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ABSTRACT

In this paper we propose a method for discrimination
of underlying textural structures from spotlight-mode
synthetic aperture radar (SAR) returns by using a
tomographic data acquisition model as the basis for sta-
tistical reasoning. We model the hypothesized textures
by statistically self-similar processes and formulate the
problem in a hypothesis testing framework in the SAR
range profile domain without any image formation.
We achieve a near-optimal, computationally efficient
evaluation of the likelihood test by transforming the
data into the multiscale domain.

1. INTRODUCTION

A critical element of various SAR tasks, such as
recognition of man-made objects in background clut-
ter or classification of natural terrain types is to reason
about the underlying structures based on their textu-
ral properties. Traditionally, such statistical inference
is performed on the formed imagery [1, 2]. But image
formation is not necessarily required in some problems
e.g. in discrimination tasks and, in addition to adding
potentially unnecessary computation, may actually in-
troduce undesirable artifacts into the formed image,
which must then be compensated for in subsequent
processing steps. We examine the use of a tomographic
data model as the basis for direct statistical inference
based on the radar returns rather than on the formed
image. We assume a spotlight-mode SAR sensor on
an airborne platform, designed for imaging a relatively
small ground patch, and construct a likelihood-based
discriminator based on range profiles obtained from
phase histories.

Our interest is in discrimination, for simplicity we
focus on discriminating different terrain types with ho-
mogeneous textural structures here. SAR images of
two such natural terrain classes are shown in Figure 1.
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We model the underlying textures by fractal random
fields. Fractal-based descriptions of image texture have
previously been used to characterize natural visual im-
agery [3], and SAR imagery [4]. We carry this charac-
terization into the projectional data domain where we
build a likelihood-based discriminator. This discrim-
inator however is not computationally efficient. We
transform the range profile magnitude data into the
multiscale domain, where we achieve efficient process-
ing by approximate evaluation of the likelihoods. Our
method is in the lines of a previous work [5] in discrim-
ination of fractal fields from tomographic data. We
essentially extend that approach to the SAR problem,
and demonstrate its use on natural scenes. Since our
approach does not require image formation, we do not
have to collect full-aperture data for a decision. Our
aim here is to achieve the probability of detection ver-
sus false alarm performance of an image domain dis-
criminator, but use much less data than that collected
from the full aperture. We also demonstrate the po-
tential of our approach to be used as a sequential test,
running in parallel with data collection.
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Figure 1: SAR images of natural terrain. Left: grass.
Right: forest.

2. SPOTLIGHT-MODE SAR OBSERVATION
MODEL

Spotlight-mode SAR data are collected by a radar
traversing a flight path and continuously pointing in
the direction of a ground patch. At each point corre-
sponding to equal angular increments, high-bandwidth



pulses are transmitted and returns from the ground
patch are then received and processed. We will make
the typical assumption that linear FM chirp signals are
transmitted by the radar. After some preprocessing
and certain approximations, the phase history return
from a circular patch of radius r at the kth transmis-
sion point is given by [6]

Zk(t) =
∫ r

−r
pk(s)exp

{
−j 2

c
(w0 + 2α(t− 2R0

c
))s
}
ds

(1)
where t denotes time, R0 is the instantaneous range
to the patch center, s is the difference between the in-
stantaneous range to a point in the scene and R0, c
is the speed of light, w0 is the radar FM chirp carrier
frequency, 2α is the chirp rate, and pk(s) is the sum
of complex reflectivities of all points that are equidis-
tant from the radar at a particular transmission point.
Thus the observations Zk(t) are intimately related to
the projections pk(s) = (Tkf)(u, v) of the underlying
field f(u, v). Here Tk is a projection operator. Now,
taking into account the observation kernel in (1) and
the projection operation, we can write the following
sampled data relationship after appropriate discretiza-
tion
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where N is the total number of observation points,
f is the underlying sampled reflectivity field column
stacked as a vector, Zk are the discrete versions of the
data in (1) and Ck are the discrete observation kernels
relating the underlying field to radar returns. Note
that since (1) is a band-limited Fourier transform of
the projections in the spatial variable s, the data Z are
in the (spatial) frequency domain. We can also obtain
a spatial domain relationship by defining z = F−1Z.
Here F is the matrix performing a DFT on each radar
return. We can now write the following projectional
data relationship

z = Tf (3)

where T = F−1C represents a discrete “SAR projec-
tion operator”. Now the problem is to reason about
f based on the phase histories Z, or range profiles z.
In the following sections we will be focusing on range
profile data only.

3. FRACTAL TEXTURE MODELS

We model each natural terrain type by a 1/f fractal
field of a particular fractal dimension. The measured
power spectral density (PSD) Sf (ωu, ωv) of a 1/f frac-
tal field f has the following form [7] :

Sf (ωu, ωv) =
σ2
f

|ω|γ (4)

where ω is the angular frequency, σ2
f is a constant, and

γ is the spectral parameter.
We consider the simplest examples of 1/f processes,

namely fractional Brownian motions (fBms). In fact,
since fBm is a nonstationary random process, its PSD
is formally undefined; however Flandrin [8] has devel-
oped an analytical framework for the generalized PSD
of fBm. For any such process, f(u, v) has Gaussian
increments with mean zero, and a variance that de-
pends only on the distance between the increments,
i.e. f(u1, v1)− f(u2, v2) ∼ N (0,Σinc) where

Σinc ∝ ((u1 − u2)2 + (v1 − v2)2)H , (5)

and H is the so-called Hurst parameter, with 0 < H <
1. It is also true that γ = 2H + 2. The fractal dimen-
sion D which is commonly used to capture textural dif-
ferences between fractal fields, is defined as D = 3−H.

In Figure 2, covariance matrices for real-valued frac-
tal fields with different spectral parameters (hence dif-
ferent fractal dimensions) are illustrated. Note that
the covariance matrix on the right, corresponding to a
larger spectral parameter has wider bands, and a larger
number of significant bands which are implications of
longer range correlation in the fractal field in the verti-
cal and horizontal directions. Sample fractal fields with
these covariance structures are shown in Figure 3. Note
that the left field in the figure has a more noise-like be-
havior (like grass), while the longer range correlation
structure is obvious in the right one (like forest). We
model the magnitudes of the terrain reflectivities with
fractal fields of a certain fractal dimension.
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Figure 2: The grayscale plot (black: maximum, white:
minimum) of the covariance matrices for the fractal
fields. Left: γ = 2. Right: γ = 3. The matrices are
1024× 1024, since the fields are 32× 32.
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Figure 3: Realizations of 32 × 32 fractal fields. Left:
γ = 2. Right: γ = 3.

4. THE DISCRIMINATION PROBLEM

We now formulate the binary discrimination prob-
lem in a hypothesis testing framework in the data do-
main. Let fi be the complex-valued underlying field
corresponding to the ith terrain hypothesis. We will
model fi with a uniform, spatially uncorrelated phase,
and a fractal magnitude with covariance Σi, where Σi
corresponds to a particular spectral parameter γi. Un-
der the two hypotheses, the noisy range profile obser-
vations y are given by

H0 : y = Tf0 + n H1 : y = Tf1 + n (6)

where the noise n is uncorrelated with the fields and its
real and imaginary parts are distributed as N (0, σ2I).

We aim to discriminate the terrain types based on
the difference in their fractal correlation structure.
However due to the uniform phase property of the un-
derlying fields, the real and imaginary parts of the com-
plex range profiles, which are projectional observations
of the field, cannot be discriminated based on their
second order properties, i.e. correlation structure. The
magnitudes of the range profiles however still carry the
fractal properties of the underlying textures. For that
reason, we will construct a likelihood-based discrimina-
tor in terms of the observed range profile magnitudes ỹ.
In this discriminator we will need the covariance ma-
trix Σỹ|fi of the magnitude data. The uniform phase
structure of the fields and the non-linear transforma-
tion in obtaining the range profile magnitudes how-
ever prevents us from obtaining this matrix exactly in
terms of the fractal field covariance matrices Σi. So we
use an approximate magnitude data covariance matrix
Σ̂ỹ|fi = |TΣiT ∗ + 2σ2I|, where “∗” denotes complex
conjugate transpose. We form a log-likelihood func-
tion L(γi) corresponding to hypothesis Hi satisfying

L(γi) ∝ −ln(|Σ̂ỹ|fi |)−(ỹ−µỹ|fi)T Σ̂−1
ỹ|fi(ỹ−µỹ|fi) (7)

where µỹ|fi is the mean of the magnitude data. The
log-likelihood decision rule for discriminating between
the two fields is given by:

L(γ1)− L(γ0)
γ1

>
<
γ0

δ (8)

where δ is a threshold parameter that controls the
tradeoff between the probability of detection and the
probability of false alarm.
5. MULTISCALE DISCRIMINATION OF SAR

TEXTURES

The likelihood test described above requires the de-
terminant and inverse of large and full covariance ma-
trices. This is illustrated by the sparsity pattern of a
typical range profile magnitude model covariance ma-
trix Σ̂ỹ|fi in the left half of Figure 4. In this figure,
elements with magnitudes larger than 1% of the max-
imum value in the matrix are shown. The existence
of many such elements in the covariance matrix makes
computation of the determinant and inverse difficult,
and hence direct computation of the likelihoods inap-
propriate. Alternatively, we propose transforming the
range profile magnitudes corresponding to each radar
return into the multiscale domain by a 1-dimensional
Wavelet transform. To this end, let W be a matrix
whose blocks perform such a transform on each range
profile. Then the multiscale noisy data are given by
ν = Wỹ. The log-likelihoods in the multiscale domain
obey:

Lms(γi) ∝ −ln(|Σ̂ν|fi |)− (ν−µν|fi)T Σ̂−1
ν|fi(ν−µν|fi).

(9)
The sparsity pattern of the multiscale data model
covariance matrix, Σ̂ν|fi = W Σ̂ỹ|fiW

T (using the
Daubechies wavelet D10, and after ordering the ele-
ments in ν from coarse to fine scales) is shown in the
right half of Figure 4. Clearly, this matrix is much
sparser than the original data model covariance matrix,
which suggests an approximate likelihood calculation
in this domain neglecting the insignificant elements in
the covariance matrix would yield an accurate result
and also be computationally efficient. We will present
the results corresponding to such an approximate mul-
tiscale test in the next section.

0 50 100 150

0

50

100

150

nz = 14704
0 50 100 150

0

50

100

150

nz = 456

Figure 4: Sparsity patterns of the data model covari-
ance matrix. Left: before the multiscale transform.
Right: after the multiscale transform.



6. EXPERIMENTAL RESULTS

We now use our method to discriminate between
two natural terrain types, grass and forest, whose SAR
images are shown in Figure 1. Based on the estimated
correlation structure of these textures, we have decided
to model the magnitude of the grass texture by a frac-
tal field with a spectral parameter γ = 1.5, and the
magnitude of the forest texture with γ = 2.5. Note
that the value of γ we have chosen for grass is outside
the range of values implied by 0 < H < 1. This is due
to the lack of correlation in the grass texture. Figure 5
shows the spatial correlation structure of the two natu-
ral textures estimated from despeckled images. These
are in agreement with the parametric fractal models
we have chosen to represent them.
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Figure 5: Spatial correlation structures. Top left:
grass. Top right: forest. Bottom left: fractal field
γ = 1.5. Bottom right: fractal field γ = 2.5.

We now use the full-covariance test in (7) and an ap-
proximate multiscale test based on (9) to discriminate
between 256 grass and forest fields. Our likelihood-
based discriminators use a pre-computed, parametric
model covariance matrix for each hypothesis. In our
multiscale discriminator, we will be using just the di-
agonal elements of the multiscale data model covari-
ance matrix for an approximate calculation of the like-
lihoods.

We obtain SAR returns corresponding to the fields
by using a discrete spotlight-mode SAR observation
model based on system parameters given in [9]. We
contaminate the observations so that the SNR is 5 dB,
and use only 15% of the data collected from the full
aperture. We normalize the energy of the data cor-
responding to the two hypotheses so that discrimina-
tion is done based on textural differences rather than
on energy differences. For comparison we also apply
two conventional methods [3] for texture discrimina-

tion based on fractal dimension. These methods work
in the reconstructed image domain. The first method
uses the relationship in (4) to do a linear regression
on the logarithm of the observed PSD as a function
of frequency to determine the fractal dimension. The
second conventional method (variance scaling method)
estimates the fractal dimension with a logarithmic least
squares technique based on the relationship in (5) re-
lating the expected value of the mean-square deviation
to displacements.

The receiver operating characteristic (ROC) curves
of the approximate multiscale test and that of the full-
covariance test along with those of the conventional
methods applied to the same data are shown in the
left half of Figure 6. The performance of the ap-
proximate multiscale test is close to the full-covariance
test, although it is computationally much more effi-
cient. The conventional tests perform poorly as com-
pared to the likelihood-based discriminators. We have
used only 15% of the data collected from a full aperture
for all methods here. While keeping the same, reduced
amount of data for the likelihood-based discriminators,
we now test the performance of the conventional meth-
ods with full-aperture data. The ROCs for this case
are illustrated in the right half of Figure 6. This figure
shows the likelihood-based discriminators achieve the
performance of the conventional methods using much
less data than they do.
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Figure 6: ROCs of proposed and conventional meth-
ods (SNR=5dB). Left: all methods using 15% of full-
aperture data. Right: conventional methods using full-
aperture data

The diagonal approximation of the multiscale data
covariance matrix suggests implementing a sequential
discriminator. Due to the decorrelated structure in-
herent in this approximation, the likelihood can be up-
dated after the reception of each data portion, with-
out the need to recalculate the whole likelihood again.
This incremental computation could be used to make
a decision before having to wait for all the data. Se-
quential processing of SAR data has also been proposed
in [10] for rapid detection. We now show the sequential



calculation of the likelihoods using our approximate
multiscale discriminator. As we collect data from a
scene, we compute the difference in the approximate
multiscale likelihoods, L̂ms(forest) − L̂ms(grass), and
update this value at the reception of every new data
portion. Figure 7 shows this computation for SAR re-
turns (SNR=5 dB) from two scenes. The horizontal
axis shows the amount of data collected. For the solid
curve the data comes from a forest field, and as we
collect more data L̂ms(forest) − L̂ms(grass) becomes
larger. For the dashed curve the underlying field is
actually grass, and the likelihood difference becomes
more negative with data collection, making a correct
decision easier. However, for any data set, we can also
make an early decision by setting two threshold curves
and declaring the sample to be forest if the likelihood
difference exceeds the top threshold, and to be grass if
it goes below the bottom threshold before all the data
are collected. If the threshold is exceeded, this means
the data at hand carries characteristic features of one
of the hypothesis as opposed to the other, and there is
no need to collect all the data. If the threshold is not
exceeded at a certain time however, this would mean
we need more data for a decision.
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Figure 7: Sequential likelihood test.

7. CONCLUSION

We have developed an approach for discrimination
of natural terrain types from noisy and limited SAR
returns. Our approach works in the multiscale range
profile data domain and is computationally efficient.
Furthermore with particular approximations it can be
implemented as a sequential test. This method can be
a promising alternative to existing methods used for
fast prescreening purposes in the process of SAR data
collection.

We are currently investigating other rational ways of
constructing a likelihood function and approximating
the range profile magnitude data covariance matrices in
order to improve the performance of our discriminator.
We are also interested in considering non-homogeneous
textural structures in our framework, which is moti-

vated by problems like target detection and discrimi-
nation.

8. REFERENCES

[1] M. C. Burl, G. Owirka, and L. M. Novak, “Tex-
ture discrimination in synthetic aperture radar im-
agery,” Proceedings of the Twenty-Third Asilomar
Conference on Signals, Systems and Computers,
pp. 399-404, Nov. 1989.

[2] W. W. Irving, L. M. Novak, and A. S. Willsky,
“A multiresolution approach to discrimination in
SAR imagery,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 33, pp. 1157-1169,
Oct. 1997.

[3] A. P. Pentland, “Fractal-based description of nat-
ural scenes,” IEEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-6, pp. 661-674, Nov. 1984.

[4] C. V. Stewart, B. Moghaddam, K. J. Hintz, and
L. M. Novak, “Fractional Brownian Motion Models
for Synthetic Aperture Radar Imagery Scene Seg-
mentation,” Proc. IEEE, vol. 81, pp. 1511-1522,
Oct. 1993.

[5] M. Bhatia, W. C. Karl, and A. S. Willsky,
“Wavelet-based multiscale stochastic models for ef-
ficient tomographic discrimination of fractal fields,”
Proceedings of the 1994 IEEE International Con-
ference on Image Processing, pp. 135-139, Nov.
1994.

[6] D. C. Munson Jr., J. D. O’Brien, and W. K. Jenk-
ins, “A tomographic formulation of spotlight-mode
synthetic aperture radar,” Proc. IEEE, vol. 71, pp.
917-925, Aug. 1983.

[7] M. F. Barnsley, R. L. Devaney, B. B. Mandelbrot,
H.-O. Peitgen, D. Saupe, and R. F. Voss, The Sci-
ence of Fractal Images, Springer-Verlag, 1988.

[8] P. Flandrin, “On the spectrum of fractional Brow-
nian motions,” IEEE Trans. Informat. Theory, vol.
35, pp. 197-199, Jan. 1989

[9] M. Çetin and W. C. Karl, “A statistical tomo-
graphic approach to synthetic aperture radar im-
age reconstruction,” Proceedings of the 1997 IEEE
International Conference on Image Processing, pp.
845-848, Oct. 1997.

[10] N. S. Subotic and B. J. Thelen, “Sequential pro-
cessing of SAR phase history data for rapid detec-
tion,” Proceedings of the 1995 IEEE International
Conference on Image Processing, pp. 144-146, Oct.
1995.


