has

a bandwidth of 6 MHz, little of that is usable for radar purposes. The synchronization

(sync) pulses inherent in the analog TV signal result in extreme range ambiguities if one

attempts traditional matched filtering range compression, as first discovered by Griffiths

and Long in the mid-80s [13]. By the time the signal reaches the receiver, the only

significant usable signal is the TV carrier itself, which contains around 50% of the total
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Fig. 1. (a) Bistatic radar configuration. (b) Bistatic Fourier space coverage due to angular and frequency

diversity. The authors would like to thank Yong Wu, who created these figures for a DARPA annual

report while a student at the Univ. of Illinois.

power2 in the analog TV signal (see pp. 20-21 of [14]). We can essentially model the usable

TV signal as a simple sinusoid. Consequently, at each observation instant, we might think

of each transmitter-receiver pair providing essentially “one point” in the 2-D frequency

spectrum. A multistatic system exploiting multiple television and radio stations should

be used for obtaining the frequency diversity needed for reasonable-quality imaging. The

bistatic imaging principle illustrated in Figure 1 applies to each transmitter/receiver pair

in a multistatic system. The aircraft must be tracked and data collected over time to

obtain angular diversity, with each transmitter-receiver pair providing data on an arc in

2-D Fourier space. Different transmitters use different frequencies and are at different

locations, which leads to multiple arcs of Fourier data, providing further data diversity.

In the passive radar scenario explored in this paper, there are multiple transmitters but

just one receiver, although the basic idea could easily be expanded to include multiple

receivers if appropriate data links are available.

2Having so much power in the carrier may seem wasteful from the standpoint of modern communications, but

it should be remembered that at the time analog TV standards were developed, the receiver hardware had to be

exceedingly simple. Essentially, the transmitter needs to provide its own “local oscillator” to the receiver.
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In active synthetic aperture radar, either monostatic or bistatic, one conventional image

formation technique is to interpolate the data to a rectangular grid, followed by an inverse

Fourier transform. Fourier points outside of the available data support are simply set to

zero. In monostatic SAR, this is called the polar format algorithm [15–17]. The bistatic

version is similar, except the data is placed on the grid with the cos(β/2) warping described

above [12, 17]. We can consider a similar approach as the “conventional” method for

imaging in passive radar. In active monostatic radar imaging, the data in the spatial

frequency domain usually lie in a regular annular region. The regularity of this region

then leads to a sinc-like point spread function when the image is formed using a Fourier

transform. On the other hand, in multistatic passive radar, the “sampling pattern” in

the spatial frequency domain is much more irregular for a number of reasons. First of all,

since the transmitted signals are narrowband, each transmitter-receiver pair provides a

“point” rather than a “slice” of data. Secondly, to obtain reasonable azimuth resolution,

data are collected over a wider range of observation angles. Thirdly, the look angles of

different transmitter-receiver pairs lead to coverage in different areas of the spectrum. In

a related fashion, where the data lie in the spectrum depends on the flight path of the

object being imaged. As a result, when we form images using direct Fourier inversion,

the imaging artifacts that we encounter are more severe than in the case of active radar

systems. Furthermore, the nature of the artifacts cannot be determined just based on the

system design, since the flight path of the aircraft has a role as well.

III. REGION-ENHANCED PASSIVE RADAR IMAGING

Based on the issues outlined in the previous section, we propose a different approach for

passive radar imaging. Two main ingredients of this approach make it especially suited

for passive radar applications. First, it is model-based, meaning that it explicitly uses a

mathematical model of the particular observation process. As a result, it has a chance

of preventing the types of artifacts that are caused by direct Fourier inversion. Second,

it facilitates the incorporation of prior information or constraints about the nature of the

scenes being imaged. This is important, since passive radar imaging is inherently an ill-

posed problem. In particular, we focus on the prior information that at the low frequencies

of interest in passive radar, the scenes contain spatially-extended structures, corresponding
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to the actual contours of real aircraft. As a result, we incorporate constraints for preserving

and enhancing region-based features, such as object contours.

The approach we use for passive radar imaging is based on the feature-enhanced im-

age formation framework of [10], which is built upon non-quadratic optimization. This

approach has previously been used in active synthetic aperture radar imaging. Let us

provide a brief overview of feature-enhanced imaging, starting from the following assumed

discrete model for the observation process:

g = Tf + w (1)

where g denotes the observed passive radar data, f is the unknown sampled reflectivity

image, w is additive measurement noise, all column-stacked as vectors, and T is a complex-

valued observation matrix. The data can be in the spatial frequency domain, in which

case T would be an appropriate Fourier transform-type operator corresponding to the

particular sampling pattern determined by the flight path of the target. Alternatively

through a Fourier transform, one can bring the data into the spatial domain, and then use

the resulting transformed observations as the input to the algorithm. In this case, T would

be the point spread function corresponding to the particular data collection scenario. Our

experiments are based on the latter setup.

The objective of image reconstruction is to obtain an estimate of f based on the data g

in Eqn. (1). Feature-enhanced image reconstruction is achieved by solving an optimization

problem of the following form:

f̂ = arg min
f

{‖g − Tf‖2
2 + λ1‖f‖p

p + λ2‖∇|f |‖p
p

}
(2)

where ‖ · ‖p denotes the �p-norm (p ≤ 1), ∇ is a 2-D derivative operator, |f | denotes the

vector of magnitudes of the complex-valued vector f , and λ1, λ2 are scalar parameters.

The first term in the objective function of Eqn. (2) is a data fidelity term. The second and

third terms incorporate prior information regarding both the behavior of the field f , and

the nature of the features of interest in the resulting reconstructions. The optimization

problem in Eqn. (2) can be solved by using an efficient iterative algorithm [10], based on

half-quadratic regularization [18]. We describe a basic version of this algorithm in the

Appendix.
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Each of the last two terms in Eqn. (2) is aimed at enhancing a particular type of feature

that is of importance for radar images. In particular, the term ‖f‖p
p is an energy-type

constraint on the solution, and aims to suppress artifacts and increase the resolvability

of point scatterers. The ‖∇|f |‖p
p term, on the other hand, aims to reduce variability in

homogeneous regions, while preserving and enhancing region boundaries. The relative

magnitudes of λ1 and λ2 determine the emphasis on such point-based versus region-based

features. Therefore, this framework lets us reconstruct images with two different flavors:

using a relatively large λ1 yields point-enhanced imagery, and using a relatively large λ2

yields region-enhanced imagery. In the context of passive radar imaging, our primary

focus is to preserve and enhance the shapes of spatially-distributed objects. Hence, we

emphasize the use of the region-enhancement terms here.

IV. EXPERIMENTS

A. Electromagnetic Simulation using FISC

Asymptotic codes such as XPATCH [19] do not work well for aircraft-sized targets

at the low frequencies of interest in passive radar systems. Hence, the simulations in

the remaining sections invoke the Fast Illinois Solver Code (FISC) [20, 21], which solves

Maxwell’s equations via the method of moments. FISC is extremely particular about

the quality of CAD models it needs. In particular, FISC requires that each edge of each

triangular facet exactly match the edge of some other triangular facet. The model must

contain no internal or intersecting parts. Unfortunately, such models are rare; in particular,

readily available models which are perfectly adequate for XPATCH are often not suitable

for FISC.

Each experiment in this paper is conducted on two different targets: a VFY-218, and

a Dassault Falcon 20. A FISC compatible model of the VFY-218 comes standard as part

of the SAIC Champaign XPATCH/FISC distribution. For the Falcon 20, we started with

a Falcon 100 model purchased from Viewpoint Datalabs (now called Digimation), which

happened to be FISC compatible. The Falcon 20 is essentially a larger version of the

Falcon 100, so we used an approximate Falcon 20 model (as done in [2]) by scaling the

Falcon 100 model.
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(a) (b)

Fig. 2. Reference passive radar images reconstructed from “full” datasets using direct Fourier reconstruc-

tion. The images are 256 × 256. (a) VFY-218. (b) Falcon 20.

Given such models, we construct Fourier datasets through FISC runs. In our exper-

iments, we use only the HH-polarization data. The support of the data in the spatial

frequency domain will in general be limited by the observation geometry and system pa-

rameters. However, to establish an “upper bound” on the expected imaging performance,

let us first present the images we would obtain if we had a “full” dataset. To this end,

let us use the Fourier data corresponding to 211.25 MHz (NTSC television channel 13)

and incident and observed angles over the full 360 degree viewing circle. Such data would

cover a disk in the spatial frequency domain [2]. The magnitudes of the radar images of

the two targets, created by inverse Fourier transforming such data, are shown in Figure 2.

Of course, such rich data sets would be unavailable in practice. However, these reconstruc-

tions can serve as “reference scenes” with which to compare the results of our experiments

in the following sections, which are based on realistic data collection scenarios.

B. Experimental Setup

Figure 3 shows the locations of some high-power VHF television and FM radio stations

in the Washington, DC area that are used in our simulations. The center of the coordinate

system, where our hypothetical receiver is located, is the Lockheed Martin Mission Systems

facility in Gaithersburg, Maryland. Five hypothetical flight paths are shown. The left

column of Figure 4 shows the Fourier “sampling patterns” resulting from this particular

transmitter/receiver geometry for each of the five flight paths. The sampling pattern

indicates the support of the observed data in the spatial frequency domain for a particular

flight path. Hence, the observed data for each flight path consists of a specific subset of
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Fig. 3. Data collection geometry. VHF TV stations are represented with a ×; FM radio stations with a +;

and the receiver with a circle. The lines represent five hypothetical flight paths.

the data used for reconstructing the images of Figure 2, whose contents are determined

by the corresponding sampling pattern. The middle and right columns in Figure 4 show

the magnitude of the corresponding point spread functions (PSFs) given by the inverse

Fourier transform of the sampling patterns. The middle column shows magnitude on a

linear scale, while the right column shows magnitude on a logarithmic scale to elucidate

low-level detail in the sidelobes. Note that these sampling patterns, or equivalently PSFs,

are used in specifying the observation matrix T in Eqn. (1). The next section presents

results based on data associated with each of these flight paths.

C. Region-Enhanced Imaging Results

In all of the experiments presented here, for region-enhanced imaging we use p = 1 in

Eqn. (2). For simplicity, we set λ1 = λ2 in all examples. This relative parameter choice

appears to yield a region-enhanced image, together with suppression of some background

artifacts. We choose the absolute values of these parameters based on subjective qualitative

assessment of the formed imagery. Automatic selection of these parameters is an open

research question. We do not specify the absolute values of λ1 and λ2 in the examples we

present here, since those numbers are not that meaningful, as they depend on the scaling
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of the data used.

Let us first consider the flight path corresponding to the sampling pattern in the bottom

row in Figure 4. The corresponding “conventional” image of the VFY-218, obtained by

direct Fourier transformation of the data, is shown in the top row of Figure 5(a). Points

in the spatial frequency domain where observations are unavailable are set to zero. This

is equivalent to convolving the reference image in Figure 2(a) with the PSF in the bottom

row of Figure 4. As compared to the “reference” image of Figure 2(a), the direct Fourier

reconstruction in the top row of Figure 5(a) contains severe imaging artifacts, resulting in

suppression of some of the characteristic features of the imaged object. In this example we

have not added any noise to the measurements. Hence, in the context of the observation

model in Eqn. (1), we do not have any measurement noise. As a result, one can consider

applying the pseudoinverse of the observation matrix, namely T†, to the data to obtain a

reconstruction f̂PINV = T†g. The pseudoinverse reconstruction obtained in this manner is

shown in the top row of Figure 5(b). The region-enhanced reconstruction is shown in the

top row of Figure 5(c). Both the pseudoinverse and the region-enhanced reconstructions

provide reasonable results in this noise-free case, with the region-enhanced reconstruction

providing somewhat better suppression of sidelobe artifacts. It is well-known that pseu-

doinverse solutions are very sensitive to noise, especially when the observation model re-

sults in an ill-conditioned matrix. The bottom row of Figure 5 shows the direct Fourier, the

pseudoinverse, and the region-enhanced reconstructions, when we have a small amount of

measurement noise.3 The pseudoinverse solution breaks down in this case, and is in general

useless in practical scenarios where observation noise is inevitable. The region-enhanced

reconstruction exhibits robustness to noise, and preserves the characteristic features and

shape of the VFY-218, despite the noisy sparse-aperture observations.

Let us now consider all the flight paths in Figure 4. In Figure 6, we show the reconstruc-

tions for the VFY-218. In columns (a) and (b), we have a small amount of measurement

noise, resulting in a signal-to-noise ratio (SNR) of 30 dB.4 Figure 6(a) and Figure 6(b)

3In these experiments we have added the noise after bringing the data to the spatial domain. Ideally, measurement

noise should be added to the phase histories. However, we do not expect that to have any noticeable effect on our

results.
4This should be interpreted as an average SNR, since data points may differ in power, yet the measurement

noise on each data point has the same variance.
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contain the direct Fourier, and the region-enhanced images, respectively. There is a row-

to-row correspondence between Figure 4 and Figure 6, in terms of the flight paths. We

observe that region-enhanced imaging produces reconstructions that preserve the features

of the reference image of Figure 2(a) in a much more reliable way than direct Fourier

imaging. In columns (a) and (b) of Figure 7, we show our results for the Falcon 20,

again with data having an SNR of 30 dB, where we can make similar observations to the

VFY-218 case. In columns (c) and (d) of Figures 6 and 7, we show reconstructions of

the VFY-218 and the Falcon 20 respectively, for a noisier scenario where SNR = 10 dB.

Region-enhanced imaging appears to produce reasonable results in this case as well.

We also observe that the direct Fourier images in the bottom three rows of Figures 6

and 7, while blurry, are clearer than the images in the top two rows. Looking at the

corresponding sampling patterns in Figure 4, the primary difference seems to be that the

paths corresponding to the top two rows keep the receiver and the transmitters on the same

side of the target, yielding a quasi-monostatic (small bistatic angle) geometry, whereas in

the bottom three rows, the target flies between the receiver and some of the transmitters,

yielding large bistatic angles and wider effective coverage in frequency space. There are

two important notes here:

1. The nature of the artifacts that may be caused by direct Fourier imaging depends on

the flight path of the target being imaged, and hence may not be easily predicted prior to

data collection. On the other hand, in Figures 6 and 7 we observe that region-enhanced

images corresponding to different flight paths are much more similar to each other.

2. The paths where the target crosses between the transmitter and receiver, which give the

best performance with conventional direct Fourier reconstruction in our simple simulation

as shown in the bottom three rows of Figures 6, and 7, would be extraordinarily difficult

to make work in practice. The direct signal from the transmitter is orders of magnitude

larger than the reflected path. Passive radar systems usually alleviate this problem by

placing the transmitter in an antenna null (either due to the physical shape of the antenna,

or using adaptive nulling techniques in the case of an electronically beamformed array),

and maybe also employing some additional RF cancellation techniques. Even with such

techniques, the dynamic range requirements are stressing. It would be quite challenging to
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simultaneously null the direct path signal and receive the reflected signal from an aircraft

that is close to the transmitter in angle. For most practical systems, it would be desirable

to stick with the quasi-monostatic “over the shoulder” geometry exemplified by the top

two rows of Figures 4, 6, and 7. Therefore, it is important to have a technique like

region-enhanced imaging, which can generate reasonable images in such quasi-monostatic

scenarios.

On a laptop PC with a 1.80 GHz Intel Pentium-4 processor, the average computation

time for the region-enhanced images presented (each composed of 256 × 256 pixels) was

around 100 seconds, using non-optimized MATLAB code.

Finally, let us test the robustness of this image formation technique to an extreme

amount of measurement noise. In Figure 8, we consider a scenario where SNR = -10 dB,

and for the sake of space, we consider only one of the objects, namely the VFY-218,

and only one of the flight paths, namely the one in the bottom row of Figure 4. The

conventional image in Figure 8(a) is dominated by noise artifacts. On the other hand,

the region-enhanced image in Figure 8(b) preserves the basic shape of the aircraft, despite

some degradation in the image due to noise.

D. Experiments with CLEAN

To illustrate the need for a sophisticated technique like the region-enhanced approach

used in the previous section, we conclude our experiments with some results using a

simple CLEAN algorithm [7]. In the CLEAN algorithm, one finds the point with the

largest magnitude in the “dirty map” (i.e. the conventional direct Fourier transform

reconstruction) to be CLEANed, shifts the PSF of the system to that point, and normalizes

the PSF so that its origin equals the value of the image at the found peak multiplied by

a parameter called the loop gain. This shifted and normalized PSF is subtracted from the

dirty map. A single point, corresponding to where the peak was in the dirty map, is added

to a “clean map” which is built up as the algorithm proceeds. The procedure is iterated

until some stopping criterion is met.

Figure 9 shows the results5 of 400 iterations of the CLEAN algorithm on the VFY-218

5The raw CLEAN images are sparse and may be difficult to reproduce in print in their original state. Hence,

the magnitudes of the radar images have been blurred by a Gaussian kernel, and the images are displayed on a
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and the Falcon 20, based on noiseless data. We use a loop gain of 0.15, which has been

a typical choice in radio astronomy applications of CLEAN. Again, there is a row-to-row

correspondence between Figure 9 and Figure 4, in terms of the flight paths. These results

should be compared to those of direct Fourier reconstruction and region-enhanced imaging

in Figures 6 and 7. Although CLEAN has excelled in a number of high-resolution imaging

scenarios, it does not seem to outperform standard direct Fourier reconstruction in the

context of passive radar imaging. On the other hand, region-enhanced imaging appears

to provide significantly improved imagery as compared to both Fourier reconstruction and

CLEAN.

V. LIMITATIONS AND POSSIBLE EXTENSIONS

In this paper, we have assumed that the direct signal from the transmitter is available to

provide a phase reference for the reflected signal from the target. More problematically, we

have assumed that we know the passive radar observation model exactly, which involves

knowledge about not only the transmitters and the receiver, but also about the flight path

of the target being imaged. In practice, information about the target flight path is obtained

from a tracking system, and will contain uncertainties. The uncertainties in the estimated

path will be manifest as phase errors in the data. Considering that the phase of the

Fourier transform of an image contains significant information, it is important to develop

image formation techniques that can deal with such uncertainties in the observation model.

The SAR community refers to such techniques as autofocus algorithms [17, 22]. Such an

extension of the image formation technique we presented constitutes a challenging direction

for future work. Maneuvering targets that may be rolling, pitching, and yawing in complex

ways would present further challenges, even if the target positions over time were exactly

known.

Our imaging model assumes isotropic point scattering. However, when the imaged ob-

ject is observed over a wide range of angles, the aspect-dependent amplitude of scattering

returns can become significant. Performing region-enhanced passive radar imaging under

aspect and/or frequency-dependent anisotropic scattering would be an interesting exten-

sion of our work. Along these lines, the use of time-frequency transforms for wide-angle

square-root scale to make sure that faint features appear after copying.
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imaging, motivated by the passive radar application, is discussed in [3], although the

authors of [3] do not explicitly discuss how to address sparse apertures.

Our final remark is on frequency-dependent scattering. The tomographic radar model [12,

16] suggests that bistatic data at one frequency can be used to synthesize data at multiple

lower frequencies. This assumption of frequency-independent scattering was employed in

two places in our paper. It was used both in the construction of the observation model, and

also in the creation of the simulated data. Since FISC runs are computationally expensive,

we took advantage of this assumption and conducted a single run at 211.25 MHz. The

fidelity of our simulations could be improved by conducting appropriate separate FISC

runs for all the transmitters employed, even if no changes are made to the model used to

form images from the data. A good avenue for future work would be to find out how far

one could push the underlying bistatic equivalence theorems [23–25] in simulating data,

before the disadvantage of lost accuracy due to frequency-dependent scattering exceeds

the advantage of shorter computation times.

VI. CONCLUSION

We have explored the use of an optimization-based, region-enhanced image formation

technique for the sparse-aperture passive radar imaging problem. Due to the sparse and

irregular pattern of the observations in the spatial frequency domain, conventional direct

Fourier transform-based imaging from passive radar data leads to unsatisfactory results,

where artifacts are produced and characteristic features of the imaged objects are sup-

pressed. The region-enhanced imaging approach we use appears to be suited to the pas-

sive radar imaging problem for a number of reasons. First, due to its model-based nature,

the types of artifacts caused by conventional imaging are avoided. Second, it leads to

the preservation and enhancement of spatially-extended object features. Third, unlike a

number of deconvolution techniques, it can deal with the complex-valued nature of the

signals involved. Our experimental results based on data obtained through electromag-

netic simulations demonstrate the effectiveness and promise of this approach for passive

radar imaging.
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Appendix

Numerical Algorithm for Region-Enhanced Imaging

To find a local minimum of the optimization problem in Eqn. (2), we use a basic version

of the numerical algorithm proposed in [10]. This algorithm is based on ideas from half-

quadratic regularization [18], and can be shown to yield a quasi-Newton scheme with a

special Hessian approximation. The algorithm is convergent in terms of the cost functional.

In this Appendix, we only present the most basic form of this algorithm. Our goal here is

only to provide a recipe for implementation, rather than a discussion of the properties of

this numerical scheme.

To avoid problems due to non-differentiability of the �p-norm around the origin when

p ≤ 1, we use the following smooth approximation to the �p-norm in Eqn. (2):

‖z‖p
p ≈

K∑
i=1

(|(z)i|2 + ε)p/2 (3)

where ε ≥ 0 is a small constant, K is the length of the complex vector z, and (z)i denotes

its i-th element. For numerical purposes, we thus solve the following slightly modified

optimization problem:

f̂ = arg min
f

{
‖g − Tf‖2

2 + λ1

N∑
i=1

(|(f)i|2 + ε
)p/2

+ λ2

M∑
i=1

(|(∇|f |)i|2 + ε)p/2

}
. (4)

Note that we recover the original problem in Eqn. (2) as ε → 0. The stationary points of

the cost functional in Eqn. (4) satisfy:

H(f)f = THg (5)

where:

H(f) � THT + λ1Λ1(f) + λ2Φ
H(f)∇TΛ2(f)∇Φ(f) (6)

Λ1(f) � diag

{
p/2

(|(f)i|2 + ε)1−p/2

}

Λ2(f) � diag

{
p/2

(|(∇|f |)i|2 + ε)1−p/2

}
Φ(f) � diag {exp(−jφ[(f)i])}
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Here φ[(f)i] denotes the phase of the complex number (f)i, (·)H denotes the Hermitian

of a matrix, and diag{·} is a diagonal matrix whose i-th diagonal element is given by

the expression inside the brackets. Based on this observation, the most basic form of the

numerical algorithm we use is as follows:

H
(
f̂ (n)

)
f̂ (n+1) = THg (7)

where n denotes the iteration number. We run the iteration in Eqn. (7) until

‖f̂ (n+1) − f̂ (n)‖2
2/‖f̂ (n)‖2

2 < δ, where δ > 0 is a small constant.
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[7] J. Högbom, “Aperture synthesis with a non-regular distribution of interferometer baselines,” Astronomy and

Astrophysics Supplement Series, vol. 15, pp. 417–426, 1974.

[8] U. J. Schwarz, “Mathematical-statistical description of the iterative beam removing technique (method

CLEAN),” Astronomy and Astrophysics, vol. 65, pp. 345–356, 1978.

[9] D. C. Munson Jr. and J. L. C. Sanz, “Image reconstruction from frequency-offset Fourier data,” Proc. IEEE,

vol. 72, no. 6, pp. 661–669, June 1984.
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Fig. 4. Left column shows Fourier sampling patterns associated with five different flight paths. Remaining

columns show the magnitude of the PSFs associated with the sampling patterns. The middle column uses

a linear scale, while the right column uses a logarithmic scale to show fine detail. The PSFs are 256×256.
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(a) (b) (c)

Fig. 5. Reconstructions of the VFY-218 based on data restricted to the Fourier sampling pattern shown

in the bottom row of Figure 4. Top row: noiseless data. Bottom row: noisy data. (a) Direct Fourier

reconstruction. (b) Pseudoinverse reconstruction. (c) Region-enhanced reconstruction.
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(a) (b) (c) (d)

Fig. 6. Reconstructions of the VFY-218 based on data restricted to the Fourier sampling patterns shown

in Figure 4. (a) Direct Fourier reconstructions, SNR = 30 dB. (b) Region-enhanced reconstructions,

SNR = 30 dB. (c) Direct Fourier reconstructions, SNR = 10 dB. (b) Region-enhanced reconstructions,

SNR = 10 dB.
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(a) (b) (c) (d)

Fig. 7. Reconstructions of the Falcon 20 based on data restricted to the Fourier sampling patterns shown

in Figure 4. (a) Direct Fourier reconstructions, SNR = 30 dB. (b) Region-enhanced reconstructions,

SNR = 30 dB. (c) Direct Fourier reconstructions, SNR = 10 dB. (b) Region-enhanced reconstructions,

SNR = 10 dB.
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(a) (b)

Fig. 8. Reconstructions of the VFY-218 based on data (with SNR = -10 dB) restricted to the Fourier

sampling pattern shown in the bottom row of Figure 4. (a) Direct Fourier reconstruction. (b) Region-

enhanced reconstruction.
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(a) (b)

Fig. 9. Results of 400 iterations of the CLEAN algorithm on noiseless data with a loop gain of 0.15.

(a) VFY-218. (b) Falcon 20.

June 4, 2004 DRAFT


